Compare commits
115 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| 35831eaa72 | |||
| 40e3eb831a | |||
| e693e840ae | |||
| e30024cbd5 | |||
| b4ed75e95c | |||
| baf09ec891 | |||
| b4813a5862 | |||
| 77897b5488 | |||
| 9d63317254 | |||
| 318338e39b | |||
| 5a696f143e | |||
| 5cab55a9fd | |||
| bd8f52d1bb | |||
| 3291ddded3 | |||
| 64d2b07865 | |||
| 71b4f64594 | |||
| 12fe38bfd5 | |||
| dd3b9a4ee7 | |||
| 125c7a6c02 | |||
| c47d9cb6f1 | |||
| 3e7746714c | |||
| a699e24eaf | |||
| 5c6795163f | |||
| 46128385fc | |||
| 93889bc2a9 | |||
| 3581c804cf | |||
| 91cfd2397a | |||
| 8d14c5b414 | |||
| 52913ce62d | |||
| ee4b2cd0a5 | |||
| 9385797c63 | |||
| 86778da52a | |||
| bee03e467f | |||
| 8d590251f6 | |||
| b0ce5e8f83 | |||
| 72e2489e3c | |||
| a293cd57e9 | |||
| 6fc358b8a5 | |||
| dea3fa5e5b | |||
| 8c0839c086 | |||
| 398eedc07a | |||
| 497f057b9b | |||
| b4ecd4fb43 | |||
| ab9da81700 | |||
| 9637139046 | |||
| b60bb688dd | |||
| 6bbcf0cfcc | |||
| 118657d2fc | |||
| 3fe47b2af3 | |||
| fe213401dd | |||
| b5785fff56 | |||
| 4cfca44e6c | |||
| 35d97a8a16 | |||
| 0ccdd33538 | |||
| cd4d3e57ec | |||
| cb0f669874 | |||
| a0669af50e | |||
| 097431afdc | |||
| 94dee54cdb | |||
| 8fb3ddad8f | |||
| 01f7014fcf | |||
| b2b2dd4e04 | |||
| 86938469af | |||
| 32294879c9 | |||
| 5fbf8970c2 | |||
| 3799b5c077 | |||
| c923255683 | |||
| 66a7fe20e8 | |||
| b4859d237f | |||
| 87af956a7f | |||
| ef08bdfde5 | |||
| 88f0d0017d | |||
| 6cde000ea0 | |||
| d833f66ebb | |||
| 9b8f133133 | |||
| 33cc0f2fe8 | |||
| ff69a2ce65 | |||
| 397c278e34 | |||
| f5d6614462 | |||
| 2c1775e8f2 | |||
| 55cb9ddd3d | |||
| de53067561 | |||
| e9ae48f466 | |||
| a15fca6599 | |||
| e3f4bb83c8 | |||
| 6f34d0ca0d | |||
| 7dd5f5a44e | |||
| 6a1c2d5689 | |||
| e4aa0dd8d9 | |||
| 869c35c1a4 | |||
| 7b14ea318d | |||
| a202facfcd | |||
| 466a41668b | |||
| 14fcad9af7 | |||
| 9e9bacd069 | |||
| 7f14865306 | |||
| 634f07759f | |||
| 1d0df50149 | |||
| bede4516d9 | |||
| cc41c90cca | |||
| 3bcf958e86 | |||
| 8f71b6d179 | |||
| 6fe3661888 | |||
| ddcfc8cad7 | |||
| 77dfe62b06 | |||
| bbf141785e | |||
| 6caf4640ac | |||
| 118b1a2477 | |||
| e6188cc36a | |||
| a38b9f10df | |||
| 72b9ce677e | |||
| f040d9c222 | |||
| 6ddfa44cf9 | |||
| d9337616db | |||
| ff2cb39dd0 |
3
.gitattributes
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
||||
*.gif filter=lfs diff=lfs merge=lfs -text
|
||||
*.png filter=lfs diff=lfs merge=lfs -text
|
||||
@ -0,0 +1,334 @@
|
||||
<?xml version="1.0" encoding="utf-8" standalone="no"?>
|
||||
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
|
||||
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||
<svg xmlns:xlink="http://www.w3.org/1999/xlink" width="460.8pt" height="345.6pt" viewBox="0 0 460.8 345.6" xmlns="http://www.w3.org/2000/svg" version="1.1">
|
||||
<metadata>
|
||||
<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
|
||||
<cc:Work>
|
||||
<dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
|
||||
<dc:date>2025-08-03T22:53:53.738594</dc:date>
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:creator>
|
||||
<cc:Agent>
|
||||
<dc:title>Matplotlib v3.10.3, https://matplotlib.org/</dc:title>
|
||||
</cc:Agent>
|
||||
</dc:creator>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<defs>
|
||||
<style type="text/css">*{stroke-linejoin: round; stroke-linecap: butt}</style>
|
||||
</defs>
|
||||
<g id="figure_1">
|
||||
<g id="patch_1">
|
||||
<path d="M 0 345.6
|
||||
L 460.8 345.6
|
||||
L 460.8 0
|
||||
L 0 0
|
||||
z
|
||||
" style="fill: #ffffff"/>
|
||||
</g>
|
||||
<g id="axes_1">
|
||||
<g id="patch_2">
|
||||
<path d="M 57.6 307.584
|
||||
L 414.72 307.584
|
||||
L 414.72 41.472
|
||||
L 57.6 41.472
|
||||
z
|
||||
" style="fill: #ffffff"/>
|
||||
</g>
|
||||
<g id="patch_3">
|
||||
<path d="M 390.514075 187.957836
|
||||
Q 236.158737 122.454172 82.832593 57.387266
|
||||
" clip-path="url(#p8fa51a7528)" style="fill: none; stroke: #000000; stroke-linecap: round"/>
|
||||
<path d="M 85.733454 60.790941
|
||||
L 82.832593 57.387266
|
||||
L 87.29605 57.108782
|
||||
z
|
||||
" clip-path="url(#p8fa51a7528)" style="stroke: #000000; stroke-linecap: round"/>
|
||||
</g>
|
||||
<g id="patch_4">
|
||||
<path d="M 279.499516 173.899003
|
||||
Q 334.710372 181.992361 388.815017 189.92356
|
||||
" clip-path="url(#p8fa51a7528)" style="fill: none; stroke: #000000; stroke-linecap: round"/>
|
||||
<path d="M 385.147394 187.364549
|
||||
L 388.815017 189.92356
|
||||
L 384.567234 191.322252
|
||||
z
|
||||
" clip-path="url(#p8fa51a7528)" style="stroke: #000000; stroke-linecap: round"/>
|
||||
</g>
|
||||
<g id="patch_5">
|
||||
<path d="M 263.518245 168.164289
|
||||
Q 172.381729 113.105228 82.202167 58.624299
|
||||
" clip-path="url(#p8fa51a7528)" style="fill: none; stroke: #000000; stroke-linecap: round"/>
|
||||
<path d="M 84.591676 62.404543
|
||||
L 82.202167 58.624299
|
||||
L 86.660068 58.980838
|
||||
z
|
||||
" clip-path="url(#p8fa51a7528)" style="stroke: #000000; stroke-linecap: round"/>
|
||||
</g>
|
||||
<g id="patch_6">
|
||||
<path d="M 267.221177 180.467066
|
||||
Q 241.802173 234.06546 216.862251 286.653664
|
||||
" clip-path="url(#p8fa51a7528)" style="fill: none; stroke: #000000; stroke-linecap: round"/>
|
||||
<path d="M 220.383344 283.89651
|
||||
L 216.862251 286.653664
|
||||
L 216.769184 282.182497
|
||||
z
|
||||
" clip-path="url(#p8fa51a7528)" style="stroke: #000000; stroke-linecap: round"/>
|
||||
</g>
|
||||
<g id="patch_7">
|
||||
<path d="M 220.228666 291.252913
|
||||
Q 305.581235 243.413972 389.958514 196.121668
|
||||
" clip-path="url(#p8fa51a7528)" style="fill: none; stroke: #000000; stroke-linecap: round"/>
|
||||
<path d="M 385.491361 196.332723
|
||||
L 389.958514 196.121668
|
||||
L 387.447066 199.822023
|
||||
z
|
||||
" clip-path="url(#p8fa51a7528)" style="stroke: #000000; stroke-linecap: round"/>
|
||||
</g>
|
||||
<g id="patch_8">
|
||||
<path d="M 208.361368 287.975988
|
||||
Q 143.251403 174.525827 78.697949 62.045353
|
||||
" clip-path="url(#p8fa51a7528)" style="fill: none; stroke: #000000; stroke-linecap: round"/>
|
||||
<path d="M 78.954355 66.510133
|
||||
L 78.697949 62.045353
|
||||
L 82.423616 64.519096
|
||||
z
|
||||
" clip-path="url(#p8fa51a7528)" style="stroke: #000000; stroke-linecap: round"/>
|
||||
</g>
|
||||
<g id="patch_9">
|
||||
<path d="M 216.383108 287.663982
|
||||
Q 241.802112 234.065589 266.742034 181.477385
|
||||
" clip-path="url(#p8fa51a7528)" style="fill: none; stroke: #000000; stroke-linecap: round"/>
|
||||
<path d="M 263.22094 184.234539
|
||||
L 266.742034 181.477385
|
||||
L 266.835101 185.948552
|
||||
z
|
||||
" clip-path="url(#p8fa51a7528)" style="stroke: #000000; stroke-linecap: round"/>
|
||||
</g>
|
||||
<g id="matplotlib.axis_1">
|
||||
<g id="xtick_1"/>
|
||||
<g id="xtick_2"/>
|
||||
<g id="xtick_3"/>
|
||||
<g id="xtick_4"/>
|
||||
<g id="xtick_5"/>
|
||||
<g id="xtick_6"/>
|
||||
<g id="xtick_7"/>
|
||||
<g id="xtick_8"/>
|
||||
<g id="xtick_9"/>
|
||||
</g>
|
||||
<g id="matplotlib.axis_2">
|
||||
<g id="ytick_1"/>
|
||||
<g id="ytick_2"/>
|
||||
<g id="ytick_3"/>
|
||||
<g id="ytick_4"/>
|
||||
<g id="ytick_5"/>
|
||||
<g id="ytick_6"/>
|
||||
<g id="ytick_7"/>
|
||||
</g>
|
||||
<g id="PathCollection_1">
|
||||
<path d="M 398.487273 200.00167
|
||||
C 400.783999 200.00167 402.986966 199.089171 404.610997 197.465141
|
||||
C 406.235028 195.84111 407.147527 193.638142 407.147527 191.341416
|
||||
C 407.147527 189.04469 406.235028 186.841722 404.610997 185.217692
|
||||
C 402.986966 183.593661 400.783999 182.681162 398.487273 182.681162
|
||||
C 396.190547 182.681162 393.987579 183.593661 392.363548 185.217692
|
||||
C 390.739518 186.841722 389.827019 189.04469 389.827019 191.341416
|
||||
C 389.827019 193.638142 390.739518 195.84111 392.363548 197.465141
|
||||
C 393.987579 199.089171 396.190547 200.00167 398.487273 200.00167
|
||||
z
|
||||
" clip-path="url(#p8fa51a7528)" style="fill: #1f78b4; stroke: #1f78b4"/>
|
||||
<path d="M 73.832727 62.228254
|
||||
C 76.129453 62.228254 78.332421 61.315755 79.956452 59.691724
|
||||
C 81.580482 58.067694 82.492981 55.864726 82.492981 53.568
|
||||
C 82.492981 51.271274 81.580482 49.068306 79.956452 47.444276
|
||||
C 78.332421 45.820245 76.129453 44.907746 73.832727 44.907746
|
||||
C 71.536001 44.907746 69.333034 45.820245 67.709003 47.444276
|
||||
C 66.084972 49.068306 65.172473 51.271274 65.172473 53.568
|
||||
C 65.172473 55.864726 66.084972 58.067694 67.709003 59.691724
|
||||
C 69.333034 61.315755 71.536001 62.228254 73.832727 62.228254
|
||||
z
|
||||
" clip-path="url(#p8fa51a7528)" style="fill: #1f78b4; stroke: #1f78b4"/>
|
||||
<path d="M 270.931712 181.303303
|
||||
C 273.228439 181.303303 275.431406 180.390804 277.055437 178.766773
|
||||
C 278.679467 177.142742 279.591966 174.939775 279.591966 172.643049
|
||||
C 279.591966 170.346322 278.679467 168.143355 277.055437 166.519324
|
||||
C 275.431406 164.895294 273.228439 163.982795 270.931712 163.982795
|
||||
C 268.634986 163.982795 266.432019 164.895294 264.807988 166.519324
|
||||
C 263.183957 168.143355 262.271458 170.346322 262.271458 172.643049
|
||||
C 262.271458 174.939775 263.183957 177.142742 264.807988 178.766773
|
||||
C 266.432019 180.390804 268.634986 181.303303 270.931712 181.303303
|
||||
z
|
||||
" clip-path="url(#p8fa51a7528)" style="fill: #1f78b4; stroke: #1f78b4"/>
|
||||
<path d="M 212.672572 304.148254
|
||||
C 214.969299 304.148254 217.172266 303.235755 218.796297 301.611724
|
||||
C 220.420327 299.987694 221.332826 297.784726 221.332826 295.488
|
||||
C 221.332826 293.191274 220.420327 290.988306 218.796297 289.364276
|
||||
C 217.172266 287.740245 214.969299 286.827746 212.672572 286.827746
|
||||
C 210.375846 286.827746 208.172879 287.740245 206.548848 289.364276
|
||||
C 204.924817 290.988306 204.012318 293.191274 204.012318 295.488
|
||||
C 204.012318 297.784726 204.924817 299.987694 206.548848 301.611724
|
||||
C 208.172879 303.235755 210.375846 304.148254 212.672572 304.148254
|
||||
z
|
||||
" clip-path="url(#p8fa51a7528)" style="fill: #1f78b4; stroke: #1f78b4"/>
|
||||
</g>
|
||||
<g id="patch_10">
|
||||
<path d="M 57.6 307.584
|
||||
L 57.6 41.472
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_11">
|
||||
<path d="M 414.72 307.584
|
||||
L 414.72 41.472
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_12">
|
||||
<path d="M 57.6 307.584
|
||||
L 414.72 307.584
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_13">
|
||||
<path d="M 57.6 41.472
|
||||
L 414.72 41.472
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="text_1">
|
||||
<!-- 10 -->
|
||||
<g transform="translate(390.852273 194.652666) scale(0.12 -0.12)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-31" d="M 794 531
|
||||
L 1825 531
|
||||
L 1825 4091
|
||||
L 703 3866
|
||||
L 703 4441
|
||||
L 1819 4666
|
||||
L 2450 4666
|
||||
L 2450 531
|
||||
L 3481 531
|
||||
L 3481 0
|
||||
L 794 0
|
||||
L 794 531
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
<path id="DejaVuSans-30" d="M 2034 4250
|
||||
Q 1547 4250 1301 3770
|
||||
Q 1056 3291 1056 2328
|
||||
Q 1056 1369 1301 889
|
||||
Q 1547 409 2034 409
|
||||
Q 2525 409 2770 889
|
||||
Q 3016 1369 3016 2328
|
||||
Q 3016 3291 2770 3770
|
||||
Q 2525 4250 2034 4250
|
||||
z
|
||||
M 2034 4750
|
||||
Q 2819 4750 3233 4129
|
||||
Q 3647 3509 3647 2328
|
||||
Q 3647 1150 3233 529
|
||||
Q 2819 -91 2034 -91
|
||||
Q 1250 -91 836 529
|
||||
Q 422 1150 422 2328
|
||||
Q 422 3509 836 4129
|
||||
Q 1250 4750 2034 4750
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(63.623047 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_2">
|
||||
<!-- 16 -->
|
||||
<g transform="translate(66.197727 56.87925) scale(0.12 -0.12)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-36" d="M 2113 2584
|
||||
Q 1688 2584 1439 2293
|
||||
Q 1191 2003 1191 1497
|
||||
Q 1191 994 1439 701
|
||||
Q 1688 409 2113 409
|
||||
Q 2538 409 2786 701
|
||||
Q 3034 994 3034 1497
|
||||
Q 3034 2003 2786 2293
|
||||
Q 2538 2584 2113 2584
|
||||
z
|
||||
M 3366 4563
|
||||
L 3366 3988
|
||||
Q 3128 4100 2886 4159
|
||||
Q 2644 4219 2406 4219
|
||||
Q 1781 4219 1451 3797
|
||||
Q 1122 3375 1075 2522
|
||||
Q 1259 2794 1537 2939
|
||||
Q 1816 3084 2150 3084
|
||||
Q 2853 3084 3261 2657
|
||||
Q 3669 2231 3669 1497
|
||||
Q 3669 778 3244 343
|
||||
Q 2819 -91 2113 -91
|
||||
Q 1303 -91 875 529
|
||||
Q 447 1150 447 2328
|
||||
Q 447 3434 972 4092
|
||||
Q 1497 4750 2381 4750
|
||||
Q 2619 4750 2861 4703
|
||||
Q 3103 4656 3366 4563
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-36" transform="translate(63.623047 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_3">
|
||||
<!-- 14 -->
|
||||
<g transform="translate(263.296712 175.954299) scale(0.12 -0.12)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-34" d="M 2419 4116
|
||||
L 825 1625
|
||||
L 2419 1625
|
||||
L 2419 4116
|
||||
z
|
||||
M 2253 4666
|
||||
L 3047 4666
|
||||
L 3047 1625
|
||||
L 3713 1625
|
||||
L 3713 1100
|
||||
L 3047 1100
|
||||
L 3047 0
|
||||
L 2419 0
|
||||
L 2419 1100
|
||||
L 313 1100
|
||||
L 313 1709
|
||||
L 2253 4666
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-34" transform="translate(63.623047 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_4">
|
||||
<!-- 17 -->
|
||||
<g transform="translate(205.037572 298.79925) scale(0.12 -0.12)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-37" d="M 525 4666
|
||||
L 3525 4666
|
||||
L 3525 4397
|
||||
L 1831 0
|
||||
L 1172 0
|
||||
L 2766 4134
|
||||
L 525 4134
|
||||
L 525 4666
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-37" transform="translate(63.623047 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<defs>
|
||||
<clipPath id="p8fa51a7528">
|
||||
<rect x="57.6" y="41.472" width="357.12" height="266.112"/>
|
||||
</clipPath>
|
||||
</defs>
|
||||
</svg>
|
||||
|
||||
|
After Width: | Height: | Size: 10 KiB |
@ -0,0 +1,744 @@
|
||||
<?xml version="1.0" encoding="utf-8" standalone="no"?>
|
||||
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
|
||||
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||
<svg xmlns:xlink="http://www.w3.org/1999/xlink" width="460.8pt" height="345.6pt" viewBox="0 0 460.8 345.6" xmlns="http://www.w3.org/2000/svg" version="1.1">
|
||||
<metadata>
|
||||
<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
|
||||
<cc:Work>
|
||||
<dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
|
||||
<dc:date>2025-07-30T17:57:28.746680</dc:date>
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:creator>
|
||||
<cc:Agent>
|
||||
<dc:title>Matplotlib v3.10.3, https://matplotlib.org/</dc:title>
|
||||
</cc:Agent>
|
||||
</dc:creator>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<defs>
|
||||
<style type="text/css">*{stroke-linejoin: round; stroke-linecap: butt}</style>
|
||||
</defs>
|
||||
<g id="figure_1">
|
||||
<g id="patch_1">
|
||||
<path d="M 0 345.6
|
||||
L 460.8 345.6
|
||||
L 460.8 0
|
||||
L 0 0
|
||||
z
|
||||
" style="fill: #ffffff"/>
|
||||
</g>
|
||||
<g id="axes_1">
|
||||
<g id="patch_2">
|
||||
<path d="M 33.73 317.72
|
||||
L 442.035 317.72
|
||||
L 442.035 14.76
|
||||
L 33.73 14.76
|
||||
z
|
||||
" style="fill: #ffffff"/>
|
||||
</g>
|
||||
<g id="matplotlib.axis_1">
|
||||
<g id="xtick_1">
|
||||
<g id="line2d_1">
|
||||
<defs>
|
||||
<path id="m704ac02017" d="M 0 0
|
||||
L 0 3.5
|
||||
" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</defs>
|
||||
<g>
|
||||
<use xlink:href="#m704ac02017" x="50.822178" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_1">
|
||||
<!-- 0.0 -->
|
||||
<g transform="translate(42.870616 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-30" d="M 2034 4250
|
||||
Q 1547 4250 1301 3770
|
||||
Q 1056 3291 1056 2328
|
||||
Q 1056 1369 1301 889
|
||||
Q 1547 409 2034 409
|
||||
Q 2525 409 2770 889
|
||||
Q 3016 1369 3016 2328
|
||||
Q 3016 3291 2770 3770
|
||||
Q 2525 4250 2034 4250
|
||||
z
|
||||
M 2034 4750
|
||||
Q 2819 4750 3233 4129
|
||||
Q 3647 3509 3647 2328
|
||||
Q 3647 1150 3233 529
|
||||
Q 2819 -91 2034 -91
|
||||
Q 1250 -91 836 529
|
||||
Q 422 1150 422 2328
|
||||
Q 422 3509 836 4129
|
||||
Q 1250 4750 2034 4750
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
<path id="DejaVuSans-2e" d="M 684 794
|
||||
L 1344 794
|
||||
L 1344 0
|
||||
L 684 0
|
||||
L 684 794
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_2">
|
||||
<g id="line2d_2">
|
||||
<g>
|
||||
<use xlink:href="#m704ac02017" x="125.939735" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_2">
|
||||
<!-- 0.2 -->
|
||||
<g transform="translate(117.988172 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-32" d="M 1228 531
|
||||
L 3431 531
|
||||
L 3431 0
|
||||
L 469 0
|
||||
L 469 531
|
||||
Q 828 903 1448 1529
|
||||
Q 2069 2156 2228 2338
|
||||
Q 2531 2678 2651 2914
|
||||
Q 2772 3150 2772 3378
|
||||
Q 2772 3750 2511 3984
|
||||
Q 2250 4219 1831 4219
|
||||
Q 1534 4219 1204 4116
|
||||
Q 875 4013 500 3803
|
||||
L 500 4441
|
||||
Q 881 4594 1212 4672
|
||||
Q 1544 4750 1819 4750
|
||||
Q 2544 4750 2975 4387
|
||||
Q 3406 4025 3406 3419
|
||||
Q 3406 3131 3298 2873
|
||||
Q 3191 2616 2906 2266
|
||||
Q 2828 2175 2409 1742
|
||||
Q 1991 1309 1228 531
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-32" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_3">
|
||||
<g id="line2d_3">
|
||||
<g>
|
||||
<use xlink:href="#m704ac02017" x="201.057292" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_3">
|
||||
<!-- 0.4 -->
|
||||
<g transform="translate(193.105729 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-34" d="M 2419 4116
|
||||
L 825 1625
|
||||
L 2419 1625
|
||||
L 2419 4116
|
||||
z
|
||||
M 2253 4666
|
||||
L 3047 4666
|
||||
L 3047 1625
|
||||
L 3713 1625
|
||||
L 3713 1100
|
||||
L 3047 1100
|
||||
L 3047 0
|
||||
L 2419 0
|
||||
L 2419 1100
|
||||
L 313 1100
|
||||
L 313 1709
|
||||
L 2253 4666
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-34" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_4">
|
||||
<g id="line2d_4">
|
||||
<g>
|
||||
<use xlink:href="#m704ac02017" x="276.174848" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_4">
|
||||
<!-- 0.6 -->
|
||||
<g transform="translate(268.223286 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-36" d="M 2113 2584
|
||||
Q 1688 2584 1439 2293
|
||||
Q 1191 2003 1191 1497
|
||||
Q 1191 994 1439 701
|
||||
Q 1688 409 2113 409
|
||||
Q 2538 409 2786 701
|
||||
Q 3034 994 3034 1497
|
||||
Q 3034 2003 2786 2293
|
||||
Q 2538 2584 2113 2584
|
||||
z
|
||||
M 3366 4563
|
||||
L 3366 3988
|
||||
Q 3128 4100 2886 4159
|
||||
Q 2644 4219 2406 4219
|
||||
Q 1781 4219 1451 3797
|
||||
Q 1122 3375 1075 2522
|
||||
Q 1259 2794 1537 2939
|
||||
Q 1816 3084 2150 3084
|
||||
Q 2853 3084 3261 2657
|
||||
Q 3669 2231 3669 1497
|
||||
Q 3669 778 3244 343
|
||||
Q 2819 -91 2113 -91
|
||||
Q 1303 -91 875 529
|
||||
Q 447 1150 447 2328
|
||||
Q 447 3434 972 4092
|
||||
Q 1497 4750 2381 4750
|
||||
Q 2619 4750 2861 4703
|
||||
Q 3103 4656 3366 4563
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-36" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_5">
|
||||
<g id="line2d_5">
|
||||
<g>
|
||||
<use xlink:href="#m704ac02017" x="351.292405" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_5">
|
||||
<!-- 0.8 -->
|
||||
<g transform="translate(343.340842 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-38" d="M 2034 2216
|
||||
Q 1584 2216 1326 1975
|
||||
Q 1069 1734 1069 1313
|
||||
Q 1069 891 1326 650
|
||||
Q 1584 409 2034 409
|
||||
Q 2484 409 2743 651
|
||||
Q 3003 894 3003 1313
|
||||
Q 3003 1734 2745 1975
|
||||
Q 2488 2216 2034 2216
|
||||
z
|
||||
M 1403 2484
|
||||
Q 997 2584 770 2862
|
||||
Q 544 3141 544 3541
|
||||
Q 544 4100 942 4425
|
||||
Q 1341 4750 2034 4750
|
||||
Q 2731 4750 3128 4425
|
||||
Q 3525 4100 3525 3541
|
||||
Q 3525 3141 3298 2862
|
||||
Q 3072 2584 2669 2484
|
||||
Q 3125 2378 3379 2068
|
||||
Q 3634 1759 3634 1313
|
||||
Q 3634 634 3220 271
|
||||
Q 2806 -91 2034 -91
|
||||
Q 1263 -91 848 271
|
||||
Q 434 634 434 1313
|
||||
Q 434 1759 690 2068
|
||||
Q 947 2378 1403 2484
|
||||
z
|
||||
M 1172 3481
|
||||
Q 1172 3119 1398 2916
|
||||
Q 1625 2713 2034 2713
|
||||
Q 2441 2713 2670 2916
|
||||
Q 2900 3119 2900 3481
|
||||
Q 2900 3844 2670 4047
|
||||
Q 2441 4250 2034 4250
|
||||
Q 1625 4250 1398 4047
|
||||
Q 1172 3844 1172 3481
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-38" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_6">
|
||||
<g id="line2d_6">
|
||||
<g>
|
||||
<use xlink:href="#m704ac02017" x="426.409961" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_6">
|
||||
<!-- 1.0 -->
|
||||
<g transform="translate(418.458399 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-31" d="M 794 531
|
||||
L 1825 531
|
||||
L 1825 4091
|
||||
L 703 3866
|
||||
L 703 4441
|
||||
L 1819 4666
|
||||
L 2450 4666
|
||||
L 2450 531
|
||||
L 3481 531
|
||||
L 3481 0
|
||||
L 794 0
|
||||
L 794 531
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="matplotlib.axis_2">
|
||||
<g id="ytick_1">
|
||||
<g id="line2d_7">
|
||||
<defs>
|
||||
<path id="m3fb0ce5ed4" d="M 0 0
|
||||
L -3.5 0
|
||||
" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</defs>
|
||||
<g>
|
||||
<use xlink:href="#m3fb0ce5ed4" x="33.73" y="307.955174" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_7">
|
||||
<!-- 0.1 -->
|
||||
<g transform="translate(10.826875 311.754392) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-31" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_2">
|
||||
<g id="line2d_8">
|
||||
<g>
|
||||
<use xlink:href="#m3fb0ce5ed4" x="33.73" y="271.90043" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_8">
|
||||
<!-- 0.2 -->
|
||||
<g transform="translate(10.826875 275.699649) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-32" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_3">
|
||||
<g id="line2d_9">
|
||||
<g>
|
||||
<use xlink:href="#m3fb0ce5ed4" x="33.73" y="235.845686" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_9">
|
||||
<!-- 0.3 -->
|
||||
<g transform="translate(10.826875 239.644905) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-33" d="M 2597 2516
|
||||
Q 3050 2419 3304 2112
|
||||
Q 3559 1806 3559 1356
|
||||
Q 3559 666 3084 287
|
||||
Q 2609 -91 1734 -91
|
||||
Q 1441 -91 1130 -33
|
||||
Q 819 25 488 141
|
||||
L 488 750
|
||||
Q 750 597 1062 519
|
||||
Q 1375 441 1716 441
|
||||
Q 2309 441 2620 675
|
||||
Q 2931 909 2931 1356
|
||||
Q 2931 1769 2642 2001
|
||||
Q 2353 2234 1838 2234
|
||||
L 1294 2234
|
||||
L 1294 2753
|
||||
L 1863 2753
|
||||
Q 2328 2753 2575 2939
|
||||
Q 2822 3125 2822 3475
|
||||
Q 2822 3834 2567 4026
|
||||
Q 2313 4219 1838 4219
|
||||
Q 1578 4219 1281 4162
|
||||
Q 984 4106 628 3988
|
||||
L 628 4550
|
||||
Q 988 4650 1302 4700
|
||||
Q 1616 4750 1894 4750
|
||||
Q 2613 4750 3031 4423
|
||||
Q 3450 4097 3450 3541
|
||||
Q 3450 3153 3228 2886
|
||||
Q 3006 2619 2597 2516
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-33" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_4">
|
||||
<g id="line2d_10">
|
||||
<g>
|
||||
<use xlink:href="#m3fb0ce5ed4" x="33.73" y="199.790942" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_10">
|
||||
<!-- 0.4 -->
|
||||
<g transform="translate(10.826875 203.590161) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-34" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_5">
|
||||
<g id="line2d_11">
|
||||
<g>
|
||||
<use xlink:href="#m3fb0ce5ed4" x="33.73" y="163.736198" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_11">
|
||||
<!-- 0.5 -->
|
||||
<g transform="translate(10.826875 167.535417) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-35" d="M 691 4666
|
||||
L 3169 4666
|
||||
L 3169 4134
|
||||
L 1269 4134
|
||||
L 1269 2991
|
||||
Q 1406 3038 1543 3061
|
||||
Q 1681 3084 1819 3084
|
||||
Q 2600 3084 3056 2656
|
||||
Q 3513 2228 3513 1497
|
||||
Q 3513 744 3044 326
|
||||
Q 2575 -91 1722 -91
|
||||
Q 1428 -91 1123 -41
|
||||
Q 819 9 494 109
|
||||
L 494 744
|
||||
Q 775 591 1075 516
|
||||
Q 1375 441 1709 441
|
||||
Q 2250 441 2565 725
|
||||
Q 2881 1009 2881 1497
|
||||
Q 2881 1984 2565 2268
|
||||
Q 2250 2553 1709 2553
|
||||
Q 1456 2553 1204 2497
|
||||
Q 953 2441 691 2322
|
||||
L 691 4666
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_6">
|
||||
<g id="line2d_12">
|
||||
<g>
|
||||
<use xlink:href="#m3fb0ce5ed4" x="33.73" y="127.681455" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_12">
|
||||
<!-- 0.6 -->
|
||||
<g transform="translate(10.826875 131.480673) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-36" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_7">
|
||||
<g id="line2d_13">
|
||||
<g>
|
||||
<use xlink:href="#m3fb0ce5ed4" x="33.73" y="91.626711" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_13">
|
||||
<!-- 0.7 -->
|
||||
<g transform="translate(10.826875 95.425929) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-37" d="M 525 4666
|
||||
L 3525 4666
|
||||
L 3525 4397
|
||||
L 1831 0
|
||||
L 1172 0
|
||||
L 2766 4134
|
||||
L 525 4134
|
||||
L 525 4666
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-37" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_8">
|
||||
<g id="line2d_14">
|
||||
<g>
|
||||
<use xlink:href="#m3fb0ce5ed4" x="33.73" y="55.571967" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_14">
|
||||
<!-- 0.8 -->
|
||||
<g transform="translate(10.826875 59.371186) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-38" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_9">
|
||||
<g id="line2d_15">
|
||||
<g>
|
||||
<use xlink:href="#m3fb0ce5ed4" x="33.73" y="19.517223" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_15">
|
||||
<!-- 0.9 -->
|
||||
<g transform="translate(10.826875 23.316442) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-39" d="M 703 97
|
||||
L 703 672
|
||||
Q 941 559 1184 500
|
||||
Q 1428 441 1663 441
|
||||
Q 2288 441 2617 861
|
||||
Q 2947 1281 2994 2138
|
||||
Q 2813 1869 2534 1725
|
||||
Q 2256 1581 1919 1581
|
||||
Q 1219 1581 811 2004
|
||||
Q 403 2428 403 3163
|
||||
Q 403 3881 828 4315
|
||||
Q 1253 4750 1959 4750
|
||||
Q 2769 4750 3195 4129
|
||||
Q 3622 3509 3622 2328
|
||||
Q 3622 1225 3098 567
|
||||
Q 2575 -91 1691 -91
|
||||
Q 1453 -91 1209 -44
|
||||
Q 966 3 703 97
|
||||
z
|
||||
M 1959 2075
|
||||
Q 2384 2075 2632 2365
|
||||
Q 2881 2656 2881 3163
|
||||
Q 2881 3666 2632 3958
|
||||
Q 2384 4250 1959 4250
|
||||
Q 1534 4250 1286 3958
|
||||
Q 1038 3666 1038 3163
|
||||
Q 1038 2656 1286 2365
|
||||
Q 1534 2075 1959 2075
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-39" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_16">
|
||||
<path d="M 52.289318 303.949091
|
||||
L 53.756458 298.941488
|
||||
L 55.223598 295.936926
|
||||
L 56.690738 292.50314
|
||||
L 58.157877 289.927802
|
||||
L 61.092157 287.081375
|
||||
L 62.559297 283.918678
|
||||
L 64.026436 281.306015
|
||||
L 65.493576 280.383899
|
||||
L 66.960716 279.626446
|
||||
L 69.894996 277.241873
|
||||
L 71.362135 276.407273
|
||||
L 72.829275 275.334215
|
||||
L 74.296415 271.90043
|
||||
L 75.763555 268.895868
|
||||
L 77.230694 268.105194
|
||||
L 78.697834 267.530158
|
||||
L 81.632114 266.053715
|
||||
L 84.566393 265.140165
|
||||
L 87.500673 262.59598
|
||||
L 90.434952 261.599074
|
||||
L 91.902092 260.806662
|
||||
L 93.369232 259.882182
|
||||
L 94.836372 259.175226
|
||||
L 96.303511 258.165289
|
||||
L 97.770651 253.873058
|
||||
L 99.237791 249.954064
|
||||
L 100.704931 249.129013
|
||||
L 102.172071 248.57089
|
||||
L 105.10635 247.277678
|
||||
L 108.04063 246.564664
|
||||
L 110.974909 244.859372
|
||||
L 115.376329 243.857851
|
||||
L 116.843468 243.392028
|
||||
L 118.310608 243.056635
|
||||
L 119.777748 242.60595
|
||||
L 122.712027 239.334855
|
||||
L 124.179167 238.850248
|
||||
L 125.646307 238.483838
|
||||
L 128.580587 237.484538
|
||||
L 131.514866 236.820138
|
||||
L 134.449146 234.753118
|
||||
L 137.383425 233.842645
|
||||
L 138.850565 233.072244
|
||||
L 140.317705 232.115885
|
||||
L 141.784845 231.338843
|
||||
L 143.251984 230.152832
|
||||
L 146.186264 217.818314
|
||||
L 147.653404 216.75788
|
||||
L 149.120543 216.07373
|
||||
L 150.587683 215.242975
|
||||
L 152.054823 214.582632
|
||||
L 154.989103 213.812231
|
||||
L 157.923382 212.102318
|
||||
L 162.324801 211.176651
|
||||
L 163.791941 210.764125
|
||||
L 166.726221 210.092298
|
||||
L 169.6605 207.586562
|
||||
L 175.529059 206.34635
|
||||
L 178.463339 205.92792
|
||||
L 181.397619 204.707498
|
||||
L 184.331898 204.205809
|
||||
L 188.733317 202.926137
|
||||
L 190.200457 202.366281
|
||||
L 193.134737 197.12022
|
||||
L 194.601877 196.513238
|
||||
L 196.069016 196.09302
|
||||
L 199.003296 195.088149
|
||||
L 201.937575 194.514638
|
||||
L 204.871855 193.083083
|
||||
L 209.273274 192.20047
|
||||
L 213.674694 191.050398
|
||||
L 216.608973 187.772694
|
||||
L 218.076113 187.250162
|
||||
L 219.543253 186.848214
|
||||
L 222.477532 185.720798
|
||||
L 225.411812 184.944871
|
||||
L 226.878952 183.766612
|
||||
L 228.346091 182.385204
|
||||
L 231.280371 181.182042
|
||||
L 232.747511 180.124718
|
||||
L 234.214651 178.759008
|
||||
L 235.68179 177.603408
|
||||
L 237.14893 175.754446
|
||||
L 240.08321 151.71795
|
||||
L 241.550349 149.868989
|
||||
L 243.017489 148.713388
|
||||
L 244.484629 147.347678
|
||||
L 245.951769 146.290355
|
||||
L 248.886048 145.087193
|
||||
L 250.353188 143.705785
|
||||
L 251.820328 142.527526
|
||||
L 256.221747 141.201983
|
||||
L 257.688887 140.624183
|
||||
L 259.156027 140.222235
|
||||
L 260.623167 139.699702
|
||||
L 263.557446 136.421998
|
||||
L 267.958865 135.271927
|
||||
L 269.426005 134.892403
|
||||
L 272.360285 134.389314
|
||||
L 275.294564 132.957759
|
||||
L 278.228844 132.384247
|
||||
L 282.630263 130.959159
|
||||
L 284.097403 130.352176
|
||||
L 287.031683 125.106116
|
||||
L 288.498822 124.546259
|
||||
L 291.433102 123.675372
|
||||
L 292.900242 123.266588
|
||||
L 295.834521 122.764899
|
||||
L 298.768801 121.544477
|
||||
L 303.17022 120.813884
|
||||
L 307.571639 119.885834
|
||||
L 310.505919 117.380099
|
||||
L 316.374478 115.908477
|
||||
L 319.308758 115.370079
|
||||
L 322.243037 113.660165
|
||||
L 325.177317 112.889765
|
||||
L 326.644457 112.229421
|
||||
L 328.111596 111.398667
|
||||
L 329.578736 110.714516
|
||||
L 331.045876 109.654083
|
||||
L 333.980155 97.319565
|
||||
L 335.447295 96.133554
|
||||
L 336.914435 95.356512
|
||||
L 338.381575 94.400153
|
||||
L 339.848715 93.629752
|
||||
L 342.782994 92.719279
|
||||
L 345.717274 90.652258
|
||||
L 350.118693 89.505843
|
||||
L 351.585833 88.988559
|
||||
L 353.052973 88.622149
|
||||
L 354.520112 88.137542
|
||||
L 357.454392 84.866446
|
||||
L 361.855811 83.614545
|
||||
L 363.322951 83.188366
|
||||
L 366.257231 82.613025
|
||||
L 369.19151 80.907733
|
||||
L 372.12579 80.194719
|
||||
L 373.592929 79.608463
|
||||
L 375.060069 78.901507
|
||||
L 376.527209 78.343384
|
||||
L 377.994349 77.518333
|
||||
L 379.461489 73.599339
|
||||
L 380.928628 69.307107
|
||||
L 382.395768 68.297171
|
||||
L 383.862908 67.590215
|
||||
L 385.330048 66.665734
|
||||
L 386.797187 65.873322
|
||||
L 389.731467 64.876417
|
||||
L 392.665746 62.332231
|
||||
L 395.600026 61.418682
|
||||
L 401.468585 58.576529
|
||||
L 402.935725 55.571967
|
||||
L 404.402865 52.138182
|
||||
L 405.870004 51.065124
|
||||
L 407.337144 50.230523
|
||||
L 410.271424 47.84595
|
||||
L 411.738564 47.088498
|
||||
L 414.672843 43.553719
|
||||
L 417.607123 38.931316
|
||||
L 420.541402 34.969256
|
||||
L 423.475682 28.530909
|
||||
L 423.475682 28.530909
|
||||
" clip-path="url(#p6dddd11e9f)" style="fill: none; stroke: #1f77b4; stroke-width: 1.5; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_3">
|
||||
<path d="M 33.73 317.72
|
||||
L 33.73 14.76
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_4">
|
||||
<path d="M 442.035 317.72
|
||||
L 442.035 14.76
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_5">
|
||||
<path d="M 33.73 317.72
|
||||
L 442.035 317.72
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_6">
|
||||
<path d="M 33.73 14.76
|
||||
L 442.035 14.76
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<defs>
|
||||
<clipPath id="p6dddd11e9f">
|
||||
<rect x="33.73" y="14.76" width="408.305" height="302.96"/>
|
||||
</clipPath>
|
||||
</defs>
|
||||
</svg>
|
||||
|
||||
|
After Width: | Height: | Size: 19 KiB |
@ -0,0 +1,751 @@
|
||||
<?xml version="1.0" encoding="utf-8" standalone="no"?>
|
||||
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
|
||||
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||
<svg xmlns:xlink="http://www.w3.org/1999/xlink" width="460.8pt" height="345.6pt" viewBox="0 0 460.8 345.6" xmlns="http://www.w3.org/2000/svg" version="1.1">
|
||||
<metadata>
|
||||
<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
|
||||
<cc:Work>
|
||||
<dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
|
||||
<dc:date>2025-07-30T17:57:30.086732</dc:date>
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:creator>
|
||||
<cc:Agent>
|
||||
<dc:title>Matplotlib v3.10.3, https://matplotlib.org/</dc:title>
|
||||
</cc:Agent>
|
||||
</dc:creator>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<defs>
|
||||
<style type="text/css">*{stroke-linejoin: round; stroke-linecap: butt}</style>
|
||||
</defs>
|
||||
<g id="figure_1">
|
||||
<g id="patch_1">
|
||||
<path d="M 0 345.6
|
||||
L 460.8 345.6
|
||||
L 460.8 0
|
||||
L 0 0
|
||||
z
|
||||
" style="fill: #ffffff"/>
|
||||
</g>
|
||||
<g id="axes_1">
|
||||
<g id="patch_2">
|
||||
<path d="M 33.73 317.72
|
||||
L 442.035 317.72
|
||||
L 442.035 14.76
|
||||
L 33.73 14.76
|
||||
z
|
||||
" style="fill: #ffffff"/>
|
||||
</g>
|
||||
<g id="matplotlib.axis_1">
|
||||
<g id="xtick_1">
|
||||
<g id="line2d_1">
|
||||
<defs>
|
||||
<path id="m82b750d18c" d="M 0 0
|
||||
L 0 3.5
|
||||
" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</defs>
|
||||
<g>
|
||||
<use xlink:href="#m82b750d18c" x="46.890244" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_1">
|
||||
<!-- 0.1 -->
|
||||
<g transform="translate(38.938681 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-30" d="M 2034 4250
|
||||
Q 1547 4250 1301 3770
|
||||
Q 1056 3291 1056 2328
|
||||
Q 1056 1369 1301 889
|
||||
Q 1547 409 2034 409
|
||||
Q 2525 409 2770 889
|
||||
Q 3016 1369 3016 2328
|
||||
Q 3016 3291 2770 3770
|
||||
Q 2525 4250 2034 4250
|
||||
z
|
||||
M 2034 4750
|
||||
Q 2819 4750 3233 4129
|
||||
Q 3647 3509 3647 2328
|
||||
Q 3647 1150 3233 529
|
||||
Q 2819 -91 2034 -91
|
||||
Q 1250 -91 836 529
|
||||
Q 422 1150 422 2328
|
||||
Q 422 3509 836 4129
|
||||
Q 1250 4750 2034 4750
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
<path id="DejaVuSans-2e" d="M 684 794
|
||||
L 1344 794
|
||||
L 1344 0
|
||||
L 684 0
|
||||
L 684 794
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
<path id="DejaVuSans-31" d="M 794 531
|
||||
L 1825 531
|
||||
L 1825 4091
|
||||
L 703 3866
|
||||
L 703 4441
|
||||
L 1819 4666
|
||||
L 2450 4666
|
||||
L 2450 531
|
||||
L 3481 531
|
||||
L 3481 0
|
||||
L 794 0
|
||||
L 794 531
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-31" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_2">
|
||||
<g id="line2d_2">
|
||||
<g>
|
||||
<use xlink:href="#m82b750d18c" x="95.481913" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_2">
|
||||
<!-- 0.2 -->
|
||||
<g transform="translate(87.530351 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-32" d="M 1228 531
|
||||
L 3431 531
|
||||
L 3431 0
|
||||
L 469 0
|
||||
L 469 531
|
||||
Q 828 903 1448 1529
|
||||
Q 2069 2156 2228 2338
|
||||
Q 2531 2678 2651 2914
|
||||
Q 2772 3150 2772 3378
|
||||
Q 2772 3750 2511 3984
|
||||
Q 2250 4219 1831 4219
|
||||
Q 1534 4219 1204 4116
|
||||
Q 875 4013 500 3803
|
||||
L 500 4441
|
||||
Q 881 4594 1212 4672
|
||||
Q 1544 4750 1819 4750
|
||||
Q 2544 4750 2975 4387
|
||||
Q 3406 4025 3406 3419
|
||||
Q 3406 3131 3298 2873
|
||||
Q 3191 2616 2906 2266
|
||||
Q 2828 2175 2409 1742
|
||||
Q 1991 1309 1228 531
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-32" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_3">
|
||||
<g id="line2d_3">
|
||||
<g>
|
||||
<use xlink:href="#m82b750d18c" x="144.073583" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_3">
|
||||
<!-- 0.3 -->
|
||||
<g transform="translate(136.12202 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-33" d="M 2597 2516
|
||||
Q 3050 2419 3304 2112
|
||||
Q 3559 1806 3559 1356
|
||||
Q 3559 666 3084 287
|
||||
Q 2609 -91 1734 -91
|
||||
Q 1441 -91 1130 -33
|
||||
Q 819 25 488 141
|
||||
L 488 750
|
||||
Q 750 597 1062 519
|
||||
Q 1375 441 1716 441
|
||||
Q 2309 441 2620 675
|
||||
Q 2931 909 2931 1356
|
||||
Q 2931 1769 2642 2001
|
||||
Q 2353 2234 1838 2234
|
||||
L 1294 2234
|
||||
L 1294 2753
|
||||
L 1863 2753
|
||||
Q 2328 2753 2575 2939
|
||||
Q 2822 3125 2822 3475
|
||||
Q 2822 3834 2567 4026
|
||||
Q 2313 4219 1838 4219
|
||||
Q 1578 4219 1281 4162
|
||||
Q 984 4106 628 3988
|
||||
L 628 4550
|
||||
Q 988 4650 1302 4700
|
||||
Q 1616 4750 1894 4750
|
||||
Q 2613 4750 3031 4423
|
||||
Q 3450 4097 3450 3541
|
||||
Q 3450 3153 3228 2886
|
||||
Q 3006 2619 2597 2516
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-33" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_4">
|
||||
<g id="line2d_4">
|
||||
<g>
|
||||
<use xlink:href="#m82b750d18c" x="192.665252" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_4">
|
||||
<!-- 0.4 -->
|
||||
<g transform="translate(184.71369 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-34" d="M 2419 4116
|
||||
L 825 1625
|
||||
L 2419 1625
|
||||
L 2419 4116
|
||||
z
|
||||
M 2253 4666
|
||||
L 3047 4666
|
||||
L 3047 1625
|
||||
L 3713 1625
|
||||
L 3713 1100
|
||||
L 3047 1100
|
||||
L 3047 0
|
||||
L 2419 0
|
||||
L 2419 1100
|
||||
L 313 1100
|
||||
L 313 1709
|
||||
L 2253 4666
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-34" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_5">
|
||||
<g id="line2d_5">
|
||||
<g>
|
||||
<use xlink:href="#m82b750d18c" x="241.256921" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_5">
|
||||
<!-- 0.5 -->
|
||||
<g transform="translate(233.305359 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-35" d="M 691 4666
|
||||
L 3169 4666
|
||||
L 3169 4134
|
||||
L 1269 4134
|
||||
L 1269 2991
|
||||
Q 1406 3038 1543 3061
|
||||
Q 1681 3084 1819 3084
|
||||
Q 2600 3084 3056 2656
|
||||
Q 3513 2228 3513 1497
|
||||
Q 3513 744 3044 326
|
||||
Q 2575 -91 1722 -91
|
||||
Q 1428 -91 1123 -41
|
||||
Q 819 9 494 109
|
||||
L 494 744
|
||||
Q 775 591 1075 516
|
||||
Q 1375 441 1709 441
|
||||
Q 2250 441 2565 725
|
||||
Q 2881 1009 2881 1497
|
||||
Q 2881 1984 2565 2268
|
||||
Q 2250 2553 1709 2553
|
||||
Q 1456 2553 1204 2497
|
||||
Q 953 2441 691 2322
|
||||
L 691 4666
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_6">
|
||||
<g id="line2d_6">
|
||||
<g>
|
||||
<use xlink:href="#m82b750d18c" x="289.848591" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_6">
|
||||
<!-- 0.6 -->
|
||||
<g transform="translate(281.897028 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-36" d="M 2113 2584
|
||||
Q 1688 2584 1439 2293
|
||||
Q 1191 2003 1191 1497
|
||||
Q 1191 994 1439 701
|
||||
Q 1688 409 2113 409
|
||||
Q 2538 409 2786 701
|
||||
Q 3034 994 3034 1497
|
||||
Q 3034 2003 2786 2293
|
||||
Q 2538 2584 2113 2584
|
||||
z
|
||||
M 3366 4563
|
||||
L 3366 3988
|
||||
Q 3128 4100 2886 4159
|
||||
Q 2644 4219 2406 4219
|
||||
Q 1781 4219 1451 3797
|
||||
Q 1122 3375 1075 2522
|
||||
Q 1259 2794 1537 2939
|
||||
Q 1816 3084 2150 3084
|
||||
Q 2853 3084 3261 2657
|
||||
Q 3669 2231 3669 1497
|
||||
Q 3669 778 3244 343
|
||||
Q 2819 -91 2113 -91
|
||||
Q 1303 -91 875 529
|
||||
Q 447 1150 447 2328
|
||||
Q 447 3434 972 4092
|
||||
Q 1497 4750 2381 4750
|
||||
Q 2619 4750 2861 4703
|
||||
Q 3103 4656 3366 4563
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-36" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_7">
|
||||
<g id="line2d_7">
|
||||
<g>
|
||||
<use xlink:href="#m82b750d18c" x="338.44026" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_7">
|
||||
<!-- 0.7 -->
|
||||
<g transform="translate(330.488698 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-37" d="M 525 4666
|
||||
L 3525 4666
|
||||
L 3525 4397
|
||||
L 1831 0
|
||||
L 1172 0
|
||||
L 2766 4134
|
||||
L 525 4134
|
||||
L 525 4666
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-37" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_8">
|
||||
<g id="line2d_8">
|
||||
<g>
|
||||
<use xlink:href="#m82b750d18c" x="387.03193" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_8">
|
||||
<!-- 0.8 -->
|
||||
<g transform="translate(379.080367 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-38" d="M 2034 2216
|
||||
Q 1584 2216 1326 1975
|
||||
Q 1069 1734 1069 1313
|
||||
Q 1069 891 1326 650
|
||||
Q 1584 409 2034 409
|
||||
Q 2484 409 2743 651
|
||||
Q 3003 894 3003 1313
|
||||
Q 3003 1734 2745 1975
|
||||
Q 2488 2216 2034 2216
|
||||
z
|
||||
M 1403 2484
|
||||
Q 997 2584 770 2862
|
||||
Q 544 3141 544 3541
|
||||
Q 544 4100 942 4425
|
||||
Q 1341 4750 2034 4750
|
||||
Q 2731 4750 3128 4425
|
||||
Q 3525 4100 3525 3541
|
||||
Q 3525 3141 3298 2862
|
||||
Q 3072 2584 2669 2484
|
||||
Q 3125 2378 3379 2068
|
||||
Q 3634 1759 3634 1313
|
||||
Q 3634 634 3220 271
|
||||
Q 2806 -91 2034 -91
|
||||
Q 1263 -91 848 271
|
||||
Q 434 634 434 1313
|
||||
Q 434 1759 690 2068
|
||||
Q 947 2378 1403 2484
|
||||
z
|
||||
M 1172 3481
|
||||
Q 1172 3119 1398 2916
|
||||
Q 1625 2713 2034 2713
|
||||
Q 2441 2713 2670 2916
|
||||
Q 2900 3119 2900 3481
|
||||
Q 2900 3844 2670 4047
|
||||
Q 2441 4250 2034 4250
|
||||
Q 1625 4250 1398 4047
|
||||
Q 1172 3844 1172 3481
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-38" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_9">
|
||||
<g id="line2d_9">
|
||||
<g>
|
||||
<use xlink:href="#m82b750d18c" x="435.623599" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_9">
|
||||
<!-- 0.9 -->
|
||||
<g transform="translate(427.672037 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-39" d="M 703 97
|
||||
L 703 672
|
||||
Q 941 559 1184 500
|
||||
Q 1428 441 1663 441
|
||||
Q 2288 441 2617 861
|
||||
Q 2947 1281 2994 2138
|
||||
Q 2813 1869 2534 1725
|
||||
Q 2256 1581 1919 1581
|
||||
Q 1219 1581 811 2004
|
||||
Q 403 2428 403 3163
|
||||
Q 403 3881 828 4315
|
||||
Q 1253 4750 1959 4750
|
||||
Q 2769 4750 3195 4129
|
||||
Q 3622 3509 3622 2328
|
||||
Q 3622 1225 3098 567
|
||||
Q 2575 -91 1691 -91
|
||||
Q 1453 -91 1209 -44
|
||||
Q 966 3 703 97
|
||||
z
|
||||
M 1959 2075
|
||||
Q 2384 2075 2632 2365
|
||||
Q 2881 2656 2881 3163
|
||||
Q 2881 3666 2632 3958
|
||||
Q 2384 4250 1959 4250
|
||||
Q 1534 4250 1286 3958
|
||||
Q 1038 3666 1038 3163
|
||||
Q 1038 2656 1286 2365
|
||||
Q 1534 2075 1959 2075
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-39" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="matplotlib.axis_2">
|
||||
<g id="ytick_1">
|
||||
<g id="line2d_10">
|
||||
<defs>
|
||||
<path id="me91bacd9d9" d="M 0 0
|
||||
L -3.5 0
|
||||
" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</defs>
|
||||
<g>
|
||||
<use xlink:href="#me91bacd9d9" x="33.73" y="305.0377" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_10">
|
||||
<!-- 0.0 -->
|
||||
<g transform="translate(10.826875 308.836919) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_2">
|
||||
<g id="line2d_11">
|
||||
<g>
|
||||
<use xlink:href="#me91bacd9d9" x="33.73" y="249.300898" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_11">
|
||||
<!-- 0.2 -->
|
||||
<g transform="translate(10.826875 253.100117) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-32" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_3">
|
||||
<g id="line2d_12">
|
||||
<g>
|
||||
<use xlink:href="#me91bacd9d9" x="33.73" y="193.564096" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_12">
|
||||
<!-- 0.4 -->
|
||||
<g transform="translate(10.826875 197.363315) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-34" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_4">
|
||||
<g id="line2d_13">
|
||||
<g>
|
||||
<use xlink:href="#me91bacd9d9" x="33.73" y="137.827294" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_13">
|
||||
<!-- 0.6 -->
|
||||
<g transform="translate(10.826875 141.626513) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-36" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_5">
|
||||
<g id="line2d_14">
|
||||
<g>
|
||||
<use xlink:href="#me91bacd9d9" x="33.73" y="82.090492" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_14">
|
||||
<!-- 0.8 -->
|
||||
<g transform="translate(10.826875 85.889711) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-38" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_6">
|
||||
<g id="line2d_15">
|
||||
<g>
|
||||
<use xlink:href="#me91bacd9d9" x="33.73" y="26.35369" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_15">
|
||||
<!-- 1.0 -->
|
||||
<g transform="translate(10.826875 30.152909) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_16">
|
||||
<path d="M 52.289318 303.949091
|
||||
L 59.038161 302.860481
|
||||
L 63.087467 301.771872
|
||||
L 67.715245 300.683263
|
||||
L 71.186079 299.594653
|
||||
L 75.022263 297.417434
|
||||
L 79.28469 296.328825
|
||||
L 82.805826 295.240216
|
||||
L 84.048579 294.151606
|
||||
L 85.069413 293.062997
|
||||
L 88.283147 290.885778
|
||||
L 89.407955 289.797169
|
||||
L 90.854135 288.708559
|
||||
L 95.481913 287.61995
|
||||
L 99.531219 286.53134
|
||||
L 100.596826 285.442731
|
||||
L 101.371813 284.354121
|
||||
L 103.361643 282.176903
|
||||
L 104.592851 279.999684
|
||||
L 108.021699 277.822465
|
||||
L 109.365247 275.645246
|
||||
L 110.433196 274.556637
|
||||
L 111.679136 273.468027
|
||||
L 112.631914 272.379418
|
||||
L 113.993025 271.290808
|
||||
L 125.059451 269.11359
|
||||
L 126.171389 268.02498
|
||||
L 126.923582 266.936371
|
||||
L 127.87636 265.847761
|
||||
L 128.666468 264.759152
|
||||
L 129.627411 262.581933
|
||||
L 131.925665 260.404714
|
||||
L 133.275434 257.138886
|
||||
L 133.903233 256.050277
|
||||
L 134.355249 254.961667
|
||||
L 134.962645 253.873058
|
||||
L 139.371163 251.695839
|
||||
L 140.024277 250.60723
|
||||
L 140.518095 249.51862
|
||||
L 141.86487 247.341401
|
||||
L 142.760294 245.164183
|
||||
L 145.546057 242.986964
|
||||
L 146.77312 240.809745
|
||||
L 147.811403 239.721135
|
||||
L 149.100307 238.632526
|
||||
L 150.147541 237.543917
|
||||
L 151.745952 236.455307
|
||||
L 168.369417 234.278088
|
||||
L 169.798584 233.189479
|
||||
L 170.720627 232.10087
|
||||
L 171.840251 231.01226
|
||||
L 172.730208 229.923651
|
||||
L 173.768492 227.746432
|
||||
L 176.072975 225.569213
|
||||
L 177.320514 222.303385
|
||||
L 177.876483 221.214775
|
||||
L 178.26772 220.126166
|
||||
L 178.781918 219.037557
|
||||
L 182.158945 216.860338
|
||||
L 183.409696 213.59451
|
||||
L 183.830403 212.5059
|
||||
L 184.39433 210.328681
|
||||
L 186.039115 208.151462
|
||||
L 186.715252 205.974244
|
||||
L 188.43989 202.708415
|
||||
L 189.194419 201.619806
|
||||
L 196.264635 199.442587
|
||||
L 197.082677 198.353978
|
||||
L 197.649013 197.265368
|
||||
L 199.003296 195.088149
|
||||
L 199.776228 192.910931
|
||||
L 201.705563 190.733712
|
||||
L 202.895077 187.467884
|
||||
L 203.463401 186.379274
|
||||
L 203.878714 185.290665
|
||||
L 204.445051 184.202055
|
||||
L 208.862475 182.024837
|
||||
L 209.566702 180.936227
|
||||
L 210.108415 179.847618
|
||||
L 211.627855 177.670399
|
||||
L 212.673587 175.49318
|
||||
L 214.26155 174.404571
|
||||
L 216.123299 173.315961
|
||||
L 217.744823 171.138742
|
||||
L 219.169799 170.050133
|
||||
L 221.010393 168.961524
|
||||
L 222.567818 167.872914
|
||||
L 225.059698 166.784305
|
||||
L 257.454145 164.607086
|
||||
L 259.946025 163.518476
|
||||
L 261.50345 162.429867
|
||||
L 263.344044 161.341258
|
||||
L 264.76902 160.252648
|
||||
L 266.390544 158.075429
|
||||
L 268.252293 156.98682
|
||||
L 269.840256 155.898211
|
||||
L 271.626715 152.632382
|
||||
L 272.405428 151.543773
|
||||
L 272.947141 150.455163
|
||||
L 273.651368 149.366554
|
||||
L 278.068792 147.189335
|
||||
L 278.635129 146.100726
|
||||
L 279.050442 145.012116
|
||||
L 280.130257 142.834898
|
||||
L 280.80828 140.657679
|
||||
L 282.737615 138.48046
|
||||
L 283.510547 136.303241
|
||||
L 285.431166 133.037413
|
||||
L 286.249208 131.948803
|
||||
L 293.319424 129.771585
|
||||
L 294.073953 128.682975
|
||||
L 294.589242 127.594366
|
||||
L 295.798591 125.417147
|
||||
L 296.474728 123.239928
|
||||
L 298.119513 121.062709
|
||||
L 299.104147 117.796881
|
||||
L 299.566925 116.708272
|
||||
L 299.90204 115.619662
|
||||
L 300.354898 114.531053
|
||||
L 303.731925 112.353834
|
||||
L 304.246123 111.265225
|
||||
L 304.63736 110.176615
|
||||
L 305.715258 107.999396
|
||||
L 306.440868 105.822178
|
||||
L 308.745351 103.644959
|
||||
L 309.783635 101.46774
|
||||
L 310.673592 100.37913
|
||||
L 311.793216 99.290521
|
||||
L 312.715259 98.201912
|
||||
L 314.144426 97.113302
|
||||
L 330.767891 94.936083
|
||||
L 332.366302 93.847474
|
||||
L 333.413536 92.758865
|
||||
L 334.70244 91.670255
|
||||
L 335.740723 90.581646
|
||||
L 336.967785 88.404427
|
||||
L 339.753549 86.227208
|
||||
L 341.298594 82.96138
|
||||
L 341.995748 81.87277
|
||||
L 342.489566 80.784161
|
||||
L 343.14268 79.695552
|
||||
L 347.551198 77.518333
|
||||
L 348.158594 76.429723
|
||||
L 348.61061 75.341114
|
||||
L 349.812779 73.163895
|
||||
L 350.588178 70.986676
|
||||
L 352.886432 68.809457
|
||||
L 353.847375 66.632239
|
||||
L 354.637483 65.543629
|
||||
L 355.590261 64.45502
|
||||
L 356.342454 63.36641
|
||||
L 357.454392 62.277801
|
||||
L 368.520818 60.100582
|
||||
L 369.881929 59.011973
|
||||
L 370.834707 57.923363
|
||||
L 372.080647 56.834754
|
||||
L 373.148596 55.746144
|
||||
L 374.492144 53.568926
|
||||
L 377.920992 51.391707
|
||||
L 379.1522 49.214488
|
||||
L 382.982624 44.86005
|
||||
L 387.03193 43.771441
|
||||
L 391.659708 42.682831
|
||||
L 393.105888 41.594222
|
||||
L 394.230696 40.505613
|
||||
L 397.44443 38.328394
|
||||
L 398.465264 37.239784
|
||||
L 403.229153 35.062566
|
||||
L 409.458854 32.885347
|
||||
L 414.798598 30.708128
|
||||
L 423.475682 28.530909
|
||||
L 423.475682 28.530909
|
||||
" clip-path="url(#p34cae5d2d5)" style="fill: none; stroke: #1f77b4; stroke-width: 1.5; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_3">
|
||||
<path d="M 33.73 317.72
|
||||
L 33.73 14.76
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_4">
|
||||
<path d="M 442.035 317.72
|
||||
L 442.035 14.76
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_5">
|
||||
<path d="M 33.73 317.72
|
||||
L 442.035 317.72
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_6">
|
||||
<path d="M 33.73 14.76
|
||||
L 442.035 14.76
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<defs>
|
||||
<clipPath id="p34cae5d2d5">
|
||||
<rect x="33.73" y="14.76" width="408.305" height="302.96"/>
|
||||
</clipPath>
|
||||
</defs>
|
||||
</svg>
|
||||
|
||||
|
After Width: | Height: | Size: 19 KiB |
@ -0,0 +1,618 @@
|
||||
<?xml version="1.0" encoding="utf-8" standalone="no"?>
|
||||
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
|
||||
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||
<svg xmlns:xlink="http://www.w3.org/1999/xlink" width="460.8pt" height="345.6pt" viewBox="0 0 460.8 345.6" xmlns="http://www.w3.org/2000/svg" version="1.1">
|
||||
<metadata>
|
||||
<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
|
||||
<cc:Work>
|
||||
<dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
|
||||
<dc:date>2025-07-30T17:57:32.094511</dc:date>
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:creator>
|
||||
<cc:Agent>
|
||||
<dc:title>Matplotlib v3.10.3, https://matplotlib.org/</dc:title>
|
||||
</cc:Agent>
|
||||
</dc:creator>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<defs>
|
||||
<style type="text/css">*{stroke-linejoin: round; stroke-linecap: butt}</style>
|
||||
</defs>
|
||||
<g id="figure_1">
|
||||
<g id="patch_1">
|
||||
<path d="M 0 345.6
|
||||
L 460.8 345.6
|
||||
L 460.8 0
|
||||
L 0 0
|
||||
z
|
||||
" style="fill: #ffffff"/>
|
||||
</g>
|
||||
<g id="axes_1">
|
||||
<g id="patch_2">
|
||||
<path d="M 33.73 317.72
|
||||
L 442.035 317.72
|
||||
L 442.035 14.76
|
||||
L 33.73 14.76
|
||||
z
|
||||
" style="fill: #ffffff"/>
|
||||
</g>
|
||||
<g id="matplotlib.axis_1">
|
||||
<g id="xtick_1">
|
||||
<g id="line2d_1">
|
||||
<defs>
|
||||
<path id="m89e3a504e2" d="M 0 0
|
||||
L 0 3.5
|
||||
" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</defs>
|
||||
<g>
|
||||
<use xlink:href="#m89e3a504e2" x="52.289318" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_1">
|
||||
<!-- 0.0 -->
|
||||
<g transform="translate(44.337756 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-30" d="M 2034 4250
|
||||
Q 1547 4250 1301 3770
|
||||
Q 1056 3291 1056 2328
|
||||
Q 1056 1369 1301 889
|
||||
Q 1547 409 2034 409
|
||||
Q 2525 409 2770 889
|
||||
Q 3016 1369 3016 2328
|
||||
Q 3016 3291 2770 3770
|
||||
Q 2525 4250 2034 4250
|
||||
z
|
||||
M 2034 4750
|
||||
Q 2819 4750 3233 4129
|
||||
Q 3647 3509 3647 2328
|
||||
Q 3647 1150 3233 529
|
||||
Q 2819 -91 2034 -91
|
||||
Q 1250 -91 836 529
|
||||
Q 422 1150 422 2328
|
||||
Q 422 3509 836 4129
|
||||
Q 1250 4750 2034 4750
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
<path id="DejaVuSans-2e" d="M 684 794
|
||||
L 1344 794
|
||||
L 1344 0
|
||||
L 684 0
|
||||
L 684 794
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_2">
|
||||
<g id="line2d_2">
|
||||
<g>
|
||||
<use xlink:href="#m89e3a504e2" x="101.129629" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_2">
|
||||
<!-- 2.5 -->
|
||||
<g transform="translate(93.178067 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-32" d="M 1228 531
|
||||
L 3431 531
|
||||
L 3431 0
|
||||
L 469 0
|
||||
L 469 531
|
||||
Q 828 903 1448 1529
|
||||
Q 2069 2156 2228 2338
|
||||
Q 2531 2678 2651 2914
|
||||
Q 2772 3150 2772 3378
|
||||
Q 2772 3750 2511 3984
|
||||
Q 2250 4219 1831 4219
|
||||
Q 1534 4219 1204 4116
|
||||
Q 875 4013 500 3803
|
||||
L 500 4441
|
||||
Q 881 4594 1212 4672
|
||||
Q 1544 4750 1819 4750
|
||||
Q 2544 4750 2975 4387
|
||||
Q 3406 4025 3406 3419
|
||||
Q 3406 3131 3298 2873
|
||||
Q 3191 2616 2906 2266
|
||||
Q 2828 2175 2409 1742
|
||||
Q 1991 1309 1228 531
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
<path id="DejaVuSans-35" d="M 691 4666
|
||||
L 3169 4666
|
||||
L 3169 4134
|
||||
L 1269 4134
|
||||
L 1269 2991
|
||||
Q 1406 3038 1543 3061
|
||||
Q 1681 3084 1819 3084
|
||||
Q 2600 3084 3056 2656
|
||||
Q 3513 2228 3513 1497
|
||||
Q 3513 744 3044 326
|
||||
Q 2575 -91 1722 -91
|
||||
Q 1428 -91 1123 -41
|
||||
Q 819 9 494 109
|
||||
L 494 744
|
||||
Q 775 591 1075 516
|
||||
Q 1375 441 1709 441
|
||||
Q 2250 441 2565 725
|
||||
Q 2881 1009 2881 1497
|
||||
Q 2881 1984 2565 2268
|
||||
Q 2250 2553 1709 2553
|
||||
Q 1456 2553 1204 2497
|
||||
Q 953 2441 691 2322
|
||||
L 691 4666
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-32"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_3">
|
||||
<g id="line2d_3">
|
||||
<g>
|
||||
<use xlink:href="#m89e3a504e2" x="149.96994" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_3">
|
||||
<!-- 5.0 -->
|
||||
<g transform="translate(142.018378 332.318437) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-35"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_4">
|
||||
<g id="line2d_4">
|
||||
<g>
|
||||
<use xlink:href="#m89e3a504e2" x="198.810251" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_4">
|
||||
<!-- 7.5 -->
|
||||
<g transform="translate(190.858689 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-37" d="M 525 4666
|
||||
L 3525 4666
|
||||
L 3525 4397
|
||||
L 1831 0
|
||||
L 1172 0
|
||||
L 2766 4134
|
||||
L 525 4134
|
||||
L 525 4666
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-37"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_5">
|
||||
<g id="line2d_5">
|
||||
<g>
|
||||
<use xlink:href="#m89e3a504e2" x="247.650562" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_5">
|
||||
<!-- 10.0 -->
|
||||
<g transform="translate(236.51775 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-31" d="M 794 531
|
||||
L 1825 531
|
||||
L 1825 4091
|
||||
L 703 3866
|
||||
L 703 4441
|
||||
L 1819 4666
|
||||
L 2450 4666
|
||||
L 2450 531
|
||||
L 3481 531
|
||||
L 3481 0
|
||||
L 794 0
|
||||
L 794 531
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(127.246094 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_6">
|
||||
<g id="line2d_6">
|
||||
<g>
|
||||
<use xlink:href="#m89e3a504e2" x="296.490873" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_6">
|
||||
<!-- 12.5 -->
|
||||
<g transform="translate(285.358061 332.318437) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-32" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(127.246094 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_7">
|
||||
<g id="line2d_7">
|
||||
<g>
|
||||
<use xlink:href="#m89e3a504e2" x="345.331184" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_7">
|
||||
<!-- 15.0 -->
|
||||
<g transform="translate(334.198372 332.318437) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(127.246094 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_8">
|
||||
<g id="line2d_8">
|
||||
<g>
|
||||
<use xlink:href="#m89e3a504e2" x="394.171495" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_8">
|
||||
<!-- 17.5 -->
|
||||
<g transform="translate(383.038683 332.318437) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-37" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(127.246094 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="matplotlib.axis_2">
|
||||
<g id="ytick_1">
|
||||
<g id="line2d_9">
|
||||
<defs>
|
||||
<path id="ma9be8e3392" d="M 0 0
|
||||
L -3.5 0
|
||||
" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</defs>
|
||||
<g>
|
||||
<use xlink:href="#ma9be8e3392" x="33.73" y="285.587879" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_9">
|
||||
<!-- 0.3 -->
|
||||
<g transform="translate(10.826875 289.387098) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-33" d="M 2597 2516
|
||||
Q 3050 2419 3304 2112
|
||||
Q 3559 1806 3559 1356
|
||||
Q 3559 666 3084 287
|
||||
Q 2609 -91 1734 -91
|
||||
Q 1441 -91 1130 -33
|
||||
Q 819 25 488 141
|
||||
L 488 750
|
||||
Q 750 597 1062 519
|
||||
Q 1375 441 1716 441
|
||||
Q 2309 441 2620 675
|
||||
Q 2931 909 2931 1356
|
||||
Q 2931 1769 2642 2001
|
||||
Q 2353 2234 1838 2234
|
||||
L 1294 2234
|
||||
L 1294 2753
|
||||
L 1863 2753
|
||||
Q 2328 2753 2575 2939
|
||||
Q 2822 3125 2822 3475
|
||||
Q 2822 3834 2567 4026
|
||||
Q 2313 4219 1838 4219
|
||||
Q 1578 4219 1281 4162
|
||||
Q 984 4106 628 3988
|
||||
L 628 4550
|
||||
Q 988 4650 1302 4700
|
||||
Q 1616 4750 1894 4750
|
||||
Q 2613 4750 3031 4423
|
||||
Q 3450 4097 3450 3541
|
||||
Q 3450 3153 3228 2886
|
||||
Q 3006 2619 2597 2516
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-33" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_2">
|
||||
<g id="line2d_10">
|
||||
<g>
|
||||
<use xlink:href="#ma9be8e3392" x="33.73" y="248.865455" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_10">
|
||||
<!-- 0.4 -->
|
||||
<g transform="translate(10.826875 252.664673) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-34" d="M 2419 4116
|
||||
L 825 1625
|
||||
L 2419 1625
|
||||
L 2419 4116
|
||||
z
|
||||
M 2253 4666
|
||||
L 3047 4666
|
||||
L 3047 1625
|
||||
L 3713 1625
|
||||
L 3713 1100
|
||||
L 3047 1100
|
||||
L 3047 0
|
||||
L 2419 0
|
||||
L 2419 1100
|
||||
L 313 1100
|
||||
L 313 1709
|
||||
L 2253 4666
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-34" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_3">
|
||||
<g id="line2d_11">
|
||||
<g>
|
||||
<use xlink:href="#ma9be8e3392" x="33.73" y="212.14303" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_11">
|
||||
<!-- 0.5 -->
|
||||
<g transform="translate(10.826875 215.942249) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_4">
|
||||
<g id="line2d_12">
|
||||
<g>
|
||||
<use xlink:href="#ma9be8e3392" x="33.73" y="175.420606" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_12">
|
||||
<!-- 0.6 -->
|
||||
<g transform="translate(10.826875 179.219825) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-36" d="M 2113 2584
|
||||
Q 1688 2584 1439 2293
|
||||
Q 1191 2003 1191 1497
|
||||
Q 1191 994 1439 701
|
||||
Q 1688 409 2113 409
|
||||
Q 2538 409 2786 701
|
||||
Q 3034 994 3034 1497
|
||||
Q 3034 2003 2786 2293
|
||||
Q 2538 2584 2113 2584
|
||||
z
|
||||
M 3366 4563
|
||||
L 3366 3988
|
||||
Q 3128 4100 2886 4159
|
||||
Q 2644 4219 2406 4219
|
||||
Q 1781 4219 1451 3797
|
||||
Q 1122 3375 1075 2522
|
||||
Q 1259 2794 1537 2939
|
||||
Q 1816 3084 2150 3084
|
||||
Q 2853 3084 3261 2657
|
||||
Q 3669 2231 3669 1497
|
||||
Q 3669 778 3244 343
|
||||
Q 2819 -91 2113 -91
|
||||
Q 1303 -91 875 529
|
||||
Q 447 1150 447 2328
|
||||
Q 447 3434 972 4092
|
||||
Q 1497 4750 2381 4750
|
||||
Q 2619 4750 2861 4703
|
||||
Q 3103 4656 3366 4563
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-36" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_5">
|
||||
<g id="line2d_13">
|
||||
<g>
|
||||
<use xlink:href="#ma9be8e3392" x="33.73" y="138.698182" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_13">
|
||||
<!-- 0.7 -->
|
||||
<g transform="translate(10.826875 142.497401) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-37" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_6">
|
||||
<g id="line2d_14">
|
||||
<g>
|
||||
<use xlink:href="#ma9be8e3392" x="33.73" y="101.975758" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_14">
|
||||
<!-- 0.8 -->
|
||||
<g transform="translate(10.826875 105.774976) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-38" d="M 2034 2216
|
||||
Q 1584 2216 1326 1975
|
||||
Q 1069 1734 1069 1313
|
||||
Q 1069 891 1326 650
|
||||
Q 1584 409 2034 409
|
||||
Q 2484 409 2743 651
|
||||
Q 3003 894 3003 1313
|
||||
Q 3003 1734 2745 1975
|
||||
Q 2488 2216 2034 2216
|
||||
z
|
||||
M 1403 2484
|
||||
Q 997 2584 770 2862
|
||||
Q 544 3141 544 3541
|
||||
Q 544 4100 942 4425
|
||||
Q 1341 4750 2034 4750
|
||||
Q 2731 4750 3128 4425
|
||||
Q 3525 4100 3525 3541
|
||||
Q 3525 3141 3298 2862
|
||||
Q 3072 2584 2669 2484
|
||||
Q 3125 2378 3379 2068
|
||||
Q 3634 1759 3634 1313
|
||||
Q 3634 634 3220 271
|
||||
Q 2806 -91 2034 -91
|
||||
Q 1263 -91 848 271
|
||||
Q 434 634 434 1313
|
||||
Q 434 1759 690 2068
|
||||
Q 947 2378 1403 2484
|
||||
z
|
||||
M 1172 3481
|
||||
Q 1172 3119 1398 2916
|
||||
Q 1625 2713 2034 2713
|
||||
Q 2441 2713 2670 2916
|
||||
Q 2900 3119 2900 3481
|
||||
Q 2900 3844 2670 4047
|
||||
Q 2441 4250 2034 4250
|
||||
Q 1625 4250 1398 4047
|
||||
Q 1172 3844 1172 3481
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-38" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_7">
|
||||
<g id="line2d_15">
|
||||
<g>
|
||||
<use xlink:href="#ma9be8e3392" x="33.73" y="65.253333" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_15">
|
||||
<!-- 0.9 -->
|
||||
<g transform="translate(10.826875 69.052552) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-39" d="M 703 97
|
||||
L 703 672
|
||||
Q 941 559 1184 500
|
||||
Q 1428 441 1663 441
|
||||
Q 2288 441 2617 861
|
||||
Q 2947 1281 2994 2138
|
||||
Q 2813 1869 2534 1725
|
||||
Q 2256 1581 1919 1581
|
||||
Q 1219 1581 811 2004
|
||||
Q 403 2428 403 3163
|
||||
Q 403 3881 828 4315
|
||||
Q 1253 4750 1959 4750
|
||||
Q 2769 4750 3195 4129
|
||||
Q 3622 3509 3622 2328
|
||||
Q 3622 1225 3098 567
|
||||
Q 2575 -91 1691 -91
|
||||
Q 1453 -91 1209 -44
|
||||
Q 966 3 703 97
|
||||
z
|
||||
M 1959 2075
|
||||
Q 2384 2075 2632 2365
|
||||
Q 2881 2656 2881 3163
|
||||
Q 2881 3666 2632 3958
|
||||
Q 2384 4250 1959 4250
|
||||
Q 1534 4250 1286 3958
|
||||
Q 1038 3666 1038 3163
|
||||
Q 1038 2656 1286 2365
|
||||
Q 1534 2075 1959 2075
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-39" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_8">
|
||||
<g id="line2d_16">
|
||||
<g>
|
||||
<use xlink:href="#ma9be8e3392" x="33.73" y="28.530909" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_16">
|
||||
<!-- 1.0 -->
|
||||
<g transform="translate(10.826875 32.330128) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_17">
|
||||
<path d="M 52.289318 28.530909
|
||||
L 71.825443 212.14303
|
||||
L 91.361567 303.949091
|
||||
L 110.897691 258.046061
|
||||
L 130.433816 280.997576
|
||||
L 149.96994 269.521818
|
||||
L 169.506065 275.259697
|
||||
L 189.042189 272.390758
|
||||
L 208.578313 273.825227
|
||||
L 228.114438 273.107992
|
||||
L 247.650562 273.46661
|
||||
L 267.186687 273.287301
|
||||
L 286.722811 273.376955
|
||||
L 306.258935 273.332128
|
||||
L 325.79506 273.354542
|
||||
L 345.331184 273.343335
|
||||
L 364.867309 273.348939
|
||||
L 384.403433 273.346137
|
||||
L 403.939557 273.347538
|
||||
L 423.475682 273.346837
|
||||
" clip-path="url(#pe6fd9f8a67)" style="fill: none; stroke: #1f77b4; stroke-width: 1.5; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_3">
|
||||
<path d="M 33.73 317.72
|
||||
L 33.73 14.76
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_4">
|
||||
<path d="M 442.035 317.72
|
||||
L 442.035 14.76
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_5">
|
||||
<path d="M 33.73 317.72
|
||||
L 442.035 317.72
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_6">
|
||||
<path d="M 33.73 14.76
|
||||
L 442.035 14.76
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<defs>
|
||||
<clipPath id="pe6fd9f8a67">
|
||||
<rect x="33.73" y="14.76" width="408.305" height="302.96"/>
|
||||
</clipPath>
|
||||
</defs>
|
||||
</svg>
|
||||
|
||||
|
After Width: | Height: | Size: 17 KiB |
@ -0,0 +1,618 @@
|
||||
<?xml version="1.0" encoding="utf-8" standalone="no"?>
|
||||
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
|
||||
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||
<svg xmlns:xlink="http://www.w3.org/1999/xlink" width="460.8pt" height="345.6pt" viewBox="0 0 460.8 345.6" xmlns="http://www.w3.org/2000/svg" version="1.1">
|
||||
<metadata>
|
||||
<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
|
||||
<cc:Work>
|
||||
<dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
|
||||
<dc:date>2025-07-30T17:57:33.434057</dc:date>
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:creator>
|
||||
<cc:Agent>
|
||||
<dc:title>Matplotlib v3.10.3, https://matplotlib.org/</dc:title>
|
||||
</cc:Agent>
|
||||
</dc:creator>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<defs>
|
||||
<style type="text/css">*{stroke-linejoin: round; stroke-linecap: butt}</style>
|
||||
</defs>
|
||||
<g id="figure_1">
|
||||
<g id="patch_1">
|
||||
<path d="M 0 345.6
|
||||
L 460.8 345.6
|
||||
L 460.8 0
|
||||
L 0 0
|
||||
z
|
||||
" style="fill: #ffffff"/>
|
||||
</g>
|
||||
<g id="axes_1">
|
||||
<g id="patch_2">
|
||||
<path d="M 33.73 317.72
|
||||
L 442.035 317.72
|
||||
L 442.035 14.76
|
||||
L 33.73 14.76
|
||||
z
|
||||
" style="fill: #ffffff"/>
|
||||
</g>
|
||||
<g id="matplotlib.axis_1">
|
||||
<g id="xtick_1">
|
||||
<g id="line2d_1">
|
||||
<defs>
|
||||
<path id="m833a6f6579" d="M 0 0
|
||||
L 0 3.5
|
||||
" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</defs>
|
||||
<g>
|
||||
<use xlink:href="#m833a6f6579" x="52.289318" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_1">
|
||||
<!-- 0.0 -->
|
||||
<g transform="translate(44.337756 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-30" d="M 2034 4250
|
||||
Q 1547 4250 1301 3770
|
||||
Q 1056 3291 1056 2328
|
||||
Q 1056 1369 1301 889
|
||||
Q 1547 409 2034 409
|
||||
Q 2525 409 2770 889
|
||||
Q 3016 1369 3016 2328
|
||||
Q 3016 3291 2770 3770
|
||||
Q 2525 4250 2034 4250
|
||||
z
|
||||
M 2034 4750
|
||||
Q 2819 4750 3233 4129
|
||||
Q 3647 3509 3647 2328
|
||||
Q 3647 1150 3233 529
|
||||
Q 2819 -91 2034 -91
|
||||
Q 1250 -91 836 529
|
||||
Q 422 1150 422 2328
|
||||
Q 422 3509 836 4129
|
||||
Q 1250 4750 2034 4750
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
<path id="DejaVuSans-2e" d="M 684 794
|
||||
L 1344 794
|
||||
L 1344 0
|
||||
L 684 0
|
||||
L 684 794
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_2">
|
||||
<g id="line2d_2">
|
||||
<g>
|
||||
<use xlink:href="#m833a6f6579" x="101.129629" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_2">
|
||||
<!-- 2.5 -->
|
||||
<g transform="translate(93.178067 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-32" d="M 1228 531
|
||||
L 3431 531
|
||||
L 3431 0
|
||||
L 469 0
|
||||
L 469 531
|
||||
Q 828 903 1448 1529
|
||||
Q 2069 2156 2228 2338
|
||||
Q 2531 2678 2651 2914
|
||||
Q 2772 3150 2772 3378
|
||||
Q 2772 3750 2511 3984
|
||||
Q 2250 4219 1831 4219
|
||||
Q 1534 4219 1204 4116
|
||||
Q 875 4013 500 3803
|
||||
L 500 4441
|
||||
Q 881 4594 1212 4672
|
||||
Q 1544 4750 1819 4750
|
||||
Q 2544 4750 2975 4387
|
||||
Q 3406 4025 3406 3419
|
||||
Q 3406 3131 3298 2873
|
||||
Q 3191 2616 2906 2266
|
||||
Q 2828 2175 2409 1742
|
||||
Q 1991 1309 1228 531
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
<path id="DejaVuSans-35" d="M 691 4666
|
||||
L 3169 4666
|
||||
L 3169 4134
|
||||
L 1269 4134
|
||||
L 1269 2991
|
||||
Q 1406 3038 1543 3061
|
||||
Q 1681 3084 1819 3084
|
||||
Q 2600 3084 3056 2656
|
||||
Q 3513 2228 3513 1497
|
||||
Q 3513 744 3044 326
|
||||
Q 2575 -91 1722 -91
|
||||
Q 1428 -91 1123 -41
|
||||
Q 819 9 494 109
|
||||
L 494 744
|
||||
Q 775 591 1075 516
|
||||
Q 1375 441 1709 441
|
||||
Q 2250 441 2565 725
|
||||
Q 2881 1009 2881 1497
|
||||
Q 2881 1984 2565 2268
|
||||
Q 2250 2553 1709 2553
|
||||
Q 1456 2553 1204 2497
|
||||
Q 953 2441 691 2322
|
||||
L 691 4666
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-32"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_3">
|
||||
<g id="line2d_3">
|
||||
<g>
|
||||
<use xlink:href="#m833a6f6579" x="149.96994" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_3">
|
||||
<!-- 5.0 -->
|
||||
<g transform="translate(142.018378 332.318437) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-35"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_4">
|
||||
<g id="line2d_4">
|
||||
<g>
|
||||
<use xlink:href="#m833a6f6579" x="198.810251" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_4">
|
||||
<!-- 7.5 -->
|
||||
<g transform="translate(190.858689 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-37" d="M 525 4666
|
||||
L 3525 4666
|
||||
L 3525 4397
|
||||
L 1831 0
|
||||
L 1172 0
|
||||
L 2766 4134
|
||||
L 525 4134
|
||||
L 525 4666
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-37"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_5">
|
||||
<g id="line2d_5">
|
||||
<g>
|
||||
<use xlink:href="#m833a6f6579" x="247.650562" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_5">
|
||||
<!-- 10.0 -->
|
||||
<g transform="translate(236.51775 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-31" d="M 794 531
|
||||
L 1825 531
|
||||
L 1825 4091
|
||||
L 703 3866
|
||||
L 703 4441
|
||||
L 1819 4666
|
||||
L 2450 4666
|
||||
L 2450 531
|
||||
L 3481 531
|
||||
L 3481 0
|
||||
L 794 0
|
||||
L 794 531
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(127.246094 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_6">
|
||||
<g id="line2d_6">
|
||||
<g>
|
||||
<use xlink:href="#m833a6f6579" x="296.490873" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_6">
|
||||
<!-- 12.5 -->
|
||||
<g transform="translate(285.358061 332.318437) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-32" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(127.246094 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_7">
|
||||
<g id="line2d_7">
|
||||
<g>
|
||||
<use xlink:href="#m833a6f6579" x="345.331184" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_7">
|
||||
<!-- 15.0 -->
|
||||
<g transform="translate(334.198372 332.318437) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(127.246094 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_8">
|
||||
<g id="line2d_8">
|
||||
<g>
|
||||
<use xlink:href="#m833a6f6579" x="394.171495" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_8">
|
||||
<!-- 17.5 -->
|
||||
<g transform="translate(383.038683 332.318437) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-37" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(127.246094 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="matplotlib.axis_2">
|
||||
<g id="ytick_1">
|
||||
<g id="line2d_9">
|
||||
<defs>
|
||||
<path id="ma722f2b5b1" d="M 0 0
|
||||
L -3.5 0
|
||||
" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</defs>
|
||||
<g>
|
||||
<use xlink:href="#ma722f2b5b1" x="33.73" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_9">
|
||||
<!-- 0.3 -->
|
||||
<g transform="translate(10.826875 321.519219) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-33" d="M 2597 2516
|
||||
Q 3050 2419 3304 2112
|
||||
Q 3559 1806 3559 1356
|
||||
Q 3559 666 3084 287
|
||||
Q 2609 -91 1734 -91
|
||||
Q 1441 -91 1130 -33
|
||||
Q 819 25 488 141
|
||||
L 488 750
|
||||
Q 750 597 1062 519
|
||||
Q 1375 441 1716 441
|
||||
Q 2309 441 2620 675
|
||||
Q 2931 909 2931 1356
|
||||
Q 2931 1769 2642 2001
|
||||
Q 2353 2234 1838 2234
|
||||
L 1294 2234
|
||||
L 1294 2753
|
||||
L 1863 2753
|
||||
Q 2328 2753 2575 2939
|
||||
Q 2822 3125 2822 3475
|
||||
Q 2822 3834 2567 4026
|
||||
Q 2313 4219 1838 4219
|
||||
Q 1578 4219 1281 4162
|
||||
Q 984 4106 628 3988
|
||||
L 628 4550
|
||||
Q 988 4650 1302 4700
|
||||
Q 1616 4750 1894 4750
|
||||
Q 2613 4750 3031 4423
|
||||
Q 3450 4097 3450 3541
|
||||
Q 3450 3153 3228 2886
|
||||
Q 3006 2619 2597 2516
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-33" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_2">
|
||||
<g id="line2d_10">
|
||||
<g>
|
||||
<use xlink:href="#ma722f2b5b1" x="33.73" y="276.407273" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_10">
|
||||
<!-- 0.4 -->
|
||||
<g transform="translate(10.826875 280.206491) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-34" d="M 2419 4116
|
||||
L 825 1625
|
||||
L 2419 1625
|
||||
L 2419 4116
|
||||
z
|
||||
M 2253 4666
|
||||
L 3047 4666
|
||||
L 3047 1625
|
||||
L 3713 1625
|
||||
L 3713 1100
|
||||
L 3047 1100
|
||||
L 3047 0
|
||||
L 2419 0
|
||||
L 2419 1100
|
||||
L 313 1100
|
||||
L 313 1709
|
||||
L 2253 4666
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-34" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_3">
|
||||
<g id="line2d_11">
|
||||
<g>
|
||||
<use xlink:href="#ma722f2b5b1" x="33.73" y="235.094545" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_11">
|
||||
<!-- 0.5 -->
|
||||
<g transform="translate(10.826875 238.893764) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_4">
|
||||
<g id="line2d_12">
|
||||
<g>
|
||||
<use xlink:href="#ma722f2b5b1" x="33.73" y="193.781818" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_12">
|
||||
<!-- 0.6 -->
|
||||
<g transform="translate(10.826875 197.581037) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-36" d="M 2113 2584
|
||||
Q 1688 2584 1439 2293
|
||||
Q 1191 2003 1191 1497
|
||||
Q 1191 994 1439 701
|
||||
Q 1688 409 2113 409
|
||||
Q 2538 409 2786 701
|
||||
Q 3034 994 3034 1497
|
||||
Q 3034 2003 2786 2293
|
||||
Q 2538 2584 2113 2584
|
||||
z
|
||||
M 3366 4563
|
||||
L 3366 3988
|
||||
Q 3128 4100 2886 4159
|
||||
Q 2644 4219 2406 4219
|
||||
Q 1781 4219 1451 3797
|
||||
Q 1122 3375 1075 2522
|
||||
Q 1259 2794 1537 2939
|
||||
Q 1816 3084 2150 3084
|
||||
Q 2853 3084 3261 2657
|
||||
Q 3669 2231 3669 1497
|
||||
Q 3669 778 3244 343
|
||||
Q 2819 -91 2113 -91
|
||||
Q 1303 -91 875 529
|
||||
Q 447 1150 447 2328
|
||||
Q 447 3434 972 4092
|
||||
Q 1497 4750 2381 4750
|
||||
Q 2619 4750 2861 4703
|
||||
Q 3103 4656 3366 4563
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-36" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_5">
|
||||
<g id="line2d_13">
|
||||
<g>
|
||||
<use xlink:href="#ma722f2b5b1" x="33.73" y="152.469091" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_13">
|
||||
<!-- 0.7 -->
|
||||
<g transform="translate(10.826875 156.26831) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-37" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_6">
|
||||
<g id="line2d_14">
|
||||
<g>
|
||||
<use xlink:href="#ma722f2b5b1" x="33.73" y="111.156364" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_14">
|
||||
<!-- 0.8 -->
|
||||
<g transform="translate(10.826875 114.955582) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-38" d="M 2034 2216
|
||||
Q 1584 2216 1326 1975
|
||||
Q 1069 1734 1069 1313
|
||||
Q 1069 891 1326 650
|
||||
Q 1584 409 2034 409
|
||||
Q 2484 409 2743 651
|
||||
Q 3003 894 3003 1313
|
||||
Q 3003 1734 2745 1975
|
||||
Q 2488 2216 2034 2216
|
||||
z
|
||||
M 1403 2484
|
||||
Q 997 2584 770 2862
|
||||
Q 544 3141 544 3541
|
||||
Q 544 4100 942 4425
|
||||
Q 1341 4750 2034 4750
|
||||
Q 2731 4750 3128 4425
|
||||
Q 3525 4100 3525 3541
|
||||
Q 3525 3141 3298 2862
|
||||
Q 3072 2584 2669 2484
|
||||
Q 3125 2378 3379 2068
|
||||
Q 3634 1759 3634 1313
|
||||
Q 3634 634 3220 271
|
||||
Q 2806 -91 2034 -91
|
||||
Q 1263 -91 848 271
|
||||
Q 434 634 434 1313
|
||||
Q 434 1759 690 2068
|
||||
Q 947 2378 1403 2484
|
||||
z
|
||||
M 1172 3481
|
||||
Q 1172 3119 1398 2916
|
||||
Q 1625 2713 2034 2713
|
||||
Q 2441 2713 2670 2916
|
||||
Q 2900 3119 2900 3481
|
||||
Q 2900 3844 2670 4047
|
||||
Q 2441 4250 2034 4250
|
||||
Q 1625 4250 1398 4047
|
||||
Q 1172 3844 1172 3481
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-38" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_7">
|
||||
<g id="line2d_15">
|
||||
<g>
|
||||
<use xlink:href="#ma722f2b5b1" x="33.73" y="69.843636" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_15">
|
||||
<!-- 0.9 -->
|
||||
<g transform="translate(10.826875 73.642855) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-39" d="M 703 97
|
||||
L 703 672
|
||||
Q 941 559 1184 500
|
||||
Q 1428 441 1663 441
|
||||
Q 2288 441 2617 861
|
||||
Q 2947 1281 2994 2138
|
||||
Q 2813 1869 2534 1725
|
||||
Q 2256 1581 1919 1581
|
||||
Q 1219 1581 811 2004
|
||||
Q 403 2428 403 3163
|
||||
Q 403 3881 828 4315
|
||||
Q 1253 4750 1959 4750
|
||||
Q 2769 4750 3195 4129
|
||||
Q 3622 3509 3622 2328
|
||||
Q 3622 1225 3098 567
|
||||
Q 2575 -91 1691 -91
|
||||
Q 1453 -91 1209 -44
|
||||
Q 966 3 703 97
|
||||
z
|
||||
M 1959 2075
|
||||
Q 2384 2075 2632 2365
|
||||
Q 2881 2656 2881 3163
|
||||
Q 2881 3666 2632 3958
|
||||
Q 2384 4250 1959 4250
|
||||
Q 1534 4250 1286 3958
|
||||
Q 1038 3666 1038 3163
|
||||
Q 1038 2656 1286 2365
|
||||
Q 1534 2075 1959 2075
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-39" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_8">
|
||||
<g id="line2d_16">
|
||||
<g>
|
||||
<use xlink:href="#ma722f2b5b1" x="33.73" y="28.530909" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_16">
|
||||
<!-- 1.0 -->
|
||||
<g transform="translate(10.826875 32.330128) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_17">
|
||||
<path d="M 52.289318 28.530909
|
||||
L 71.825443 235.094545
|
||||
L 91.361567 303.949091
|
||||
L 110.897691 276.407273
|
||||
L 130.433816 286.735455
|
||||
L 149.96994 282.763077
|
||||
L 169.506065 284.276364
|
||||
L 189.042189 283.697754
|
||||
L 208.578313 283.918678
|
||||
L 228.114438 283.83428
|
||||
L 247.650562 283.866515
|
||||
L 267.186687 283.854202
|
||||
L 286.722811 283.858905
|
||||
L 306.258935 283.857109
|
||||
L 325.79506 283.857795
|
||||
L 345.331184 283.857533
|
||||
L 364.867309 283.857633
|
||||
L 384.403433 283.857595
|
||||
L 403.939557 283.857609
|
||||
L 423.475682 283.857604
|
||||
" clip-path="url(#p415d5a15a1)" style="fill: none; stroke: #1f77b4; stroke-width: 1.5; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_3">
|
||||
<path d="M 33.73 317.72
|
||||
L 33.73 14.76
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_4">
|
||||
<path d="M 442.035 317.72
|
||||
L 442.035 14.76
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_5">
|
||||
<path d="M 33.73 317.72
|
||||
L 442.035 317.72
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_6">
|
||||
<path d="M 33.73 14.76
|
||||
L 442.035 14.76
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<defs>
|
||||
<clipPath id="p415d5a15a1">
|
||||
<rect x="33.73" y="14.76" width="408.305" height="302.96"/>
|
||||
</clipPath>
|
||||
</defs>
|
||||
</svg>
|
||||
|
||||
|
After Width: | Height: | Size: 17 KiB |
@ -0,0 +1,668 @@
|
||||
<?xml version="1.0" encoding="utf-8" standalone="no"?>
|
||||
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
|
||||
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||
<svg xmlns:xlink="http://www.w3.org/1999/xlink" width="460.8pt" height="345.6pt" viewBox="0 0 460.8 345.6" xmlns="http://www.w3.org/2000/svg" version="1.1">
|
||||
<metadata>
|
||||
<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
|
||||
<cc:Work>
|
||||
<dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
|
||||
<dc:date>2025-07-30T17:57:34.918996</dc:date>
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:creator>
|
||||
<cc:Agent>
|
||||
<dc:title>Matplotlib v3.10.3, https://matplotlib.org/</dc:title>
|
||||
</cc:Agent>
|
||||
</dc:creator>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<defs>
|
||||
<style type="text/css">*{stroke-linejoin: round; stroke-linecap: butt}</style>
|
||||
</defs>
|
||||
<g id="figure_1">
|
||||
<g id="patch_1">
|
||||
<path d="M 0 345.6
|
||||
L 460.8 345.6
|
||||
L 460.8 0
|
||||
L 0 0
|
||||
z
|
||||
" style="fill: #ffffff"/>
|
||||
</g>
|
||||
<g id="axes_1">
|
||||
<g id="patch_2">
|
||||
<path d="M 33.73 317.72
|
||||
L 442.035 317.72
|
||||
L 442.035 14.76
|
||||
L 33.73 14.76
|
||||
z
|
||||
" style="fill: #ffffff"/>
|
||||
</g>
|
||||
<g id="matplotlib.axis_1">
|
||||
<g id="xtick_1">
|
||||
<g id="line2d_1">
|
||||
<defs>
|
||||
<path id="m6d98df33d4" d="M 0 0
|
||||
L 0 3.5
|
||||
" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</defs>
|
||||
<g>
|
||||
<use xlink:href="#m6d98df33d4" x="45.540475" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_1">
|
||||
<!-- 0 -->
|
||||
<g transform="translate(42.359225 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-30" d="M 2034 4250
|
||||
Q 1547 4250 1301 3770
|
||||
Q 1056 3291 1056 2328
|
||||
Q 1056 1369 1301 889
|
||||
Q 1547 409 2034 409
|
||||
Q 2525 409 2770 889
|
||||
Q 3016 1369 3016 2328
|
||||
Q 3016 3291 2770 3770
|
||||
Q 2525 4250 2034 4250
|
||||
z
|
||||
M 2034 4750
|
||||
Q 2819 4750 3233 4129
|
||||
Q 3647 3509 3647 2328
|
||||
Q 3647 1150 3233 529
|
||||
Q 2819 -91 2034 -91
|
||||
Q 1250 -91 836 529
|
||||
Q 422 1150 422 2328
|
||||
Q 422 3509 836 4129
|
||||
Q 1250 4750 2034 4750
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_2">
|
||||
<g id="line2d_2">
|
||||
<g>
|
||||
<use xlink:href="#m6d98df33d4" x="99.531219" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_2">
|
||||
<!-- 1 -->
|
||||
<g transform="translate(96.349969 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-31" d="M 794 531
|
||||
L 1825 531
|
||||
L 1825 4091
|
||||
L 703 3866
|
||||
L 703 4441
|
||||
L 1819 4666
|
||||
L 2450 4666
|
||||
L 2450 531
|
||||
L 3481 531
|
||||
L 3481 0
|
||||
L 794 0
|
||||
L 794 531
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_3">
|
||||
<g id="line2d_3">
|
||||
<g>
|
||||
<use xlink:href="#m6d98df33d4" x="153.521963" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_3">
|
||||
<!-- 2 -->
|
||||
<g transform="translate(150.340713 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-32" d="M 1228 531
|
||||
L 3431 531
|
||||
L 3431 0
|
||||
L 469 0
|
||||
L 469 531
|
||||
Q 828 903 1448 1529
|
||||
Q 2069 2156 2228 2338
|
||||
Q 2531 2678 2651 2914
|
||||
Q 2772 3150 2772 3378
|
||||
Q 2772 3750 2511 3984
|
||||
Q 2250 4219 1831 4219
|
||||
Q 1534 4219 1204 4116
|
||||
Q 875 4013 500 3803
|
||||
L 500 4441
|
||||
Q 881 4594 1212 4672
|
||||
Q 1544 4750 1819 4750
|
||||
Q 2544 4750 2975 4387
|
||||
Q 3406 4025 3406 3419
|
||||
Q 3406 3131 3298 2873
|
||||
Q 3191 2616 2906 2266
|
||||
Q 2828 2175 2409 1742
|
||||
Q 1991 1309 1228 531
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-32"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_4">
|
||||
<g id="line2d_4">
|
||||
<g>
|
||||
<use xlink:href="#m6d98df33d4" x="207.512707" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_4">
|
||||
<!-- 3 -->
|
||||
<g transform="translate(204.331457 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-33" d="M 2597 2516
|
||||
Q 3050 2419 3304 2112
|
||||
Q 3559 1806 3559 1356
|
||||
Q 3559 666 3084 287
|
||||
Q 2609 -91 1734 -91
|
||||
Q 1441 -91 1130 -33
|
||||
Q 819 25 488 141
|
||||
L 488 750
|
||||
Q 750 597 1062 519
|
||||
Q 1375 441 1716 441
|
||||
Q 2309 441 2620 675
|
||||
Q 2931 909 2931 1356
|
||||
Q 2931 1769 2642 2001
|
||||
Q 2353 2234 1838 2234
|
||||
L 1294 2234
|
||||
L 1294 2753
|
||||
L 1863 2753
|
||||
Q 2328 2753 2575 2939
|
||||
Q 2822 3125 2822 3475
|
||||
Q 2822 3834 2567 4026
|
||||
Q 2313 4219 1838 4219
|
||||
Q 1578 4219 1281 4162
|
||||
Q 984 4106 628 3988
|
||||
L 628 4550
|
||||
Q 988 4650 1302 4700
|
||||
Q 1616 4750 1894 4750
|
||||
Q 2613 4750 3031 4423
|
||||
Q 3450 4097 3450 3541
|
||||
Q 3450 3153 3228 2886
|
||||
Q 3006 2619 2597 2516
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-33"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_5">
|
||||
<g id="line2d_5">
|
||||
<g>
|
||||
<use xlink:href="#m6d98df33d4" x="261.50345" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_5">
|
||||
<!-- 4 -->
|
||||
<g transform="translate(258.3222 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-34" d="M 2419 4116
|
||||
L 825 1625
|
||||
L 2419 1625
|
||||
L 2419 4116
|
||||
z
|
||||
M 2253 4666
|
||||
L 3047 4666
|
||||
L 3047 1625
|
||||
L 3713 1625
|
||||
L 3713 1100
|
||||
L 3047 1100
|
||||
L 3047 0
|
||||
L 2419 0
|
||||
L 2419 1100
|
||||
L 313 1100
|
||||
L 313 1709
|
||||
L 2253 4666
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-34"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_6">
|
||||
<g id="line2d_6">
|
||||
<g>
|
||||
<use xlink:href="#m6d98df33d4" x="315.494194" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_6">
|
||||
<!-- 5 -->
|
||||
<g transform="translate(312.312944 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-35" d="M 691 4666
|
||||
L 3169 4666
|
||||
L 3169 4134
|
||||
L 1269 4134
|
||||
L 1269 2991
|
||||
Q 1406 3038 1543 3061
|
||||
Q 1681 3084 1819 3084
|
||||
Q 2600 3084 3056 2656
|
||||
Q 3513 2228 3513 1497
|
||||
Q 3513 744 3044 326
|
||||
Q 2575 -91 1722 -91
|
||||
Q 1428 -91 1123 -41
|
||||
Q 819 9 494 109
|
||||
L 494 744
|
||||
Q 775 591 1075 516
|
||||
Q 1375 441 1709 441
|
||||
Q 2250 441 2565 725
|
||||
Q 2881 1009 2881 1497
|
||||
Q 2881 1984 2565 2268
|
||||
Q 2250 2553 1709 2553
|
||||
Q 1456 2553 1204 2497
|
||||
Q 953 2441 691 2322
|
||||
L 691 4666
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-35"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_7">
|
||||
<g id="line2d_7">
|
||||
<g>
|
||||
<use xlink:href="#m6d98df33d4" x="369.484938" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_7">
|
||||
<!-- 6 -->
|
||||
<g transform="translate(366.303688 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-36" d="M 2113 2584
|
||||
Q 1688 2584 1439 2293
|
||||
Q 1191 2003 1191 1497
|
||||
Q 1191 994 1439 701
|
||||
Q 1688 409 2113 409
|
||||
Q 2538 409 2786 701
|
||||
Q 3034 994 3034 1497
|
||||
Q 3034 2003 2786 2293
|
||||
Q 2538 2584 2113 2584
|
||||
z
|
||||
M 3366 4563
|
||||
L 3366 3988
|
||||
Q 3128 4100 2886 4159
|
||||
Q 2644 4219 2406 4219
|
||||
Q 1781 4219 1451 3797
|
||||
Q 1122 3375 1075 2522
|
||||
Q 1259 2794 1537 2939
|
||||
Q 1816 3084 2150 3084
|
||||
Q 2853 3084 3261 2657
|
||||
Q 3669 2231 3669 1497
|
||||
Q 3669 778 3244 343
|
||||
Q 2819 -91 2113 -91
|
||||
Q 1303 -91 875 529
|
||||
Q 447 1150 447 2328
|
||||
Q 447 3434 972 4092
|
||||
Q 1497 4750 2381 4750
|
||||
Q 2619 4750 2861 4703
|
||||
Q 3103 4656 3366 4563
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-36"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_8">
|
||||
<g id="line2d_8">
|
||||
<g>
|
||||
<use xlink:href="#m6d98df33d4" x="423.475682" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_8">
|
||||
<!-- 7 -->
|
||||
<g transform="translate(420.294432 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-37" d="M 525 4666
|
||||
L 3525 4666
|
||||
L 3525 4397
|
||||
L 1831 0
|
||||
L 1172 0
|
||||
L 2766 4134
|
||||
L 525 4134
|
||||
L 525 4666
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-37"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="matplotlib.axis_2">
|
||||
<g id="ytick_1">
|
||||
<g id="line2d_9">
|
||||
<defs>
|
||||
<path id="mba0142a176" d="M 0 0
|
||||
L -3.5 0
|
||||
" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</defs>
|
||||
<g>
|
||||
<use xlink:href="#mba0142a176" x="33.73" y="305.0377" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_9">
|
||||
<!-- 0.00 -->
|
||||
<g transform="translate(4.464375 308.836919) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-2e" d="M 684 794
|
||||
L 1344 794
|
||||
L 1344 0
|
||||
L 684 0
|
||||
L 684 794
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(95.410156 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_2">
|
||||
<g id="line2d_10">
|
||||
<g>
|
||||
<use xlink:href="#mba0142a176" x="33.73" y="270.202199" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_10">
|
||||
<!-- 0.25 -->
|
||||
<g transform="translate(4.464375 274.001418) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-32" transform="translate(95.410156 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_3">
|
||||
<g id="line2d_11">
|
||||
<g>
|
||||
<use xlink:href="#mba0142a176" x="33.73" y="235.366698" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_11">
|
||||
<!-- 0.50 -->
|
||||
<g transform="translate(4.464375 239.165917) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(95.410156 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_4">
|
||||
<g id="line2d_12">
|
||||
<g>
|
||||
<use xlink:href="#mba0142a176" x="33.73" y="200.531197" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_12">
|
||||
<!-- 0.75 -->
|
||||
<g transform="translate(4.464375 204.330415) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-37" transform="translate(95.410156 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_5">
|
||||
<g id="line2d_13">
|
||||
<g>
|
||||
<use xlink:href="#mba0142a176" x="33.73" y="165.695695" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_13">
|
||||
<!-- 1.00 -->
|
||||
<g transform="translate(4.464375 169.494914) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(95.410156 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_6">
|
||||
<g id="line2d_14">
|
||||
<g>
|
||||
<use xlink:href="#mba0142a176" x="33.73" y="130.860194" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_14">
|
||||
<!-- 1.25 -->
|
||||
<g transform="translate(4.464375 134.659413) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-32" transform="translate(95.410156 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_7">
|
||||
<g id="line2d_15">
|
||||
<g>
|
||||
<use xlink:href="#mba0142a176" x="33.73" y="96.024693" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_15">
|
||||
<!-- 1.50 -->
|
||||
<g transform="translate(4.464375 99.823912) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(95.410156 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_8">
|
||||
<g id="line2d_16">
|
||||
<g>
|
||||
<use xlink:href="#mba0142a176" x="33.73" y="61.189192" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_16">
|
||||
<!-- 1.75 -->
|
||||
<g transform="translate(4.464375 64.98841) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-37" transform="translate(95.410156 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_9">
|
||||
<g id="line2d_17">
|
||||
<g>
|
||||
<use xlink:href="#mba0142a176" x="33.73" y="26.35369" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_17">
|
||||
<!-- 2.00 -->
|
||||
<g transform="translate(4.464375 30.152909) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-32"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(95.410156 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_18">
|
||||
<path d="M 52.289318 303.949091
|
||||
L 53.253439 302.860481
|
||||
L 55.068254 299.594653
|
||||
L 55.66374 297.417434
|
||||
L 56.906948 295.240216
|
||||
L 57.999878 289.797169
|
||||
L 58.24418 288.708559
|
||||
L 59.748566 286.53134
|
||||
L 60.434473 282.176903
|
||||
L 60.657883 279.999684
|
||||
L 61.287775 277.822465
|
||||
L 61.737698 274.556637
|
||||
L 62.412583 271.290808
|
||||
L 64.596032 269.11359
|
||||
L 65.173473 265.847761
|
||||
L 65.431802 263.670543
|
||||
L 65.537047 262.581933
|
||||
L 66.019723 260.404714
|
||||
L 66.536876 254.961667
|
||||
L 66.667288 253.873058
|
||||
L 67.627598 251.695839
|
||||
L 68.679365 244.075573
|
||||
L 69.014712 242.986964
|
||||
L 69.536361 239.721135
|
||||
L 70.45928 236.455307
|
||||
L 74.612414 234.278088
|
||||
L 74.989972 233.189479
|
||||
L 75.910269 228.835041
|
||||
L 76.056983 227.746432
|
||||
L 76.688981 225.569213
|
||||
L 77.444097 219.037557
|
||||
L 78.404406 216.860338
|
||||
L 78.963317 211.417291
|
||||
L 79.051971 210.328681
|
||||
L 79.639892 207.062853
|
||||
L 79.898221 204.885634
|
||||
L 80.475662 201.619806
|
||||
L 82.659112 199.442587
|
||||
L 83.333996 196.176759
|
||||
L 83.651588 193.99954
|
||||
L 83.783919 192.910931
|
||||
L 84.413811 190.733712
|
||||
L 84.99525 186.379274
|
||||
L 85.323129 184.202055
|
||||
L 86.827515 182.024837
|
||||
L 87.961774 176.581789
|
||||
L 88.164747 175.49318
|
||||
L 89.407955 173.315961
|
||||
L 90.003441 171.138742
|
||||
L 90.532762 170.050133
|
||||
L 91.818256 167.872914
|
||||
L 92.782376 166.784305
|
||||
L 99.531219 165.695695
|
||||
L 107.244182 164.607086
|
||||
L 108.529676 163.518476
|
||||
L 109.347718 162.429867
|
||||
L 110.329368 161.341258
|
||||
L 111.100664 160.252648
|
||||
L 111.990621 158.075429
|
||||
L 113.928751 155.898211
|
||||
L 114.957146 152.632382
|
||||
L 115.41085 151.543773
|
||||
L 116.143756 149.366554
|
||||
L 118.813628 147.189335
|
||||
L 119.777748 143.923507
|
||||
L 120.099121 142.834898
|
||||
L 120.527619 140.657679
|
||||
L 121.762702 138.48046
|
||||
L 122.670109 135.214632
|
||||
L 124.072466 131.948803
|
||||
L 128.980716 129.771585
|
||||
L 129.526077 128.682975
|
||||
L 130.383073 126.505756
|
||||
L 130.789018 125.417147
|
||||
L 131.29048 123.239928
|
||||
L 132.525562 121.062709
|
||||
L 133.275434 117.796881
|
||||
L 134.239554 114.531053
|
||||
L 136.909426 112.353834
|
||||
L 138.524534 107.999396
|
||||
L 139.124431 105.822178
|
||||
L 141.06256 103.644959
|
||||
L 141.952518 101.46774
|
||||
L 142.723814 100.37913
|
||||
L 143.705464 99.290521
|
||||
L 144.523506 98.201912
|
||||
L 145.808999 97.113302
|
||||
L 153.521963 96.024693
|
||||
L 162.52042 94.936083
|
||||
L 164.320112 93.847474
|
||||
L 165.519906 92.758865
|
||||
L 167.019649 91.670255
|
||||
L 168.246711 90.581646
|
||||
L 169.719186 88.404427
|
||||
L 173.154961 86.227208
|
||||
L 175.11826 82.96138
|
||||
L 176.018106 81.87277
|
||||
L 176.660853 80.784161
|
||||
L 177.517849 79.695552
|
||||
L 183.51682 77.518333
|
||||
L 184.373816 76.429723
|
||||
L 185.016563 75.341114
|
||||
L 186.747036 73.163895
|
||||
L 187.879709 70.986676
|
||||
L 191.315483 68.809457
|
||||
L 192.787958 66.632239
|
||||
L 194.015021 65.543629
|
||||
L 195.514764 64.45502
|
||||
L 196.714558 63.36641
|
||||
L 198.514249 62.277801
|
||||
L 207.512707 61.189192
|
||||
L 218.310855 60.100582
|
||||
L 221.010393 59.011973
|
||||
L 222.938633 57.923363
|
||||
L 225.509621 56.834754
|
||||
L 227.759236 55.746144
|
||||
L 229.109004 54.657535
|
||||
L 230.651597 53.568926
|
||||
L 238.36456 51.391707
|
||||
L 239.907153 50.303097
|
||||
L 241.256921 49.214488
|
||||
L 243.506536 48.125879
|
||||
L 246.077524 47.037269
|
||||
L 248.005764 45.94866
|
||||
L 250.705302 44.86005
|
||||
L 261.50345 43.771441
|
||||
L 275.001136 42.682831
|
||||
L 279.500365 41.594222
|
||||
L 283.099748 40.505613
|
||||
L 293.897897 38.328394
|
||||
L 297.49728 37.239784
|
||||
L 315.494194 35.062566
|
||||
L 369.484938 30.708128
|
||||
L 423.475682 28.530909
|
||||
L 423.475682 28.530909
|
||||
" clip-path="url(#p3e78a3e766)" style="fill: none; stroke: #1f77b4; stroke-width: 1.5; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_3">
|
||||
<path d="M 33.73 317.72
|
||||
L 33.73 14.76
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_4">
|
||||
<path d="M 442.035 317.72
|
||||
L 442.035 14.76
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_5">
|
||||
<path d="M 33.73 317.72
|
||||
L 442.035 317.72
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_6">
|
||||
<path d="M 33.73 14.76
|
||||
L 442.035 14.76
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<defs>
|
||||
<clipPath id="p3e78a3e766">
|
||||
<rect x="33.73" y="14.76" width="408.305" height="302.96"/>
|
||||
</clipPath>
|
||||
</defs>
|
||||
</svg>
|
||||
|
||||
|
After Width: | Height: | Size: 18 KiB |
@ -0,0 +1,647 @@
|
||||
<?xml version="1.0" encoding="utf-8" standalone="no"?>
|
||||
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
|
||||
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||
<svg xmlns:xlink="http://www.w3.org/1999/xlink" width="460.8pt" height="345.6pt" viewBox="0 0 460.8 345.6" xmlns="http://www.w3.org/2000/svg" version="1.1">
|
||||
<metadata>
|
||||
<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
|
||||
<cc:Work>
|
||||
<dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
|
||||
<dc:date>2025-07-30T17:57:36.284432</dc:date>
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:creator>
|
||||
<cc:Agent>
|
||||
<dc:title>Matplotlib v3.10.3, https://matplotlib.org/</dc:title>
|
||||
</cc:Agent>
|
||||
</dc:creator>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<defs>
|
||||
<style type="text/css">*{stroke-linejoin: round; stroke-linecap: butt}</style>
|
||||
</defs>
|
||||
<g id="figure_1">
|
||||
<g id="patch_1">
|
||||
<path d="M 0 345.6
|
||||
L 460.8 345.6
|
||||
L 460.8 0
|
||||
L 0 0
|
||||
z
|
||||
" style="fill: #ffffff"/>
|
||||
</g>
|
||||
<g id="axes_1">
|
||||
<g id="patch_2">
|
||||
<path d="M 33.73 317.72
|
||||
L 442.035 317.72
|
||||
L 442.035 14.76
|
||||
L 33.73 14.76
|
||||
z
|
||||
" style="fill: #ffffff"/>
|
||||
</g>
|
||||
<g id="matplotlib.axis_1">
|
||||
<g id="xtick_1">
|
||||
<g id="line2d_1">
|
||||
<defs>
|
||||
<path id="m0e596f21b4" d="M 0 0
|
||||
L 0 3.5
|
||||
" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</defs>
|
||||
<g>
|
||||
<use xlink:href="#m0e596f21b4" x="59.614794" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_1">
|
||||
<!-- −2.0 -->
|
||||
<g transform="translate(47.473388 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-2212" d="M 678 2272
|
||||
L 4684 2272
|
||||
L 4684 1741
|
||||
L 678 1741
|
||||
L 678 2272
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
<path id="DejaVuSans-32" d="M 1228 531
|
||||
L 3431 531
|
||||
L 3431 0
|
||||
L 469 0
|
||||
L 469 531
|
||||
Q 828 903 1448 1529
|
||||
Q 2069 2156 2228 2338
|
||||
Q 2531 2678 2651 2914
|
||||
Q 2772 3150 2772 3378
|
||||
Q 2772 3750 2511 3984
|
||||
Q 2250 4219 1831 4219
|
||||
Q 1534 4219 1204 4116
|
||||
Q 875 4013 500 3803
|
||||
L 500 4441
|
||||
Q 881 4594 1212 4672
|
||||
Q 1544 4750 1819 4750
|
||||
Q 2544 4750 2975 4387
|
||||
Q 3406 4025 3406 3419
|
||||
Q 3406 3131 3298 2873
|
||||
Q 3191 2616 2906 2266
|
||||
Q 2828 2175 2409 1742
|
||||
Q 1991 1309 1228 531
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
<path id="DejaVuSans-2e" d="M 684 794
|
||||
L 1344 794
|
||||
L 1344 0
|
||||
L 684 0
|
||||
L 684 794
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
<path id="DejaVuSans-30" d="M 2034 4250
|
||||
Q 1547 4250 1301 3770
|
||||
Q 1056 3291 1056 2328
|
||||
Q 1056 1369 1301 889
|
||||
Q 1547 409 2034 409
|
||||
Q 2525 409 2770 889
|
||||
Q 3016 1369 3016 2328
|
||||
Q 3016 3291 2770 3770
|
||||
Q 2525 4250 2034 4250
|
||||
z
|
||||
M 2034 4750
|
||||
Q 2819 4750 3233 4129
|
||||
Q 3647 3509 3647 2328
|
||||
Q 3647 1150 3233 529
|
||||
Q 2819 -91 2034 -91
|
||||
Q 1250 -91 836 529
|
||||
Q 422 1150 422 2328
|
||||
Q 422 3509 836 4129
|
||||
Q 1250 4750 2034 4750
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-2212"/>
|
||||
<use xlink:href="#DejaVuSans-32" transform="translate(83.789062 0)"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(147.412109 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(179.199219 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_2">
|
||||
<g id="line2d_2">
|
||||
<g>
|
||||
<use xlink:href="#m0e596f21b4" x="105.720873" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_2">
|
||||
<!-- −1.5 -->
|
||||
<g transform="translate(93.579467 332.318437) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-31" d="M 794 531
|
||||
L 1825 531
|
||||
L 1825 4091
|
||||
L 703 3866
|
||||
L 703 4441
|
||||
L 1819 4666
|
||||
L 2450 4666
|
||||
L 2450 531
|
||||
L 3481 531
|
||||
L 3481 0
|
||||
L 794 0
|
||||
L 794 531
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
<path id="DejaVuSans-35" d="M 691 4666
|
||||
L 3169 4666
|
||||
L 3169 4134
|
||||
L 1269 4134
|
||||
L 1269 2991
|
||||
Q 1406 3038 1543 3061
|
||||
Q 1681 3084 1819 3084
|
||||
Q 2600 3084 3056 2656
|
||||
Q 3513 2228 3513 1497
|
||||
Q 3513 744 3044 326
|
||||
Q 2575 -91 1722 -91
|
||||
Q 1428 -91 1123 -41
|
||||
Q 819 9 494 109
|
||||
L 494 744
|
||||
Q 775 591 1075 516
|
||||
Q 1375 441 1709 441
|
||||
Q 2250 441 2565 725
|
||||
Q 2881 1009 2881 1497
|
||||
Q 2881 1984 2565 2268
|
||||
Q 2250 2553 1709 2553
|
||||
Q 1456 2553 1204 2497
|
||||
Q 953 2441 691 2322
|
||||
L 691 4666
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-2212"/>
|
||||
<use xlink:href="#DejaVuSans-31" transform="translate(83.789062 0)"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(147.412109 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(179.199219 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_3">
|
||||
<g id="line2d_3">
|
||||
<g>
|
||||
<use xlink:href="#m0e596f21b4" x="151.826952" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_3">
|
||||
<!-- −1.0 -->
|
||||
<g transform="translate(139.685545 332.318437) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-2212"/>
|
||||
<use xlink:href="#DejaVuSans-31" transform="translate(83.789062 0)"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(147.412109 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(179.199219 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_4">
|
||||
<g id="line2d_4">
|
||||
<g>
|
||||
<use xlink:href="#m0e596f21b4" x="197.93303" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_4">
|
||||
<!-- −0.5 -->
|
||||
<g transform="translate(185.791624 332.318437) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-2212"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(83.789062 0)"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(147.412109 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(179.199219 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_5">
|
||||
<g id="line2d_5">
|
||||
<g>
|
||||
<use xlink:href="#m0e596f21b4" x="244.039109" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_5">
|
||||
<!-- 0.0 -->
|
||||
<g transform="translate(236.087546 332.318437) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_6">
|
||||
<g id="line2d_6">
|
||||
<g>
|
||||
<use xlink:href="#m0e596f21b4" x="290.145188" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_6">
|
||||
<!-- 0.5 -->
|
||||
<g transform="translate(282.193625 332.318437) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_7">
|
||||
<g id="line2d_7">
|
||||
<g>
|
||||
<use xlink:href="#m0e596f21b4" x="336.251266" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_7">
|
||||
<!-- 1.0 -->
|
||||
<g transform="translate(328.299704 332.318437) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_8">
|
||||
<g id="line2d_8">
|
||||
<g>
|
||||
<use xlink:href="#m0e596f21b4" x="382.357345" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_8">
|
||||
<!-- 1.5 -->
|
||||
<g transform="translate(374.405782 332.318437) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="xtick_9">
|
||||
<g id="line2d_9">
|
||||
<g>
|
||||
<use xlink:href="#m0e596f21b4" x="428.463424" y="317.72" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_9">
|
||||
<!-- 2.0 -->
|
||||
<g transform="translate(420.511861 332.318437) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-32"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(95.410156 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="matplotlib.axis_2">
|
||||
<g id="ytick_1">
|
||||
<g id="line2d_10">
|
||||
<defs>
|
||||
<path id="m82b563dc58" d="M 0 0
|
||||
L -3.5 0
|
||||
" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</defs>
|
||||
<g>
|
||||
<use xlink:href="#m82b563dc58" x="33.73" y="305.0377" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_10">
|
||||
<!-- 0.00 -->
|
||||
<g transform="translate(4.464375 308.836919) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(95.410156 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_2">
|
||||
<g id="line2d_11">
|
||||
<g>
|
||||
<use xlink:href="#m82b563dc58" x="33.73" y="270.202199" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_11">
|
||||
<!-- 0.25 -->
|
||||
<g transform="translate(4.464375 274.001418) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-32" transform="translate(95.410156 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_3">
|
||||
<g id="line2d_12">
|
||||
<g>
|
||||
<use xlink:href="#m82b563dc58" x="33.73" y="235.366698" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_12">
|
||||
<!-- 0.50 -->
|
||||
<g transform="translate(4.464375 239.165917) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(95.410156 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_4">
|
||||
<g id="line2d_13">
|
||||
<g>
|
||||
<use xlink:href="#m82b563dc58" x="33.73" y="200.531197" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_13">
|
||||
<!-- 0.75 -->
|
||||
<g transform="translate(4.464375 204.330415) scale(0.1 -0.1)">
|
||||
<defs>
|
||||
<path id="DejaVuSans-37" d="M 525 4666
|
||||
L 3525 4666
|
||||
L 3525 4397
|
||||
L 1831 0
|
||||
L 1172 0
|
||||
L 2766 4134
|
||||
L 525 4134
|
||||
L 525 4666
|
||||
z
|
||||
" transform="scale(0.015625)"/>
|
||||
</defs>
|
||||
<use xlink:href="#DejaVuSans-30"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-37" transform="translate(95.410156 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_5">
|
||||
<g id="line2d_14">
|
||||
<g>
|
||||
<use xlink:href="#m82b563dc58" x="33.73" y="165.695695" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_14">
|
||||
<!-- 1.00 -->
|
||||
<g transform="translate(4.464375 169.494914) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(95.410156 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_6">
|
||||
<g id="line2d_15">
|
||||
<g>
|
||||
<use xlink:href="#m82b563dc58" x="33.73" y="130.860194" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_15">
|
||||
<!-- 1.25 -->
|
||||
<g transform="translate(4.464375 134.659413) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-32" transform="translate(95.410156 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_7">
|
||||
<g id="line2d_16">
|
||||
<g>
|
||||
<use xlink:href="#m82b563dc58" x="33.73" y="96.024693" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_16">
|
||||
<!-- 1.50 -->
|
||||
<g transform="translate(4.464375 99.823912) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(95.410156 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_8">
|
||||
<g id="line2d_17">
|
||||
<g>
|
||||
<use xlink:href="#m82b563dc58" x="33.73" y="61.189192" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_17">
|
||||
<!-- 1.75 -->
|
||||
<g transform="translate(4.464375 64.98841) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-31"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-37" transform="translate(95.410156 0)"/>
|
||||
<use xlink:href="#DejaVuSans-35" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="ytick_9">
|
||||
<g id="line2d_18">
|
||||
<g>
|
||||
<use xlink:href="#m82b563dc58" x="33.73" y="26.35369" style="stroke: #000000; stroke-width: 0.8"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="text_18">
|
||||
<!-- 2.00 -->
|
||||
<g transform="translate(4.464375 30.152909) scale(0.1 -0.1)">
|
||||
<use xlink:href="#DejaVuSans-32"/>
|
||||
<use xlink:href="#DejaVuSans-2e" transform="translate(63.623047 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(95.410156 0)"/>
|
||||
<use xlink:href="#DejaVuSans-30" transform="translate(159.033203 0)"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g id="line2d_19">
|
||||
<path d="M 52.289318 303.949091
|
||||
L 64.602536 302.860481
|
||||
L 78.817103 300.683263
|
||||
L 84.087803 299.594653
|
||||
L 89.678131 297.417434
|
||||
L 95.629367 296.328825
|
||||
L 100.359232 295.240216
|
||||
L 101.991348 294.151606
|
||||
L 103.318165 293.062997
|
||||
L 107.417158 290.885778
|
||||
L 108.825004 289.797169
|
||||
L 110.615588 288.708559
|
||||
L 116.205915 287.61995
|
||||
L 120.93578 286.53134
|
||||
L 122.157151 285.442731
|
||||
L 123.039571 284.354121
|
||||
L 125.283287 282.176903
|
||||
L 126.656198 279.999684
|
||||
L 130.420482 277.822465
|
||||
L 131.872672 275.645246
|
||||
L 133.018179 274.556637
|
||||
L 134.344996 273.468027
|
||||
L 135.352789 272.379418
|
||||
L 136.782463 271.290808
|
||||
L 142.7337 270.202199
|
||||
L 148.0044 269.11359
|
||||
L 149.095681 268.02498
|
||||
L 149.830443 266.936371
|
||||
L 150.757206 265.847761
|
||||
L 151.522457 264.759152
|
||||
L 152.44922 262.581933
|
||||
L 154.648592 260.404714
|
||||
L 155.929337 257.138886
|
||||
L 156.522343 256.050277
|
||||
L 156.948266 254.961667
|
||||
L 157.519241 253.873058
|
||||
L 161.618234 251.695839
|
||||
L 162.218967 250.60723
|
||||
L 162.672099 249.51862
|
||||
L 163.903254 247.341401
|
||||
L 164.718094 245.164183
|
||||
L 167.234762 242.986964
|
||||
L 168.334721 240.809745
|
||||
L 169.261484 239.721135
|
||||
L 170.406992 238.632526
|
||||
L 171.333755 237.543917
|
||||
L 172.741601 236.455307
|
||||
L 186.956168 234.278088
|
||||
L 188.146019 233.189479
|
||||
L 188.911269 232.10087
|
||||
L 189.838032 231.01226
|
||||
L 190.572795 229.923651
|
||||
L 191.427937 227.746432
|
||||
L 193.31815 225.569213
|
||||
L 194.337079 222.303385
|
||||
L 194.790211 221.214775
|
||||
L 195.52693 219.037557
|
||||
L 198.261593 216.860338
|
||||
L 199.607779 212.5059
|
||||
L 200.060911 210.328681
|
||||
L 201.379596 208.151462
|
||||
L 201.920431 205.974244
|
||||
L 203.296758 202.708415
|
||||
L 203.89749 201.619806
|
||||
L 209.487818 199.442587
|
||||
L 210.130414 198.353978
|
||||
L 210.57481 197.265368
|
||||
L 211.635952 195.088149
|
||||
L 212.240624 192.910931
|
||||
L 213.74704 190.733712
|
||||
L 214.673803 187.467884
|
||||
L 215.439054 185.290665
|
||||
L 215.879208 184.202055
|
||||
L 219.301908 182.024837
|
||||
L 219.845934 180.936227
|
||||
L 220.26413 179.847618
|
||||
L 221.435838 177.670399
|
||||
L 222.24119 175.49318
|
||||
L 223.462561 174.404571
|
||||
L 224.892235 173.315961
|
||||
L 226.135564 171.138742
|
||||
L 227.226845 170.050133
|
||||
L 228.634691 168.961524
|
||||
L 229.824542 167.872914
|
||||
L 231.725891 166.784305
|
||||
L 256.352327 164.607086
|
||||
L 258.253676 163.518476
|
||||
L 259.443526 162.429867
|
||||
L 260.851373 161.341258
|
||||
L 261.942654 160.252648
|
||||
L 263.185983 158.075429
|
||||
L 264.615657 156.98682
|
||||
L 265.837028 155.898211
|
||||
L 267.213355 152.632382
|
||||
L 267.814087 151.543773
|
||||
L 268.232284 150.455163
|
||||
L 268.77631 149.366554
|
||||
L 272.19901 147.189335
|
||||
L 273.404414 143.923507
|
||||
L 273.80274 142.834898
|
||||
L 274.331178 140.657679
|
||||
L 275.837594 138.48046
|
||||
L 276.442266 136.303241
|
||||
L 277.947804 133.037413
|
||||
L 278.5904 131.948803
|
||||
L 284.180727 129.771585
|
||||
L 284.78146 128.682975
|
||||
L 285.717632 126.505756
|
||||
L 286.157787 125.417147
|
||||
L 286.698622 123.239928
|
||||
L 288.017306 121.062709
|
||||
L 288.808832 117.796881
|
||||
L 289.816625 114.531053
|
||||
L 292.551288 112.353834
|
||||
L 294.167062 107.999396
|
||||
L 294.760068 105.822178
|
||||
L 296.650281 103.644959
|
||||
L 297.505423 101.46774
|
||||
L 298.240185 100.37913
|
||||
L 299.166949 99.290521
|
||||
L 299.932199 98.201912
|
||||
L 301.12205 97.113302
|
||||
L 315.336617 94.936083
|
||||
L 316.744463 93.847474
|
||||
L 317.671226 92.758865
|
||||
L 318.816734 91.670255
|
||||
L 319.743497 90.581646
|
||||
L 320.843456 88.404427
|
||||
L 323.360123 86.227208
|
||||
L 324.76797 82.96138
|
||||
L 325.406119 81.87277
|
||||
L 325.859251 80.784161
|
||||
L 326.459984 79.695552
|
||||
L 330.558976 77.518333
|
||||
L 331.129951 76.429723
|
||||
L 331.555874 75.341114
|
||||
L 332.692907 73.163895
|
||||
L 333.429626 70.986676
|
||||
L 335.628998 68.809457
|
||||
L 336.555761 66.632239
|
||||
L 337.321011 65.543629
|
||||
L 338.247775 64.45502
|
||||
L 338.982537 63.36641
|
||||
L 340.073818 62.277801
|
||||
L 345.344518 61.189192
|
||||
L 351.295754 60.100582
|
||||
L 352.725429 59.011973
|
||||
L 353.733222 57.923363
|
||||
L 355.060039 56.834754
|
||||
L 356.205546 55.746144
|
||||
L 357.657736 53.568926
|
||||
L 361.42202 51.391707
|
||||
L 362.794931 49.214488
|
||||
L 367.142437 44.86005
|
||||
L 371.872303 43.771441
|
||||
L 377.46263 42.682831
|
||||
L 379.253213 41.594222
|
||||
L 380.66106 40.505613
|
||||
L 384.760053 38.328394
|
||||
L 386.086869 37.239784
|
||||
L 392.448851 35.062566
|
||||
L 401.237608 32.885347
|
||||
L 409.261115 30.708128
|
||||
L 423.475682 28.530909
|
||||
L 423.475682 28.530909
|
||||
" clip-path="url(#pde11ae1218)" style="fill: none; stroke: #1f77b4; stroke-width: 1.5; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_3">
|
||||
<path d="M 33.73 317.72
|
||||
L 33.73 14.76
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_4">
|
||||
<path d="M 442.035 317.72
|
||||
L 442.035 14.76
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_5">
|
||||
<path d="M 33.73 317.72
|
||||
L 442.035 317.72
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
<g id="patch_6">
|
||||
<path d="M 33.73 14.76
|
||||
L 442.035 14.76
|
||||
" style="fill: none; stroke: #000000; stroke-width: 0.8; stroke-linejoin: miter; stroke-linecap: square"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<defs>
|
||||
<clipPath id="pde11ae1218">
|
||||
<rect x="33.73" y="14.76" width="408.305" height="302.96"/>
|
||||
</clipPath>
|
||||
</defs>
|
||||
</svg>
|
||||
|
||||
|
After Width: | Height: | Size: 19 KiB |
BIN
_freeze/posts/math/pentagons/1/index/figure-html/cell-3-output-1.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/pentagons/1/index/figure-html/cell-3-output-2.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/pentagons/1/index/figure-html/cell-4-output-1.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/pentagons/1/index/figure-html/cell-4-output-2.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/pentagons/1/index/figure-html/cell-5-output-1.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/pentagons/1/index/figure-html/cell-6-output-1.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/pentagons/1/index/figure-html/cell-7-output-1.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/pentagons/1/index/figure-html/cell-7-output-2.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/pentagons/1/index/figure-html/cell-7-output-3.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/pentagons/2/index/figure-html/cell-3-output-1.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/polycount/3/index/figure-html/cell-7-output-1.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/polycount/4/index/figure-html/cell-2-output-1.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/polycount/4/index/figure-html/cell-3-output-1.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/polycount/4/index/figure-html/cell-4-output-1.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/polycount/4/index/figure-html/cell-5-output-1.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/polycount/4/index/figure-html/cell-6-output-1.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/polycount/sand-1/index/figure-html/cell-10-output-1.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/polycount/sand-1/index/figure-html/cell-5-output-1.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/polycount/sand-1/index/figure-html/cell-5-output-2.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/polycount/sand-1/index/figure-html/cell-5-output-3.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/polycount/sand-1/index/figure-html/cell-5-output-4.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/polycount/sand-1/index/figure-html/cell-5-output-5.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/polycount/sand-1/index/figure-html/cell-8-output-1.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/polycount/sand-1/index/figure-html/cell-8-output-2.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/polycount/sand-1/index/figure-html/cell-8-output-3.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/polycount/sand-1/index/figure-html/cell-8-output-4.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/polycount/sand-2/index/figure-html/cell-5-output-1.png
(Stored with Git LFS)
Normal file
16
_freeze/posts/math/stereo/1/index/execute-results/html.json
Normal file
BIN
_freeze/posts/math/stereo/1/index/figure-html/cell-3-output-1.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/stereo/1/index/figure-html/cell-3-output-2.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/stereo/1/index/figure-html/cell-4-output-1.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/stereo/1/index/figure-html/cell-4-output-2.png
(Stored with Git LFS)
Normal file
12
_freeze/posts/math/stereo/2/index/execute-results/html.json
Normal file
BIN
_freeze/posts/math/stereo/2/index/figure-html/cell-5-output-1.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/stereo/2/index/figure-html/cell-6-output-1.png
(Stored with Git LFS)
Normal file
BIN
_freeze/posts/math/stereo/2/index/figure-html/cell-7-output-1.png
(Stored with Git LFS)
Normal file
|
Before Width: | Height: | Size: 26 KiB |
|
Before Width: | Height: | Size: 41 KiB |
|
Before Width: | Height: | Size: 61 KiB |
|
Before Width: | Height: | Size: 58 KiB |
|
Before Width: | Height: | Size: 67 KiB |
|
Before Width: | Height: | Size: 68 KiB |
|
Before Width: | Height: | Size: 39 KiB |
|
Before Width: | Height: | Size: 31 KiB |
|
Before Width: | Height: | Size: 41 KiB |
|
Before Width: | Height: | Size: 42 KiB |
|
Before Width: | Height: | Size: 42 KiB |
|
Before Width: | Height: | Size: 41 KiB |
|
Before Width: | Height: | Size: 38 KiB |
|
Before Width: | Height: | Size: 40 KiB |
|
Before Width: | Height: | Size: 47 KiB |
|
Before Width: | Height: | Size: 47 KiB |
|
Before Width: | Height: | Size: 28 KiB |
170
_quarto.yml
@ -2,21 +2,185 @@ project:
|
||||
type: website
|
||||
|
||||
website:
|
||||
title: "Zenzicubi.co"
|
||||
favicon: "./logo-favicon.png"
|
||||
title: "zenzicubi.co"
|
||||
|
||||
repo-url: https://git.zenzicubi.co/cube/zenzicubi.co
|
||||
repo-branch: master
|
||||
repo-actions: [source]
|
||||
repo-link-target: "_blank"
|
||||
|
||||
navbar:
|
||||
logo: "./logo-vector.svg"
|
||||
left:
|
||||
- text: "Math"
|
||||
menu:
|
||||
- ./posts/math/polycount/index.qmd
|
||||
- ./posts/math/pentagons/index.qmd
|
||||
- ./posts/math/chebyshev/index.qmd
|
||||
- ./posts/math/stereo/index.qmd
|
||||
- ./posts/math/permutations/index.qmd
|
||||
- ./posts/math/type-algebra/index.qmd
|
||||
- ./posts/math/number-number/index.qmd
|
||||
- ./posts/math/finite-field/index.qmd
|
||||
- ./posts/math/misc/index.qmd
|
||||
right:
|
||||
# - about.qmd
|
||||
- ./about/index.qmd
|
||||
- icon: git
|
||||
href: https://git.zenzicubi.co/cube/zenzicubi.co
|
||||
- icon: github
|
||||
href: https://github.com/queue-miscreant
|
||||
background: primary
|
||||
search: true
|
||||
draft-mode: unlinked
|
||||
|
||||
sidebar:
|
||||
- id: topic-sidebar
|
||||
style: "floating"
|
||||
contents:
|
||||
- section: "Topics"
|
||||
contents:
|
||||
- ./posts/math/polycount/index.qmd
|
||||
- ./posts/math/pentagons/index.qmd
|
||||
- ./posts/math/chebyshev/index.qmd
|
||||
- ./posts/math/stereo/index.qmd
|
||||
- ./posts/math/permutations/index.qmd
|
||||
- ./posts/math/type-algebra/index.qmd
|
||||
- ./posts/math/number-number/index.qmd
|
||||
- ./posts/math/finite-field/index.qmd
|
||||
- ./posts/math/misc/index.qmd
|
||||
|
||||
- id: misc-sidebar
|
||||
style: "floating"
|
||||
contents:
|
||||
- section: "Miscellaneous"
|
||||
contents:
|
||||
- ./posts/math/misc/platonic-volume/index.qmd
|
||||
- ./posts/math/misc/infinitesimals/index.qmd
|
||||
|
||||
- id: polycount-sidebar
|
||||
style: "floating"
|
||||
contents:
|
||||
- section: "Polynomial Counting"
|
||||
href: ./posts/math/polycount/index.qmd
|
||||
contents:
|
||||
- text: "Part 1: A primer"
|
||||
href: ./posts/math/polycount/1/index.qmd
|
||||
- text: "Part 2: Binary and beyond"
|
||||
href: ./posts/math/polycount/2/index.qmd
|
||||
- text: "Part 3: The third degree"
|
||||
href: ./posts/math/polycount/3/index.qmd
|
||||
- text: "Part 4: Two twos"
|
||||
href: ./posts/math/polycount/4/index.qmd
|
||||
contents:
|
||||
- text: "Appendix"
|
||||
href: ./posts/math/polycount/4/appendix/index.qmd
|
||||
- text: "Part 5: Pentamerous multiplication"
|
||||
href: ./posts/math/polycount/5/index.qmd
|
||||
- section: 2D
|
||||
contents:
|
||||
- text: "Part 1: Lines, leaves, and sand"
|
||||
href: ./posts/math/polycount/sand-1/index.qmd
|
||||
- text: "Part 2: Reorienting Polynomials"
|
||||
href: ./posts/math/polycount/sand-2/index.qmd
|
||||
|
||||
- id: pentagons-sidebar
|
||||
style: "floating"
|
||||
contents:
|
||||
- section: "12 Pentagons"
|
||||
href: ./posts/math/pentagons/index.qmd
|
||||
contents:
|
||||
- text: "Part 1"
|
||||
href: ./posts/math/pentagons/1/index.qmd
|
||||
- text: "Part 2"
|
||||
href: ./posts/math/pentagons/2/index.qmd
|
||||
- text: "Part 3"
|
||||
href: ./posts/math/pentagons/3/index.qmd
|
||||
|
||||
- id: chebyshev-sidebar
|
||||
style: "floating"
|
||||
contents:
|
||||
- section: "Generating Polynomials"
|
||||
href: ./posts/math/chebyshev/index.qmd
|
||||
contents:
|
||||
- text: "Part 1: Regular Constructability"
|
||||
href: ./posts/math/chebyshev/1/index.qmd
|
||||
- text: "Part 2: Ghostly Chains"
|
||||
href: ./posts/math/chebyshev/2/index.qmd
|
||||
- text: "Extra: Legendary"
|
||||
href: ./posts/math/chebyshev/extra/index.qmd
|
||||
|
||||
- id: stereography-sidebar
|
||||
style: "floating"
|
||||
contents:
|
||||
- section: "Algebraic Stereography"
|
||||
href: ./posts/math/stereo/index.qmd
|
||||
contents:
|
||||
- ./posts/math/stereo/1/index.qmd
|
||||
- ./posts/math/stereo/2/index.qmd
|
||||
|
||||
- id: permutations-sidebar
|
||||
style: "floating"
|
||||
contents:
|
||||
- section: "A Game of Permutations"
|
||||
href: ./posts/math/permutations/index.qmd
|
||||
contents:
|
||||
- text: "Part 1"
|
||||
href: ./posts/math/permutations/1/index.qmd
|
||||
- text: "Part 2"
|
||||
href: ./posts/math/permutations/2/index.qmd
|
||||
- text: "Part 3"
|
||||
href: ./posts/math/permutations/3/index.qmd
|
||||
- text: "Appendix"
|
||||
href: ./posts/math/permutations/appendix/index.qmd
|
||||
|
||||
- id: type-algebra-sidebar
|
||||
style: "floating"
|
||||
contents:
|
||||
- section: "Type Algebra and You"
|
||||
href: ./posts/math/type-algebra/index.qmd
|
||||
contents:
|
||||
- text: "Part 1: Basics"
|
||||
href: ./posts/math/type-algebra/1/index.qmd
|
||||
- text: "Part 2: A Fixer-upper"
|
||||
href: ./posts/math/type-algebra/2/index.qmd
|
||||
- text: "Part 3: Combinatorial Types"
|
||||
href: ./posts/math/type-algebra/3/index.qmd
|
||||
|
||||
- id: number-number-sidebar
|
||||
style: "floating"
|
||||
contents:
|
||||
- section: "Numbering Numbers"
|
||||
href: ./posts/math/number-number/index.qmd
|
||||
contents:
|
||||
- text: "From 0 to ∞"
|
||||
href: ./posts/math/number-number/1/index.qmd
|
||||
- text: "Ordering Obliquely"
|
||||
href: ./posts/math/number-number/2/index.qmd
|
||||
|
||||
- id: finite-field-sidebar
|
||||
style: "floating"
|
||||
contents:
|
||||
- section: "Exploring Finite Fields"
|
||||
href: ./posts/math/finite-field/index.qmd
|
||||
contents:
|
||||
- text: "Part 1: Preliminaries"
|
||||
href: ./posts/math/finite-field/1/index.qmd
|
||||
- text: "Part 2: Matrix Boogaloo"
|
||||
href: ./posts/math/finite-field/2/index.qmd
|
||||
contents:
|
||||
- text: "Appendix"
|
||||
href: ./posts/math/finite-field/2/extra/index.qmd
|
||||
- text: "Part 3: Roll a d20"
|
||||
href: ./posts/math/finite-field/2/index.qmd
|
||||
- text: "Part 5: The Power of Forgetting"
|
||||
href: ./posts/math/finite-field/2/index.qmd
|
||||
|
||||
format:
|
||||
html:
|
||||
theme:
|
||||
light:
|
||||
- default
|
||||
- flatly
|
||||
dark:
|
||||
- darkly
|
||||
|
||||
|
||||
63
about/index.qmd
Normal file
@ -0,0 +1,63 @@
|
||||
---
|
||||
title: "About"
|
||||
---
|
||||
|
||||
This is my personal website (and the third iteration thereof).
|
||||
|
||||
The first version used Wordpress since it was quite easy to get into,
|
||||
didn't require much research, and web hosting services made it easy to set up.
|
||||
It lasted around three months near the end of 2020, after which I lost my posts because of
|
||||
hosting troubles and because I wasn't using proper backups.
|
||||
|
||||
The second version also used Wordpress, and lasted until the start of 2025
|
||||
(though the last post I had written up to that point was from the start of 2024).
|
||||
|
||||
This version uses [Quarto](https://quarto.org/), an open-source publishing platform that has
|
||||
some nice features like text-based configuration and Jupyter integration.
|
||||
As a bonus, it also produces static web pages.
|
||||
|
||||
|
||||
Why Quarto?
|
||||
-----------
|
||||
|
||||
I had a couple of reasons for switching platforms:
|
||||
|
||||
- Wordpress is either overkill or not enough.
|
||||
I don't need a block editor or multiple users, and I don't want to make custom content
|
||||
just for it to be specific to Wordpress.
|
||||
- I write a lot of code and LaTeX, which Wordpress relies on plugins for.
|
||||
Quarto uses (primarily) Pandoc-style Markdown, which allows for inlining of both out of the box.
|
||||
- Also, because of Jupyter integration, code cells can generate output for the page they're in.
|
||||
- Since pages are written in Markdown, everything can be edited locally and version-controlled in Git.
|
||||
|
||||
The last two are particularly nice in ensuring that the site is reproducibile,
|
||||
technically even without Quarto.
|
||||
Instead of articles that live in a Wordpress database or as scattered random files,
|
||||
I have the complete documents in a structure 1:1 with how the website is organized.
|
||||
|
||||
|
||||
Mathematics
|
||||
-----------
|
||||
|
||||
As of writing, all posts on this site are about math.
|
||||
In particular, they are dedicated to certain non-obvious insights I choose to investigate.
|
||||
Typically, although information about these subjects may exist online, it does not exist in a single,
|
||||
easily-accessible source.
|
||||
|
||||
I find writing math posts to be an excellent motivator when it comes to researching things.
|
||||
It also gives me a chance to learn new tools that otherwise I would not have a reason to use,
|
||||
not to mention being a good exercise in writing and diagram creation.
|
||||
|
||||
An example of this (and one that relates to the creation of the site) is when I was writing code
|
||||
for what would become the contents of [this post](/posts/polycount/5/).
|
||||
It was easy enough to learn a library for rendering images (or GIFs),
|
||||
but I didn't have a gallery to host them, nor a means to share the rationale which produced them.
|
||||
In a frenzy, I tried gathering my notes in a single text file before eventually putting them on a website.
|
||||
Along the way, I learned LaTeX to typeset the relevant equations.
|
||||
|
||||
I do my best to attribute the programs I use and direct sources I consult along the way,
|
||||
but extra information is frequently available on Wikipedia,
|
||||
which I may link to in order to give my explanation some grounding.
|
||||
|
||||
Unless otherwise stated, the figures and articles in this category are available under
|
||||
[CC BY-SA](https://creativecommons.org/licenses/by-sa/4.0/).
|
||||
13
index.qmd
@ -1,6 +1,15 @@
|
||||
---
|
||||
title: "Posts by topic"
|
||||
title: "Posts"
|
||||
listing:
|
||||
contents: posts/polycount/index.*
|
||||
contents:
|
||||
- posts/math/polycount/*/index.*
|
||||
- posts/math/pentagons/*/index.*
|
||||
- posts/math/chebyshev/*/index.*
|
||||
- posts/math/stereo/*/index.*
|
||||
- posts/math/permutations/*/index.*
|
||||
- posts/math/type-algebra/*/index.*
|
||||
- posts/math/number-number/*/index.*
|
||||
- posts/math/finite-field/*/index.*
|
||||
- posts/math/misc/*/index.*
|
||||
sort: "date desc"
|
||||
---
|
||||
|
||||
@ -27,9 +27,10 @@ Each term of the series is weighted by a geometrically decreasing coefficient *c
|
||||
|
||||
$$
|
||||
[...d_2 d_1 d_0]_p \mapsto e^{2\pi i [d_0] / p}
|
||||
+ c e^{2\pi i [d_1 d_0] / p^2}
|
||||
+ c^2 e^{2\pi i [d_2 d_1 d_0] / p^2}
|
||||
+ ... \\
|
||||
+ c e^{2\pi i [d_1 d_0] / p^2}
|
||||
+ c^2 e^{2\pi i [d_2 d_1 d_0] / p^2}
|
||||
+ ...
|
||||
\\
|
||||
f_N(d; p) = \sum_{n = 0}^N c^n e^{2\pi i \cdot [d_{n:0}]_p / p^{n + 1}}
|
||||
$$
|
||||
|
||||
|
||||
BIN
logo-favicon.png
(Stored with Git LFS)
Normal file
55
logo-vector.svg
Normal file
@ -0,0 +1,55 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<svg
|
||||
version="1.0"
|
||||
width="81.467003pt"
|
||||
height="89.874596pt"
|
||||
viewBox="0 0 81.467003 89.874596"
|
||||
preserveAspectRatio="xMidYMid"
|
||||
id="svg3"
|
||||
sodipodi:docname="logo-vector.svg"
|
||||
inkscape:version="1.4 (e7c3feb100, 2024-10-09)"
|
||||
inkscape:export-filename="logo-vector.png"
|
||||
inkscape:export-xdpi="96"
|
||||
inkscape:export-ydpi="96"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:svg="http://www.w3.org/2000/svg">
|
||||
<defs
|
||||
id="defs3" />
|
||||
<sodipodi:namedview
|
||||
id="namedview3"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#000000"
|
||||
borderopacity="0.25"
|
||||
inkscape:showpageshadow="2"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pagecheckerboard="0"
|
||||
inkscape:deskcolor="#d1d1d1"
|
||||
inkscape:document-units="pt"
|
||||
inkscape:zoom="4.4744239"
|
||||
inkscape:cx="65.483291"
|
||||
inkscape:cy="69.95314"
|
||||
inkscape:window-width="1850"
|
||||
inkscape:window-height="1052"
|
||||
inkscape:window-x="1920"
|
||||
inkscape:window-y="0"
|
||||
inkscape:window-maximized="1"
|
||||
inkscape:current-layer="g3" />
|
||||
<metadata
|
||||
id="metadata1">
|
||||
Created by potrace 1.16, written by Peter Selinger 2001-2019
|
||||
</metadata>
|
||||
<g
|
||||
transform="matrix(0.1,0,0,-0.1,-255.3147,709.4459)"
|
||||
fill="#ffffff"
|
||||
stroke="none"
|
||||
id="g3">
|
||||
<path
|
||||
d="m 3108,7004 c -54,-29 -64,-93 -23,-142 l 25,-30 -35,-35 c -39,-39 -44,-70 -20,-116 13,-26 36,-40 92,-56 36,-10 99,13 127,46 39,47 36,93 -11,138 l -38,36 28,27 c 83,81 -37,191 -145,132 z m 102,-19 c 17,-9 30,-20 30,-24 0,-5 2,-16 6,-24 3,-8 -7,-28 -21,-45 -26,-31 -27,-31 -57,-16 -17,9 -42,27 -55,40 -20,20 -22,27 -13,44 20,38 65,48 110,25 z m -8,-204 c 25,-16 49,-39 53,-50 13,-42 -31,-81 -91,-81 -31,0 -84,50 -84,78 0,24 46,82 64,82 7,0 33,-13 58,-29 z"
|
||||
id="path1" />
|
||||
<path
|
||||
d="m 2736,6628 c -38,-36 -56,-78 -34,-78 7,0 19,9 25,19 18,29 61,34 116,13 l 49,-19 -102,-94 c -89,-82 -170,-174 -170,-193 0,-15 24,-3 50,24 15,17 37,30 47,30 11,0 32,-13 48,-30 33,-34 72,-39 114,-14 47,28 99,124 67,124 -8,0 -18,-9 -21,-21 -8,-23 -61,-59 -88,-59 -10,0 -41,7 -68,16 l -51,17 125,121 c 129,125 156,159 136,172 -7,4 -22,-7 -36,-25 -31,-39 -57,-39 -93,-1 -37,40 -71,39 -114,-2 z"
|
||||
id="path2" />
|
||||
</g>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 2.3 KiB |
2
posts/.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
*.o
|
||||
*.hi
|
||||
3
posts/math/_metadata.yml
Normal file
@ -0,0 +1,3 @@
|
||||
toc: true
|
||||
toc-location: right
|
||||
toc-title: " "
|
||||
BIN
posts/math/chebyshev/1/central_angle_figures.png
(Stored with Git LFS)
Normal file
BIN
posts/math/chebyshev/1/decagon_divisible.png
(Stored with Git LFS)
Normal file
754
posts/math/chebyshev/1/index.qmd
Normal file
@ -0,0 +1,754 @@
|
||||
---
|
||||
title: "Generating Polynomials, Part 1: Regular Constructibility"
|
||||
description: |
|
||||
What kinds of regular polygons are constructible with compass and straightedge?
|
||||
format:
|
||||
html:
|
||||
html-math-method: katex
|
||||
date: "2021-08-18"
|
||||
date-modified: "2025-06-17"
|
||||
categories:
|
||||
- geometry
|
||||
- generating functions
|
||||
- algebra
|
||||
- python
|
||||
---
|
||||
|
||||
<style>
|
||||
.figure-img {
|
||||
max-width: 512px;
|
||||
object-fit: contain;
|
||||
height: 100%;
|
||||
}
|
||||
|
||||
.figure-img.wide {
|
||||
max-width: 768px;
|
||||
}
|
||||
</style>
|
||||
|
||||
```{python}
|
||||
#| echo: false
|
||||
|
||||
from math import comb
|
||||
|
||||
from IPython.display import Markdown
|
||||
from tabulate import tabulate
|
||||
import sympy
|
||||
from sympy.abc import z
|
||||
```
|
||||
|
||||
|
||||
[Recently](/posts/math/misc/platonic-volume), I used coordinate-free geometry to derive
|
||||
the volumes of the Platonic solids, a problem which was very accessible to the ancient Greeks.
|
||||
On the other hand, they found certain problems regarding which figures can be constructed via
|
||||
compass and straightedge to be very difficult. For example, they struggled with problems
|
||||
like [doubling the cube](https://en.wikipedia.org/wiki/Doubling_the_cube)
|
||||
or [squaring the circle](https://en.wikipedia.org/wiki/Squaring_the_circle),
|
||||
which are known (through circa 19th century mathematics) to be impossible.
|
||||
However, before even extending planar geometry by a third dimension or
|
||||
calculating the areas of circles, a simpler problem becomes apparent.
|
||||
Namely, what kinds of regular polygons are constructible?
|
||||
|
||||
|
||||
Regular Geometry and a Complex Series
|
||||
-------------------------------------
|
||||
|
||||
When constructing a regular polygon, one wants a ratio between the length of a edge
|
||||
and the distance from a vertex to the center of the figure.
|
||||
|
||||
{.wide}
|
||||
|
||||
In a convex polygon, the total central angle is always one full turn, or 2π radians.
|
||||
The central angle of a regular *n*-gon is ${2\pi \over n}$ radians,
|
||||
and the green angle above (which we'll call *θ*) is half of that.
|
||||
This means that the ratio we're looking for is $\sin(\theta) = \sin(\pi / n)$.
|
||||
We can multiply by *n* inside the function on both sides to give
|
||||
$\sin(n\theta) = \sin(\pi) = 0$.
|
||||
Therefore, constructing a polygon is actually equivalent to solving this equation,
|
||||
and we can rephrase the question as how to express $\sin(n\theta)$ (and $\cos(n\theta)$).
|
||||
|
||||
|
||||
### Complex Recursion
|
||||
|
||||
Thanks to [Euler's formula](https://en.wikipedia.org/wiki/Euler%27s_formula)
|
||||
and [de Moivre's formula](https://en.wikipedia.org/wiki/De_Moivre%27s_formula),
|
||||
the expressions we're looking for can be phrased in terms of the complex exponential.
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
e^{i\theta}
|
||||
&= \text{cis}(\theta) = \cos(\theta) + i\sin(\theta)
|
||||
& \text{ Euler's formula}
|
||||
\\
|
||||
\text{cis}(n \theta) = e^{i(n\theta)}
|
||||
&= e^{(i\theta)n} = {(e^{i\theta})}^n = \text{cis}(\theta)^n
|
||||
\\
|
||||
\cos(n \theta) + i\sin(n \theta)
|
||||
&= (\cos(\theta) + i\sin(\theta))^n
|
||||
& \text{ de Moivre's formula}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
De Moivre's formula for $n = 2$ gives
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
\text{cis}(\theta)^2
|
||||
&= (\text{c} + i\text{s})^2
|
||||
\\
|
||||
&= \text{c}^2 + 2i\text{cs} - \text{s}^2 + (0 = \text{c}^2 + \text{s}^2 - 1)
|
||||
\\
|
||||
&= 2\text{c}^2 + 2i\text{cs} - 1
|
||||
\\
|
||||
&= 2\text{c}(\text{c} + i\text{s}) - 1
|
||||
\\
|
||||
&= 2\cos(\theta)\text{cis}(\theta) - 1
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
This can easily be massaged into a recurrence relation.
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
\text{cis}(\theta)^2
|
||||
&= 2\cos(\theta)\text{cis}(\theta) - 1
|
||||
\\
|
||||
\text{cis}(\theta)^{n+2}
|
||||
&= 2\cos(\theta)\text{cis}(\theta)^{n+1} - \text{cis}(\theta)^n
|
||||
\\
|
||||
\text{cis}((n+2)\theta)
|
||||
&= 2\cos(\theta)\text{cis}((n+1)\theta) - \text{cis}(n\theta)
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Recurrence relations like this one are powerful.
|
||||
Through some fairly straightforward summatory manipulations,
|
||||
the sequence can be interpreted as the coefficients in a Taylor series,
|
||||
giving a [generating function](https://en.wikipedia.org/wiki/Generating_function).
|
||||
Call this function *F*. Then,
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
\sum_{n=0}^\infty \text{cis}((n+2)\theta)x^n
|
||||
&= 2\cos(\theta) \sum_{n=0}^\infty \text{cis}((n+1)\theta) x^n
|
||||
- \sum_{n=0}^\infty \text{cis}(n\theta) x^n
|
||||
\\
|
||||
{F(x; \text{cis}(\theta)) - 1 - x\text{cis}(\theta) \over x^2}
|
||||
&= 2\cos(\theta) {F(x; \text{cis}(\theta)) - 1 \over x}
|
||||
- F(x; \text{cis}(\theta))
|
||||
\\[10pt]
|
||||
F - 1 - x\text{cis}(\theta)
|
||||
&= 2\cos(\theta) x (F - 1)
|
||||
- x^2 F
|
||||
\\
|
||||
F - 2\cos(\theta) x F + x^2 F
|
||||
&= 1 + x(\text{cis}(\theta) - 2\cos(\theta))
|
||||
\\[10pt]
|
||||
F(x; \text{cis}(\theta))
|
||||
&= {1 + x(\text{cis}(\theta) - 2\cos(\theta)) \over
|
||||
1 - 2\cos(\theta)x + x^2}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Since $\text{cis}$ is a complex function, we can separate *F* into real and imaginary parts.
|
||||
Conveniently, these correspond to $\cos(n\theta)$ and $\sin(n\theta)$, respectively.
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
\Re[ F(x; \text{cis}(\theta)) ]
|
||||
&= {1 + x(\cos(\theta) - 2\cos(\theta)) \over 1 - 2\cos(\theta)x + x^2}
|
||||
\\
|
||||
&= {1 - x\cos(\theta) \over 1 - 2\cos(\theta)x + x^2} = A(x; \cos(\theta))
|
||||
\\
|
||||
\Im[ F(x; \text{cis}(\theta)) ]
|
||||
&= {x \sin(\theta) \over 1 - 2\cos(\theta)x + x^2} = B(x; \cos(\theta))\sin(\theta)
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
In this form, it becomes obvious that the even though the generating function *F* was originally
|
||||
parametrized by $\text{cis}(\theta)$, *A* and *B* are parametrized only by $\cos(\theta)$.
|
||||
Extracting the coefficients of *x* yields an expression for $\cos(n\theta)$ and $\sin(n\theta)$
|
||||
in terms of $\cos(\theta)$ (and in the latter case, a common factor of $\sin(\theta)$).
|
||||
|
||||
If $\cos(\theta)$ in *A* and *B* is replaced with the parameter *z*, then all trigonometric functions
|
||||
are removed from the equation, and we are left with only polynomials[^1].
|
||||
These polynomials are [*Chebyshev polynomials*](https://en.wikipedia.org/wiki/Chebyshev_polynomial)
|
||||
*of the first (A) and second (B) kind*.
|
||||
In actuality, the polynomials of the second kind are typically offset by 1
|
||||
(the x in the numerator of *B* is omitted).
|
||||
However, retaining this term makes indexing consistent between *A* and *B*
|
||||
(and will make things clearer later).
|
||||
|
||||
[^1]:
|
||||
This can actually be observed as early as the recurrence relation.
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
\text{cis}(\theta)^{n+2}
|
||||
&= 2\cos(\theta)\text{cis}(\theta)^{n+1} - \text{cis}(\theta)^n
|
||||
\\
|
||||
a_{n+2}
|
||||
&= 2 z a_{n+1} - a_n
|
||||
\\
|
||||
\Re[ a_0 ]
|
||||
&= 1,~~ \Im[ a_0 ] = 0
|
||||
\\
|
||||
\Re[ a_1 ]
|
||||
&= z,~~ \Im[ a_1 ] = 1 \cdot \sin(\theta)
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
|
||||
We were primarily interested in $\sin(n\theta)$, so let's tabulate
|
||||
the first few polynomials of the second kind (at $z / 2$).
|
||||
|
||||
```{python}
|
||||
#| echo: false
|
||||
#| label: tbl-chebyshevu
|
||||
#| tbl-cap: "[OEIS A049310](http://oeis.org/A049310)"
|
||||
#| classes: plain
|
||||
|
||||
Markdown(tabulate(
|
||||
[
|
||||
[
|
||||
n,
|
||||
"$" + sympy.latex(poly) + "$",
|
||||
"$" + sympy.latex(sympy.factor(poly)) + "$",
|
||||
]
|
||||
for n in range(0, 11)
|
||||
for poly in [sympy.chebyshevu_poly(n - 1, z / 2) if n > 0 else sympy.sympify(0)]
|
||||
],
|
||||
headers=[
|
||||
"*n*",
|
||||
"$[x^n]B(x; z / 2) = U_{n - 1}(z / 2)$",
|
||||
"Factored",
|
||||
],
|
||||
numalign="left",
|
||||
stralign="left",
|
||||
))
|
||||
```
|
||||
|
||||
Evaluating the polynomials at $z / 2$ cancels the 2 in the denominator (and recurrence),
|
||||
making these expressions much simpler.
|
||||
This evaluation has an interpretation in terms of the previous diagram --
|
||||
recall we used *half* the length of a side as a leg of the right triangle.
|
||||
For a unit circumradius, the side length itself is then $2\sin( {\pi / n} )$.
|
||||
To compensate for this doubling, the Chebyshev polynomial must be evaluated at half its normal argument.
|
||||
|
||||
|
||||
### Back on the Plane
|
||||
|
||||
The constructibility criterion is deeply connected to the Chebyshev polynomials.
|
||||
In compass and straightedge constructions, one only has access to linear forms (lines)
|
||||
and quadratic forms (circles).
|
||||
This means that a figure is constructible if and only if the root can be expressed using
|
||||
normal arithmetic (which is linear) and square roots (which are quadratic).
|
||||
|
||||
|
||||
#### Pentagons
|
||||
|
||||
Let's look at a regular pentagon.
|
||||
The relevant polynomial is
|
||||
|
||||
$$
|
||||
[x^5]B ( x; z / 2 )
|
||||
= z^4 - 3z^2 + 1
|
||||
= (z^2 - z - 1) (z^2 + z - 1)
|
||||
$$
|
||||
|
||||
According to how we derived this series, when $z = 2\cos(\theta)$, the roots of this polynomial
|
||||
correspond to when $\sin(5\theta) / \sin(\theta) = 0$.
|
||||
This relation itself is true when $\theta = \pi / 5$, since $\sin(5 \pi / 5) = 0$.
|
||||
|
||||
One of the factors must therefore be the minimal polynomial of $2\cos(\pi / 5 )$.
|
||||
The former happens to be correct correct, since $2\cos( \pi / 5 ) = \varphi$, the golden ratio.
|
||||
Note that the second factor is the first evaluated at -*z*.
|
||||
|
||||
|
||||
#### Heptagons
|
||||
|
||||
An example of where constructability fails is for $2\cos( \pi / 7 )$.
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
[x^7]B ( x; z / 2 )
|
||||
&= z^6 - 5 z^4 + 6 z^2 - 1
|
||||
\\
|
||||
&= ( z^3 - z^2 - 2 z + 1 ) ( z^3 + z^2 - 2 z - 1 )
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Whichever is the minimal polynomial (the former), it is a cubic, and constructing
|
||||
a regular heptagon is equivalent to solving it for *z*.
|
||||
But there are no (nondegenerate) cubics that one can produce via compass and straightedge,
|
||||
and all constructions necessarily fail.
|
||||
|
||||
|
||||
#### Decagons
|
||||
|
||||
One might think the same of $2\cos(\pi /10 )$
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
[x^{10}]B ( x; z / 2 )
|
||||
&= z^9 - 8 z^7 + 21 z^5 - 20 z^3 + 5 z
|
||||
\\
|
||||
&= z ( z^2 - z - 1 )( z^2 + z - 1 )( z^4 - 5 z^2 + 5 )
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
This expression also contains the polynomials for $2\cos( \pi / 5 )$.
|
||||
This is because a regular decagon would contain two disjoint regular pentagons,
|
||||
produced by connecting every other vertex.
|
||||
|
||||

|
||||
|
||||
The polynomial which actually corresponds to $2\cos( \pi / 10 )$ is the quartic,
|
||||
which seems to suggest that it will require a fourth root and somehow decagons are not constructible.
|
||||
However, it can be solved by completing the square...
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
z^4 - 5z^2 &= -5
|
||||
\\
|
||||
z^4 - 5z^2 + (5/2)^2 &= -5 + (5/2)^2
|
||||
\\
|
||||
( z^2 - 5/2)^2 &= {25 - 20 \over 4}
|
||||
\\
|
||||
( z^2 - 5/2) &= {\sqrt 5 \over 2}
|
||||
\\
|
||||
z^2 &= {5 \over 2} + {\sqrt 5 \over 2}
|
||||
\\
|
||||
z &= \sqrt{ {5 + \sqrt 5 \over 2} }
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
...and we can breathe a sigh of relief.
|
||||
|
||||
|
||||
The Triangle behind Regular Polygons
|
||||
------------------------------------
|
||||
|
||||
Preferring *z* to be halved in $B(x; z/2)$ makes something else more evident.
|
||||
Observe these four rows of the Chebyshev polynomials
|
||||
|
||||
```{python}
|
||||
#| echo: false
|
||||
#| classes: plain
|
||||
|
||||
Markdown(tabulate(
|
||||
[
|
||||
[
|
||||
n,
|
||||
"$" + sympy.latex(poly) + "$",
|
||||
k,
|
||||
int(poly.coeff(z, k)), # type: ignore
|
||||
]
|
||||
for n, k in zip(range(4, 8), range(3, -1, -1))
|
||||
for poly in [sympy.chebyshevu_poly(n - 1, z / 2) if n > 0 else sympy.sympify(0)]
|
||||
],
|
||||
headers=[
|
||||
"*n*",
|
||||
"$[x^n]B(x; z / 2)$",
|
||||
"*k*",
|
||||
"$[z^{k}][x^n]B(x; z / 2)$",
|
||||
],
|
||||
numalign="left",
|
||||
stralign="left",
|
||||
))
|
||||
```
|
||||
|
||||
The last column looks like an alternating row of Pascal's triangle
|
||||
(namely, ${n - \lfloor {k / 2} \rfloor - 1 \choose k}(-1)^k$).
|
||||
This resemblance can be made more apparent by listing the coefficients of the polynomials in a table.
|
||||
|
||||
```{python}
|
||||
#| echo: false
|
||||
#| classes: plain
|
||||
|
||||
rainbow_classes = [
|
||||
"",
|
||||
"red",
|
||||
"orange",
|
||||
"yellow",
|
||||
"green",
|
||||
"cyan",
|
||||
"aqua",
|
||||
"blue",
|
||||
"purple"
|
||||
"",
|
||||
"",
|
||||
]
|
||||
|
||||
rainbow_class = lambda x, color: f"<span style=\"color: {rainbow_classes[color]}\">{x}</span>"
|
||||
|
||||
Markdown(tabulate(
|
||||
[
|
||||
[
|
||||
n,
|
||||
*[" " for _ in range(1, 11 - n)], # offset for terms of the polynomial
|
||||
*[
|
||||
0 if k % 2 == 1
|
||||
else rainbow_class(
|
||||
comb(n - (k // 2) - 1, k // 2) * (-1)**(k // 2),
|
||||
n - (k // 2) - 1,
|
||||
)
|
||||
for k in range(n)
|
||||
]
|
||||
]
|
||||
for n in range(1, 11)
|
||||
],
|
||||
headers=[
|
||||
"n",
|
||||
*[f"$z^{nm}$" for nm in reversed(range(2, 10))],
|
||||
"$z$",
|
||||
"$1$",
|
||||
],
|
||||
numalign="right",
|
||||
stralign="right",
|
||||
))
|
||||
```
|
||||
|
||||
Though they alternate in sign, the rows of Pascal's triangle appear along diagonals,
|
||||
which I have marked in rainbow.
|
||||
Meanwhile, alternating versions of the naturals (1, 2, 3, 4...),
|
||||
the triangular numbers (1, 3, 6, 10...),
|
||||
the tetrahedral numbers (1, 4, 10, 20...), etc.
|
||||
are present along the columns, albeit spaced out by 0's.
|
||||
|
||||
The relationship of the Chebyshev polynomials to the triangle is easier to see if
|
||||
the coefficient extraction of $B(x; z / 2)$ is reversed.
|
||||
In other words, we extract *z* before extracting *x*.
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
B(x; z / 2) &= {x \over 1 - zx + x^2}
|
||||
= {x \over 1 + x^2 - zx}
|
||||
= {x \over 1 + x^2}
|
||||
\cdot {1 \over {1 + x^2 \over 1 + x^2} - z{x \over 1 + x^2}}
|
||||
\\[10pt]
|
||||
[z^n]B(x; z / 2) &= {x \over 1 + x^2} [z^n] {1 \over 1 - z{x \over 1 + x^2}}
|
||||
= {x \over 1 + x^2} \left( {x \over 1 + x^2} \right)^n
|
||||
\\
|
||||
&= \left( {x \over 1 + x^2} \right)^{n+1}
|
||||
= x^{n+1} (1 + x^2)^{-n - 1}
|
||||
\\
|
||||
&= x^{n+1} \sum_{k=0}^\infty {-n - 1 \choose k}(x^2)^k
|
||||
\quad \text{Binomial theorem}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
While the use of the binomial theorem is more than enough to justify
|
||||
the appearance of Pascal's triangle (along with explaining the 0's),
|
||||
I'll simplify further to explicitly show the alternating signs.
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
{(-n - 1)_k} &= (-n - 1)(-n - 2) \cdots (-n - k)
|
||||
\\
|
||||
&= (-1)^k (n + k)(n + k - 1) \cdots (n + 1)
|
||||
\\
|
||||
&= (-1)^k (n + k)_k
|
||||
\\
|
||||
\implies {-n - 1 \choose k}
|
||||
&= {n + k \choose k}(-1)^k
|
||||
\\[10pt]
|
||||
[z^n]B(x; z / 2)
|
||||
&= x^{n+1} \sum_{k=0}^\infty {n + k \choose k} (-1)^k x^{2k}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Squinting hard enough, the binomial coefficient is similar to the earlier
|
||||
which gave the third row of Pascal's triangle.
|
||||
If k is fixed, then this expression actually generates the antidiagonal entries
|
||||
of the coefficient table, which are the columns with uniform sign.
|
||||
The alternation instead occurs between antidiagonals (one is all positive,
|
||||
the next is 0's, the next is all negative, etc.).
|
||||
The initial $x^{n+1}$ lags these sequences so that they reproduce the triangle.
|
||||
|
||||
|
||||
### Imagined Transmutation
|
||||
|
||||
The generating function of the Chebyshev polynomials resembles other two term recurrences.
|
||||
For example, the Fibonacci numbers have generating function
|
||||
|
||||
$$
|
||||
\sum_{n = 0}^\infty \text{Fib}_n x^n = {1 \over 1 - x - x^2}
|
||||
$$
|
||||
|
||||
This resemblance can be made explicit with a simple algebraic manipulation.
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
B(ix; -iz / 2)
|
||||
&= {1 \over 1 -\ (-i z)(ix) + (ix)^2}
|
||||
= {1 \over 1 -\ (-i^2) z x + (i^2)(x^2)}
|
||||
\\
|
||||
&= {1 \over 1 -\ z x -\ x^2}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
If $z = 1$, these two generating functions are equal.
|
||||
The same can be said for $z = 2$ with the generating function of the Pell numbers,
|
||||
and so on for higher recurrences (corresponding to metallic means) for higher integral *z*.
|
||||
|
||||
In terms of the Chebyshev polynomials, this series manipulation removes the alternation in
|
||||
the coefficients of $U_n$, restoring Pascal's triangle to its nonalternating form.
|
||||
Related to the previous point, it is possible to find the Fibonacci numbers (Pell numbers, etc.)
|
||||
in Pascal's triangle, which you can read more about
|
||||
[here](http://users.dimi.uniud.it/~giacomo.dellariccia/Glossary/Pascal/Koshy2011.pdf).
|
||||
|
||||
|
||||
Manipulating the Series
|
||||
-----------------------
|
||||
|
||||
Look back to the table of $U_{n - 1}(z / 2)$ (@tbl-chebyshevu).
|
||||
When I brought up $U_{10 - 1}(z / 2)$ and decagons, I pointed out their relationship to pentagons
|
||||
as an explanation for why $U_{5 -\ 1}(z / 2)$ appears as a factor.
|
||||
Conveniently, $U_{2 -\ 1}(z / 2) = z$ is also a factor, and 2 is likewise a factor of 10.
|
||||
|
||||
This pattern is present throughout the table; $n = 6$ contains factors for
|
||||
$n = 2 \text{ and } 3$ and the prime numbers have no smaller factors.
|
||||
If this observation is legitimate, call the newest term $f_n(z)$
|
||||
and denote $p_n(z) = U_{n -\ 1}( z / 2 )$.
|
||||
|
||||
|
||||
### Factorization Attempts
|
||||
|
||||
The relationship between $p_n$ and the intermediate $f_d$, where *d* is a divisor of *n*,
|
||||
can be made explicit by a [Möbius inversion](https://en.wikipedia.org/wiki/M%C3%B6bius_inversion_formula).
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
p_n(z) &= \prod_{d|n} f_n(z)
|
||||
\\
|
||||
\log( p_n(z) )
|
||||
&= \log \left( \prod_{d|n} f_d(z) \right)
|
||||
= \sum_{d|n} \log( f_d(z) )
|
||||
\\
|
||||
\log( f_n(z) ) &= \sum_{d|n} { \mu \left({n \over d} \right)}
|
||||
\log( p_d(z) )
|
||||
\\
|
||||
f_n(z) &= \prod_{d|n} p_d(z)^{ \mu (n / d) }
|
||||
\\[10pt]
|
||||
f_6(z) = g_6(z)
|
||||
&= p_6(z)^{\mu(1)}
|
||||
p_3(z)^{\mu(2)}
|
||||
p_2(z)^{\mu(3)}
|
||||
\\
|
||||
&= {p_6(z) \over p_3(z) p_2(z)}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Unfortunately, it's difficult to apply this technique across our whole series.
|
||||
Möbius inversion over series typically uses more advanced generating functions such as
|
||||
[Dirichlet series](https://en.wikipedia.org/wiki/Dirichlet_series#Formal_Dirichlet_series)
|
||||
or [Lambert series](https://en.wikipedia.org/wiki/Lambert_series).
|
||||
However, naively reaching for these fails for two reasons:
|
||||
|
||||
- We built our series of polynomials on a recurrence relation, and these series
|
||||
are opaque to such manipulations.
|
||||
- To do a proper Möbius inversion, we need these kinds of series over the *logarithm*
|
||||
of each polynomial (*B* is a series over the polynomials themselves).
|
||||
|
||||
Ignoring these (and if you're in the mood for awful-looking math) you may note
|
||||
the Lambert equivalence[^2]:
|
||||
|
||||
[^2]:
|
||||
This equivalence applies to other polynomial series obeying the same factorization rule
|
||||
such as the [cyclotomic polynomials](https://en.wikipedia.org/wiki/Cyclotomic_polynomial).
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
\log( p_n(z) )
|
||||
&= \sum_{d|n} \log( f_d(z) )
|
||||
\\
|
||||
\sum_{n = 1}^\infty \log( p_n ) x^n
|
||||
&= \sum_{n = 1}^\infty \sum_{d|n} \log( f_d ) x^n
|
||||
\\
|
||||
&= \sum_{k = 1}^\infty \sum_{m = 1}^\infty \log( f_m ) x^{m k}
|
||||
\\
|
||||
&= \sum_{m = 1}^\infty \log( f_m ) \sum_{k = 1}^\infty (x^m)^k
|
||||
\\
|
||||
&= \sum_{m = 1}^\infty \log( f_m ) {x^m \over 1 - x^m}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Either way, the number-theoretic properties of this sequence are difficult to ascertain
|
||||
without advanced techniques.
|
||||
If research has been done, it is not easily available in the OEIS.
|
||||
|
||||
|
||||
### Total Degrees
|
||||
|
||||
It can be also be observed that the new term is symmetric ($f(z) = f(-z)$), and is therefore
|
||||
either irreducible or the product of polynomial and its reflection (potentially negated).
|
||||
For example,
|
||||
|
||||
$$
|
||||
p_9(z) = \left\{
|
||||
\begin{matrix}
|
||||
(z - 1)(z + 1)
|
||||
& \cdot
|
||||
& (z^3 - 3z - 1)(z^3 - 3z + 1)
|
||||
\\
|
||||
\shortparallel && \shortparallel
|
||||
\\
|
||||
f_3(z)
|
||||
& \cdot
|
||||
& f_9(z)
|
||||
\\
|
||||
\shortparallel && \shortparallel
|
||||
\\
|
||||
g_3(z) \cdot g_3(-z)
|
||||
& \cdot
|
||||
& g_9(z) \cdot -g_9(-z)
|
||||
\end{matrix}
|
||||
\right.
|
||||
$$
|
||||
|
||||
These factor polynomials $g_n$ are the minimal polynomials of $2\cos( \pi / n )$.
|
||||
|
||||
Multiplying these minimal polynomials by their reflection can be observed in the Chebyshev polynomials
|
||||
for $n = 3, 5, 7, 9$, strongly implying that it occurs on the odd terms.
|
||||
Assuming this is true, we have
|
||||
|
||||
$$
|
||||
f_n(z) = \begin{cases}
|
||||
g_n(z) & \text{$n$ is even}
|
||||
\\
|
||||
g_n(z)g_n(-z)
|
||||
& \text{$n$ is odd and ${\deg(f_n) \over 2}$ is even}
|
||||
\\
|
||||
-g_n(z)g_n(-z)
|
||||
& \text{$n$ is odd and ${\deg(f_n) \over 2}$ is odd}
|
||||
\end{cases}
|
||||
$$
|
||||
|
||||
Without resorting to any advanced techniques, the degrees of $f_n$ are
|
||||
not too difficult to work out.
|
||||
The degree of $p_n(z)$ is $n -\ 1$, which is also the degree of $f_n(z)$ if *n* is prime.
|
||||
If *n* is composite, then the degree of $f_n(z)$ is $n -\ 1$ minus the degrees
|
||||
of the divisors of $n -\ 1$.
|
||||
This leaves behind how many numbers less than *n* are coprime to *n*.
|
||||
Therefore $\deg(f_n) = \phi(n)$, the
|
||||
[Euler totient function](https://en.wikipedia.org/wiki/Euler_totient_function) of the index.
|
||||
|
||||
The totient function can be used to examine the parity of *n*.
|
||||
If *n* is odd, it is coprime to 2 and all even numbers.
|
||||
The introduced factor of 2 to 2*n* removes the evens from the totient, but this is compensated by
|
||||
the addition of the odd multiples of old numbers coprime to *n* and new primes.
|
||||
This means that $\phi(2n) = \phi(n)$ for odd *n* (other than 1).
|
||||
|
||||
The same argument can be used for even *n*: there are as many odd numbers from 0 to *n* as there are
|
||||
from *n* to 2*n*, and there are an equal number of numbers coprime to 2*n* in either interval.
|
||||
Therefore, $\phi(2n) = 2\phi(n)$ for even *n*.
|
||||
|
||||
This collapses all cases of the conditional factorization of $f_n$ into one,
|
||||
and the degrees of $g_n$ are
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
\deg( g_n(z) )
|
||||
&= \begin{cases}
|
||||
\deg( f_n(z) )
|
||||
= \phi(n)
|
||||
& n \text{ is even} & \implies \phi(n) = \phi(2n) / 2
|
||||
\\
|
||||
\deg( f_n(z) ) / 2
|
||||
= \phi(n) / 2
|
||||
& n \text{ is odd} & \implies \phi(n) / 2 = \phi(2n) / 2
|
||||
\end{cases}
|
||||
\\
|
||||
&= \varphi(2n) / 2
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Though they were present in the earlier Chebyshev table,
|
||||
the $g_n$ themselves are presented again, along with the expression for their degree
|
||||
|
||||
```{python}
|
||||
#| echo: false
|
||||
#| classes: plain
|
||||
|
||||
def poly_to_rising_power_list(poly, var):
|
||||
"""
|
||||
Convert a polynomial to a list in rising powers.
|
||||
E.g., x^2 + x - 1 will be converted to [-1, 1, 1].
|
||||
"""
|
||||
ret = []
|
||||
for term in reversed(poly.as_ordered_terms()):
|
||||
deg = sympy.degree(term, var)
|
||||
if deg > len(ret):
|
||||
ret.extend(0 for _ in range(int(deg) - len(ret)))
|
||||
|
||||
if deg == 0:
|
||||
ret.append(term)
|
||||
else:
|
||||
ret.append(term.coeff(z**deg))
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
Markdown(tabulate(
|
||||
[
|
||||
[
|
||||
n,
|
||||
sympy.totient(2*n) / 2,
|
||||
"$" + sympy.latex(g) + "$",
|
||||
str(poly_to_rising_power_list(g, z)),
|
||||
]
|
||||
for n in range(2, 11)
|
||||
for g in [
|
||||
factor # the first factor polynomial with matching degree and negative second term
|
||||
for factor in sympy.chebyshevu_poly(n - 1, z / 2).factor(z).as_ordered_factors() # type: ignore
|
||||
for second_term in [
|
||||
0 if len(factor.as_ordered_terms()) == 1 # if there's only one term, pass it through
|
||||
else factor.as_ordered_terms()[1].as_ordered_factors()[0] # type: ignore
|
||||
] if n == 2
|
||||
or (
|
||||
sympy.degree(factor) == sympy.totient(2*n) / 2
|
||||
and isinstance(second_term, sympy.Integer)
|
||||
and second_term < 0
|
||||
)
|
||||
]
|
||||
] + [[
|
||||
"-",
|
||||
"[OEIS A055034](http://oeis.org/A055034)",
|
||||
"-",
|
||||
"[OEIS A187360](http://oeis.org/A187360)",
|
||||
]],
|
||||
headers=[
|
||||
"n",
|
||||
"$\\varphi(2n)/2$",
|
||||
"$g_n(z)$",
|
||||
"Coefficient list, rising powers",
|
||||
],
|
||||
numalign="right",
|
||||
stralign="left",
|
||||
))
|
||||
```
|
||||
|
||||
|
||||
Closing
|
||||
-------
|
||||
|
||||
My initial jumping off point for writing this article was completely different.
|
||||
However, in the process of writing, its share of the article shrank and shrank until its
|
||||
introduction was only vaguely related to what preceded it.
|
||||
But alas, the introduction via geometric constructions flows better coming off my
|
||||
[post about the Platonic solids](/posts/math/misc/platonic-volume).
|
||||
Also, it reads better if I rely less on "if you search for this sequence of numbers"
|
||||
and more on how to interpret the definition.
|
||||
|
||||
Consider reading [the follow-up](../2) to this post if you're interested in another way
|
||||
one can obtain the Chebyshev polynomials.
|
||||
I have since rederived the Chebyshev polynomials without the complex exponential,
|
||||
which you can read about in [this post](/posts/math/stereo/2).
|
||||
|
||||
Diagrams created with GeoGebra.
|
||||
793
posts/math/chebyshev/2/index.qmd
Normal file
@ -0,0 +1,793 @@
|
||||
---
|
||||
title: "Generating Polynomials, Part 2: Ghostly Chains"
|
||||
description: |
|
||||
What do polygons without distance still know about planar geometry?
|
||||
format:
|
||||
html:
|
||||
html-math-method: katex
|
||||
date: "2021-08-19"
|
||||
date-modified: "2025-06-24"
|
||||
categories:
|
||||
- algebra
|
||||
- linear algebra
|
||||
- generating functions
|
||||
- graph theory
|
||||
- python
|
||||
---
|
||||
|
||||
<style>
|
||||
.figure-img {
|
||||
max-width: 512px;
|
||||
object-fit: contain;
|
||||
height: 100%;
|
||||
}
|
||||
|
||||
.figure-img.wide {
|
||||
max-width: 768px;
|
||||
}
|
||||
</style>
|
||||
|
||||
In the [previous post](../1), I tied the geometry regular polygons to a sequence of polynomials
|
||||
though some clever algebraic manipulation.
|
||||
But let's deign to ask a very basic question: what is a polygon?
|
||||
|
||||
|
||||
Loops without Distance
|
||||
----------------------
|
||||
|
||||
Fundamentally, a polygon is just a collection of vertices and edges.
|
||||
For polygons in a Euclidean setting, the position of points matters,
|
||||
as well as the lines connecting them -- a rectangle is different from a trapezoid or a kite.
|
||||
But at its simplest, this is just a tabulation of points and adjacencies.
|
||||
|
||||

|
||||
|
||||
Only examining these figures by their connectedness is precisely the kind of thing
|
||||
*graph theory* deals with.
|
||||
"Graph" is a potentially confusing term, since it has nothing to do with "graphs of functions",
|
||||
but the name is supposed to evoke the fact that they are "drawings".
|
||||
For the graphs we're interested in, there's some additional terminology:
|
||||
|
||||
- Vertices themselves are sometimes instead called *nodes*
|
||||
- Edge in the graph have no direction in how they connect nodes, so the graph is called *undirected*.
|
||||
- If the nodes in a graph can be arranged so that no edges appear to intersect,
|
||||
the graph is *planar*.
|
||||
- For example, lower-right figure in the above diagram appears to have intersecting edges,
|
||||
but the nodes can be rearranged to look like the other graphs, so it is planar.
|
||||
|
||||
It's easiest to study families of graphs, rather than isolated examples.
|
||||
If the graph is a simple loop of nodes, it is called a
|
||||
[*cycle graph*](https://en.wikipedia.org/wiki/Cycle_graph).
|
||||
They are denoted by $C_n$, where *n* is the number of nodes.
|
||||
In a cycle graph, since all nodes are identical to each other (they all connect to two edges)
|
||||
and all edges are identical to each other (they connect identical vertices),
|
||||
the best geometric interpretation is a shape which is
|
||||
|
||||
- Regular, so that each edge and each angle (vertex) are of equal measure
|
||||
- Convex, so that no edge meets another without creating a vertex (or node)
|
||||
|
||||
In other words, $C_3$ is analogous to an equilateral triangle, $C_4$ is analogous to a square, and so on.
|
||||
|
||||
|
||||
### Encoding Graphs
|
||||
|
||||
There are two primary ways to store information about a graph.
|
||||
The first is by labelling each node (for example, with integers), then recording the edges as
|
||||
a list of pairs of connected nodes.
|
||||
In the case of an undirected graph, these are unordered pairs.
|
||||
While such a list is convenient, it doesn't convey a lot of information about the graph
|
||||
besides the number of edges.
|
||||
|
||||
Alternatively, these pairs can also be interpreted as addresses in a square matrix,
|
||||
called an *adjacency matrix*.
|
||||
Each column and row correspond to a specific node, and an entry is 1
|
||||
when the nodes of a row and column of are joined by an edge (and 0 otherwise).
|
||||
For undirected graphs, these matrices are symmetric, since it is possible
|
||||
to traverse an edge in either direction.
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
C_3 := \begin{matrix}[
|
||||
(0, 1), \\
|
||||
(1, 2), \\
|
||||
(2, 0)
|
||||
]\end{matrix} & \cong
|
||||
\begin{pmatrix}
|
||||
0 & 1 & 1 \\
|
||||
1 & 0 & 1 \\
|
||||
1 & 1 & 0
|
||||
\end{pmatrix}
|
||||
\\ \\
|
||||
C_4 := \begin{matrix} [
|
||||
(0, 1), \\
|
||||
(1, 2), \\
|
||||
(2, 3), \\
|
||||
(3, 0)
|
||||
]\end{matrix} & \cong
|
||||
\begin{pmatrix}
|
||||
0 & 1 & 0 & 1 \\
|
||||
1 & 0 & 1 & 0 \\
|
||||
0 & 1 & 0 & 1 \\
|
||||
1 & 0 & 1 & 0
|
||||
\end{pmatrix}
|
||||
\\ \\
|
||||
C_5 := \begin{matrix}[
|
||||
(0, 1), \\
|
||||
(1, 2), \\
|
||||
(2, 3), \\
|
||||
(3, 4), \\
|
||||
(4, 0)
|
||||
]\end{matrix} &\cong
|
||||
\begin{pmatrix}
|
||||
0 & 1 & 0 & 0 & 1 \\
|
||||
1 & 0 & 1 & 0 & 0 \\
|
||||
0 & 1 & 0 & 1 & 0 \\
|
||||
0 & 0 & 1 & 0 & 1 \\
|
||||
1 & 0 & 0 & 1 & 0
|
||||
\end{pmatrix}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Swapping the labels on two nodes is will exchange two rows and two columns
|
||||
of the adjacency matrix.
|
||||
Just one of these swaps would flip the sign of its determinant, but since they occur in pairs,
|
||||
the determinant is invariant of the labelling (equally, a graph invariant).
|
||||
|
||||
|
||||
Prismatic Recurrence
|
||||
--------------------
|
||||
|
||||
The determinant of a matrix is also the product of its eigenvalues, which are another matrix invariant.
|
||||
The set of eigenvalues is also called its *spectrum*, and the study of the spectra of graphs is called
|
||||
[*spectral graph theory*](https://en.wikipedia.org/wiki/Spectral_graph_theory)[^1],
|
||||
|
||||
[^1]: It is also among the most mystifying names in math to read without any context
|
||||
|
||||
Eigenvalues are the roots of the characteristic polynomial of a matrix.
|
||||
The matrix $C_5$ is sufficiently large enough to generalize to $C_n$, and its characteristic polynomial by
|
||||
[Laplace expansion](https://en.wikipedia.org/wiki/Laplace_expansion) is:
|
||||
|
||||
$$
|
||||
\begin{gather*}
|
||||
Ax = \lambda x \implies (\lambda I - A)x = 0
|
||||
\\ \\
|
||||
c_5(\lambda) = |\lambda I - C_5|
|
||||
= \left |
|
||||
\begin{matrix}
|
||||
\lambda & -1 & 0 & 0 & -1 \\
|
||||
-1 & \lambda & -1 & 0 & 0 \\
|
||||
0 & -1 & \lambda & -1 & 0 \\
|
||||
0 & 0 & -1 & \lambda & -1 \\
|
||||
-1 & 0 & 0 & -1 & \lambda
|
||||
\end{matrix}
|
||||
\right |
|
||||
\\
|
||||
= \lambda m_{1,1}
|
||||
+ \overbrace{(-1)}^\text{entry}\overbrace{(-1)^{1 + 2 \ }}^\text{sign} m_{1, 2}
|
||||
+ \overbrace{(-1)}^\text{entry}\overbrace{(-1)^{1 + 5 \ }}^\text{sign} m_{1, 5}
|
||||
\end{gather*}
|
||||
$$
|
||||
|
||||
Note that every occurrence of "5" generalizes to higher *n*.
|
||||
The first [minor](https://en.wikipedia.org/wiki/Matrix_minor)
|
||||
is easily expressed in terms of *another* matrix's characteristic polynomial.
|
||||
|
||||
$$
|
||||
m_{1, 1}[C_5]
|
||||
= \left |
|
||||
\begin{matrix}
|
||||
\lambda & -1 & 0 & 0 \\
|
||||
-1 & \lambda & -1 & 0 \\
|
||||
0 & -1 & \lambda & -1 \\
|
||||
0 & 0 & -1 & \lambda
|
||||
\end{matrix}
|
||||
\right |
|
||||
= |\lambda I - P_4| = p_{5 - 1}(\lambda)
|
||||
$$
|
||||
|
||||
We will come to the meaning of the $P_n$ in a moment.
|
||||
The other minors require extra expansions, but ones that (thankfully) quickly terminate.
|
||||
|
||||
$$
|
||||
\begin{matrix}
|
||||
m_{1, 2}[C_5]
|
||||
&= \left |
|
||||
\begin{matrix}
|
||||
-1 & -1 & 0 & 0 \\
|
||||
0 & \lambda & -1 & 0 \\
|
||||
0 & -1 & \lambda & -1 \\
|
||||
-1 & 0 & -1 & \lambda
|
||||
\end{matrix}
|
||||
\right |
|
||||
&=& (-1)
|
||||
\left |
|
||||
\begin{matrix}
|
||||
\lambda & -1 & 0 \\
|
||||
-1 & \lambda & -1 \\
|
||||
0 & -1 & \lambda
|
||||
\end{matrix}
|
||||
\right |
|
||||
&+& (-1)(-1)^{1 + 4}
|
||||
\left |
|
||||
\begin{matrix}
|
||||
-1 & 0 & 0 \\
|
||||
\lambda & -1 & 0 \\
|
||||
-1 & \lambda & -1
|
||||
\end{matrix}
|
||||
\right |
|
||||
\\
|
||||
&&=& (-1)|\lambda I - P_3|
|
||||
&+& (-1)\overbrace{(-1)^{5}(-1)^{5 - 2}}^{\text{even power, even when $\scriptsize n \neq 5$}}
|
||||
\\
|
||||
&&=& (-1)p_{5 - 2}(\lambda) &+& (-1)
|
||||
\\
|
||||
&&=& -(p_{5 - 2}(\lambda) &+& 1)
|
||||
\end{matrix}
|
||||
$$
|
||||
|
||||
The "1 + 4" exponent when evaluating this minor comes from the address of the lower-left -1, (i.e., (1, 4)).
|
||||
This entry exists for all $C_n$.
|
||||
The determinant of the rightmost matrix is just the product of the -1's on the diagonal, so it will always
|
||||
have a power of the same parity as *n*, which cancels out with the sign of the minor.
|
||||
Meanwhile, another $P$-type matrix appears in the other term, this time of two lower orders.
|
||||
|
||||
$$
|
||||
\begin{matrix}
|
||||
\\ \\
|
||||
m_{1, 5}[C_5] &=
|
||||
\left |
|
||||
\begin{matrix}
|
||||
-1 & \lambda & -1 & 0 \\
|
||||
0 & -1 & \lambda & -1 \\
|
||||
0 & 0 & -1 & \lambda \\
|
||||
-1 & 0 & 0 & -1
|
||||
\end{matrix}
|
||||
\right |
|
||||
&=& (-1)
|
||||
\left |
|
||||
\begin{matrix}
|
||||
-1 & \lambda & -1 \\
|
||||
0 & -1 & \lambda \\
|
||||
0 & 0 & -1
|
||||
\end{matrix}
|
||||
\right |
|
||||
&+& (-1)(-1)^{5 - 2}
|
||||
\left |
|
||||
\begin{matrix}
|
||||
\lambda & -1 & 0 \\
|
||||
-1 & \lambda & -1 \\
|
||||
0 & -1 & \lambda
|
||||
\end{matrix}
|
||||
\right |
|
||||
\\
|
||||
&&=& (-1)(-1)^{5-2} &+& (-1)(-1)^{5 - 2}|\lambda I - P_3|
|
||||
\\
|
||||
&&=& (-1)^{5-1}((-1)(-1) &+& (-1)(-1)p_{5 - 2}(\lambda))
|
||||
\\
|
||||
&&=& (-1)^{5-1}(1 &+& p_{5 - 2}(\lambda))
|
||||
\end{matrix}
|
||||
$$
|
||||
|
||||
A third $P$-type matrix appears, just like the other minor.
|
||||
Unfortunately, this minor *does* depend on the parity of *n*.
|
||||
|
||||
All together, this produces a characteristic polynomial in terms of the polynomials $p_n(\lambda)$:
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
&& c_5(\lambda) &= \lambda p_{5 - 1}
|
||||
+ (-1)(p_{5 - 2} + 1)
|
||||
+ (-1)\overbrace{(-1)^{5 - 1} (-1)^{5 - 1}}^{\text{even, even when $\scriptsize n \neq 5$}}(p_{5 - 2} + 1)
|
||||
\\
|
||||
&&&= \lambda p_{5 - 1}
|
||||
- (p_{5 - 2} + 1)
|
||||
- (p_{5 - 2} + 1)
|
||||
\\
|
||||
&&&= \lambda p_{5 - 1}
|
||||
- 2(p_{5 - 2} + 1)
|
||||
\\
|
||||
&& \implies c_n(\lambda) &= \lambda p_{n - 1}(\lambda)
|
||||
- 2(p_{n - 2}(\lambda) + 1)
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Fortunately, the minor whose determinant depended on the parity of *n* cancels with $(-1)^{1 + 5}$,
|
||||
and the resulting expression seems to generically apply across all *n*.
|
||||
Further, this resembles a recurrence relation, which is great for building a rule.
|
||||
But it is meaningless without knowing $p_n(\lambda)$.
|
||||
|
||||
|
||||
Powerful Chains
|
||||
---------------
|
||||
|
||||
The various $P_n$ are in fact the adjacency matrices of a path on *n* nodes.
|
||||
|
||||
{.wide}
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
P_2 &:=
|
||||
\begin{matrix}[
|
||||
(0, 1)
|
||||
]\end{matrix}
|
||||
\cong \begin{pmatrix}
|
||||
0 & 1 \\
|
||||
1 & 0
|
||||
\end{pmatrix}
|
||||
\\
|
||||
P_3 &:=
|
||||
\begin{matrix}[
|
||||
(0, 1), \\
|
||||
(1, 2)
|
||||
]\end{matrix}
|
||||
\cong \begin{pmatrix}
|
||||
0 & 1 & 0 \\
|
||||
1 & 0 & 1 \\
|
||||
0 & 1 & 0
|
||||
\end{pmatrix}
|
||||
\\
|
||||
P_4 &:=
|
||||
\begin{matrix}[
|
||||
(0, 1), \\
|
||||
(1, 2), \\
|
||||
(2, 3)
|
||||
]\end{matrix}
|
||||
\cong \begin{pmatrix}
|
||||
0 & 1 & 0 & 0 \\
|
||||
1 & 0 & 1 & 0 \\
|
||||
0 & 1 & 0 & 1 \\
|
||||
0 & 0 & 1 & 0
|
||||
\end{pmatrix}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
These matrices are similar to the ones for cycle graphs, but lack the entries in bottom-left
|
||||
and upper-right corners.
|
||||
Consequently, the characteristic polynomials of $P_n$ are much easier to solve for.
|
||||
|
||||
$$
|
||||
\begin{gather*}
|
||||
p_4(\lambda) = |\lambda I - P_4|
|
||||
= \left |
|
||||
\begin{matrix}
|
||||
\lambda & -1 & 0 & 0 \\
|
||||
-1 & \lambda & -1 & 0 \\
|
||||
0 & -1 & \lambda & -1 \\
|
||||
0 & 0 & -1 & \lambda
|
||||
\end{matrix}
|
||||
\right |
|
||||
\\ \\
|
||||
= \lambda \left |
|
||||
\begin{matrix}
|
||||
\lambda & -1 & 0 \\
|
||||
-1 & \lambda & -1 \\
|
||||
0 & -1 & \lambda
|
||||
\end{matrix}
|
||||
\right | + (-1)(-1)^{1+2} \left |
|
||||
\begin{matrix}
|
||||
-1 & -1 & 0 \\
|
||||
0 & \lambda & -1 \\
|
||||
0 & -1 & \lambda
|
||||
\end{matrix}
|
||||
\right |
|
||||
\\ \\
|
||||
= \lambda |\lambda I - P_3| + \left (
|
||||
(-1) \left |
|
||||
\begin{matrix}
|
||||
\lambda & -1 \\
|
||||
-1 & \lambda
|
||||
\end{matrix}
|
||||
\right |
|
||||
+ (-1)(-1) \left |
|
||||
\begin{matrix}
|
||||
0 & -1 \\
|
||||
0 & \lambda
|
||||
\end{matrix}
|
||||
\right |
|
||||
\right)
|
||||
\\ \\
|
||||
= \lambda |\lambda I - P_3| - |\lambda I - P_2|
|
||||
\\
|
||||
= \lambda p_{4 - 1}(\lambda) - p_{4 - 2}(\lambda)
|
||||
\\
|
||||
\implies p_{n}(\lambda) = \lambda p_{n - 1}(\lambda) - p_{n - 2}(\lambda)
|
||||
\end{gather*}
|
||||
$$
|
||||
|
||||
While the earlier equation for $c_n$ in terms of $p_n$ reminded of a recurrence relation,
|
||||
*this* actually is one (and it should look familiar).
|
||||
|
||||
Since the recurrence has order 2, it requires two initial terms: $p_0$ and $p_1$.
|
||||
The graph corresponding to $p_1$ is a single node, not connected to anything.
|
||||
Therefore, its adjacency matrix is a 1x1 matrix with 0 as its only entry,
|
||||
and its characteristic polynomial is $\lambda$.
|
||||
By the recurrence, $p_2 = \lambda p_1 -\ p_0 = \lambda^2 -\ p_0$.
|
||||
Equating terms with the characteristic polynomial of $P_2$, it is obvious that
|
||||
|
||||
$$
|
||||
|\lambda I - P_2|
|
||||
= \begin{pmatrix}
|
||||
\lambda & -1 \\
|
||||
-1 & \lambda
|
||||
\end{pmatrix}
|
||||
= \lambda^2 - 1 = \lambda p_1 - p_0 \\
|
||||
\implies p_0 = 1
|
||||
$$
|
||||
|
||||
which makes sense, since $p_0$ should have degree zero.
|
||||
Therefore, the sequence of polynomials $p_n(\lambda)$ is:
|
||||
|
||||
$$
|
||||
\begin{gather*}
|
||||
p_0(\lambda) &=&& && 1
|
||||
\\
|
||||
p_1(\lambda) &=&& && \lambda
|
||||
\\
|
||||
p_2(\lambda) &=&& \lambda \lambda - 1
|
||||
&=& \lambda^2 - 1
|
||||
\\
|
||||
p_3(\lambda) &=&& \lambda (\lambda^2 - 1) - \lambda
|
||||
&=& \lambda(\lambda^2 - 2)
|
||||
\\
|
||||
p_4(\lambda) &=&& \lambda (\lambda(\lambda^2 - 2)) - (\lambda^2 - 1)
|
||||
&=& \lambda^4 - 3\lambda^2 + 1
|
||||
\\
|
||||
\vdots & && \vdots && \vdots
|
||||
\end{gather*}
|
||||
$$
|
||||
|
||||
But wait, we've seen these before (if you read the previous post, that is).
|
||||
These are just the Chebyshev polynomials of the second kind, evaluated at $\lambda / 2$.
|
||||
Indeed, their recurrence relations are identical, so the characteristic polynomial of $P_n$ is $U_n(\lambda / 2)$.
|
||||
Effectively, this connects an *n*-path to a regular *n+1*-gon.
|
||||
|
||||
|
||||
### Back to Cycles
|
||||
|
||||
Since the generating function of $U_n$ is known, the generating function for the $c_n$
|
||||
(which prompted this) is also easily determined.
|
||||
For ease of use, let
|
||||
|
||||
$$
|
||||
P(x; \lambda) = {B(x; \lambda / 2) \over x} = {1 \over 1 - \lambda x +\ x^2}
|
||||
$$
|
||||
|
||||
Discarding the initial $c_0$ and $c_1$ by setting them to zero[^2], the generating function is
|
||||
|
||||
[^2]: It's a good idea to ask why we can do this.
|
||||
Try examining $c_2$ and $c_3$.
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
c_{n+2}(\lambda) &= \lambda p_{n+1}(\lambda) - 2(p_n(\lambda) + 1)
|
||||
\\[14pt]
|
||||
{C(x; \lambda) - c_0(\lambda) - x c_1(\lambda) \over x^2}
|
||||
&= \lambda \left( {P(x; \lambda) - 1 \over x} \right)
|
||||
- 2\left( P(x; \lambda) + {1 \over 1 - x} \right)
|
||||
\\
|
||||
C &= x \lambda (P - 1) -\
|
||||
2x^2\left( P + {1 \over 1 - x} \right)
|
||||
\\
|
||||
C{(1 - x) \over P} &= x \lambda \left(1 - {1 \over P} \right)(1 - x) -\
|
||||
2x^2\left( (1 - x) + {1 \over P} \right)
|
||||
\\
|
||||
&= x^4 \lambda - 2 x^4 - x^3 \lambda^2 + x^3 \lambda
|
||||
+ 2 x^3 + x^2 \lambda^2 - 4 x^2
|
||||
\\
|
||||
&= x^2 (\lambda - 2) (x^2 - \lambda x - x + \lambda + 2)
|
||||
\\[14pt]
|
||||
C(x; \lambda) &= x^2 (\lambda - 2)
|
||||
{(x^2 - (\lambda + 1) x + \lambda + 2)
|
||||
\over (1 - x)(1 - \lambda x + x^2)}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
While the numerator is considerably more complicated than the one for P,
|
||||
the factor $\lambda - 2$ drops out of the entire series.
|
||||
This pleasantly informs that 2 is an eigenvalue of all $C_n$.
|
||||
|
||||
|
||||
Off the Beaten Path
|
||||
-------------------
|
||||
|
||||
When we use Laplace expansion on the adjacency matrices, we were very fortunate that the minors
|
||||
*also* looked like adjacency matrices undergoing expansion.
|
||||
This let us terminate early and recurse.
|
||||
From the perspective of the graph, Laplace expansion almost looks like removing a node,
|
||||
but requires special treatment for the nodes connected to the one being removed.
|
||||
For example, in cycle graphs, the first stage of expansion had three minors:
|
||||
|
||||
- The node itself, on the main diagonal
|
||||
- Being on the main diagonal, this immediately produced another adjacency matrix.
|
||||
- Either neighbor connected to it, which are on opposite sides of
|
||||
a path after the node is removed
|
||||
- Both of these nodes required second expansion to get the *λ*s back on the main diagonal.
|
||||
|
||||
For "good enough" graphs that are nearly paths (including paths themselves),
|
||||
this gives a second-order recurrence relation.
|
||||
|
||||
|
||||
### Trees
|
||||
|
||||
Another simple family of graphs are [*trees*](https://en.wikipedia.org/wiki/Tree_%28graph_theory%29).
|
||||
In some sense, they are the opposite of cycle graphs, since by definition they contain no cycles.
|
||||
|
||||
Paths are degenerate trees, but we can make them slightly more interesting by instead adding
|
||||
exactly one node and edge to (the middle of) a path.
|
||||
|
||||
{.wide}
|
||||
|
||||
In this notation, the subscripts denote the consituent paths if the "added" node and the
|
||||
one it is connected to are both removed.
|
||||
It's easy to see that $T_{a,b} \cong T_{a,b}$, since this just swaps the arms.
|
||||
Also, $T_{a, 0} \cong T_{0, a} \cong P_{a + 2}$.
|
||||
|
||||
Let's try dissecting some of the larger trees.
|
||||
The adjacency matrices for $T_{1,3}$ and $T_{2,2}$ are:
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
T_{1,3} := \begin{matrix}[
|
||||
(0, 1), \\
|
||||
(1, 2), \\
|
||||
(2, 3), \\
|
||||
(3, 4), \\
|
||||
(1, 5)
|
||||
]\end{matrix} &\cong
|
||||
\begin{pmatrix}
|
||||
0 & 1 & 0 & 0 & 0 & 0 \\
|
||||
1 & 0 & 1 & 0 & 0 & 1 \\
|
||||
0 & 1 & 0 & 1 & 0 & 0 \\
|
||||
0 & 0 & 1 & 0 & 1 & 0 \\
|
||||
0 & 0 & 0 & 1 & 0 & 0 \\
|
||||
0 & 1 & 0 & 0 & 0 & 0
|
||||
\end{pmatrix}
|
||||
\\ \\
|
||||
T_{2,2} := \begin{matrix}[
|
||||
(0, 1), \\
|
||||
(1, 2), \\
|
||||
(2, 3), \\
|
||||
(3, 4), \\
|
||||
(2, 5)
|
||||
]\end{matrix} &\cong
|
||||
\begin{pmatrix}
|
||||
0 & 1 & 0 & 0 & 0 & 0 \\
|
||||
1 & 0 & 1 & 0 & 0 & 0 \\
|
||||
0 & 1 & 0 & 1 & 0 & 1 \\
|
||||
0 & 0 & 1 & 0 & 1 & 0 \\
|
||||
0 & 0 & 0 & 1 & 0 & 0 \\
|
||||
0 & 0 & 1 & 0 & 0 & 0
|
||||
\end{pmatrix}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Starting with $T_{1,3}$, its characteristic polynomial is:
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
|I \lambda - T_{1,3}|
|
||||
&= \left |
|
||||
\begin{matrix}
|
||||
\lambda & -1 & 0 & 0 & 0 & 0 \\
|
||||
-1 & \lambda & -1 & 0 & 0 & -1 \\
|
||||
0 & -1 & \lambda & -1 & 0 & 0 \\
|
||||
0 & 0 & -1 & \lambda & -1 & 0 \\
|
||||
0 & 0 & 0 & -1 & \lambda & 0 \\
|
||||
0 & -1 & 0 & 0 & 0 & \lambda
|
||||
\end{matrix}
|
||||
\right |
|
||||
\\
|
||||
&= \lambda (-1)^{6 + 6} m_{6,6} + (-1) (-1)^{2 + 6} m_{2,6}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
It's easy to see that $m_{6,6}$ is just $p_5(\lambda)$, since the rest of the graph
|
||||
other than the additional node is a 5-path.
|
||||
But the other minor is trickier.
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
m_{2,6}
|
||||
&= \left |
|
||||
\begin{matrix}
|
||||
\lambda & -1 & 0 & 0 & 0 \\
|
||||
0 & -1 & \lambda & -1 & 0 \\
|
||||
0 & 0 & -1 & \lambda & -1 \\
|
||||
0 & 0 & 0 & -1 & \lambda \\
|
||||
0 & -1 & 0 & 0 & 0
|
||||
\end{matrix}
|
||||
\right |
|
||||
\\
|
||||
&= (-1) (-1)^{5 + 2}
|
||||
\left |
|
||||
\begin{matrix}
|
||||
\lambda & 0 & 0 & 0 \\
|
||||
0 & \lambda & -1 & 0 \\
|
||||
0 & -1 & \lambda & -1 \\
|
||||
0 & 0 & -1 & \lambda \\
|
||||
\end{matrix}
|
||||
\right |
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Through one extra expansion, the determinant of this final matrix can be written as
|
||||
a product of $\lambda$ and $p_3(\lambda)$.
|
||||
|
||||
Before making any conjectures, let's do the same thing to $T_{2,2}$.
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
|I \lambda - T_{2,2}|
|
||||
&= \left |
|
||||
\begin{matrix}
|
||||
\lambda & -1 & 0 & 0 & 0 & 0 \\
|
||||
-1 & \lambda & -1 & 0 & 0 & 0 \\
|
||||
0 & -1 & \lambda & -1 & 0 & -1 \\
|
||||
0 & 0 & -1 & \lambda & -1 & 0 \\
|
||||
0 & 0 & 0 & -1 & \lambda & 0 \\
|
||||
0 & 0 & -1 & 0 & 0 & \lambda
|
||||
\end{matrix}
|
||||
\right |
|
||||
\\
|
||||
&= (-1)^{6 + 6} \lambda m_{6,6} + (-1) (-1)^{3 + 6} m_{3,6}
|
||||
\\ \\
|
||||
m_{3,6}
|
||||
&= \left |
|
||||
\begin{matrix}
|
||||
\lambda & -1 & 0 & 0 & 0 \\
|
||||
-1 & \lambda & -1 & 0 & 0 \\
|
||||
0 & 0 & -1 & \lambda & -1 \\
|
||||
0 & 0 & 0 & -1 & \lambda \\
|
||||
0 & 0 & -1 & 0 & 0
|
||||
\end{matrix}
|
||||
\right |
|
||||
\\
|
||||
&= (-1) (-1)^{5 + 3}
|
||||
\left |
|
||||
\begin{matrix}
|
||||
\lambda & -1 & 0 & 0 \\
|
||||
-1 & \lambda & 0 & 0 \\
|
||||
0 & 0 & \lambda & -1 \\
|
||||
0 & 0 & -1 & \lambda \\
|
||||
\end{matrix}
|
||||
\right |
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Here we get something similar: a combination of $p_5(\lambda)$ and an extra term.
|
||||
In this case, the final determinant can be written as $p_2(\lambda)^2$.
|
||||
|
||||
Now it can be observed that the extra terms are the polynomials corresponding
|
||||
to $P_a$ and $P_b$ (recall that $p_1(\lambda) = \lambda$, after all).
|
||||
In both cases, the second expansion was necessary to get rid of the symmetric -1
|
||||
entries added to the matrix.
|
||||
The sign of this extra term is always negative, since the -1 entries cancel
|
||||
and one of the signs of the minors along the two expansions must be negative.
|
||||
|
||||
Therefore, the expression for these characteristic polynomials should be:
|
||||
|
||||
$$
|
||||
t_{a,b}(\lambda) = \lambda p_{a + b + 1}(\lambda) - p_a(z) p_b(\lambda)
|
||||
$$
|
||||
|
||||
Note that if *b* is 0, this agrees with the recurrence for $p_n(\lambda)$.
|
||||
|
||||
|
||||
### Examining Small Trees
|
||||
|
||||
Due to the subscript of the first term of the RHS, this recurrence is harder to turn into
|
||||
a generating function.
|
||||
Instead, let's look at a few smaller trees to see what kind of polynomials they build.
|
||||
We'll also change the variable of the polynomial to *z* for simplicity.
|
||||
|
||||
The first tree of note is $T_{1,1}$.
|
||||
This has characteristic polynomial
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
t_{1,1}(z) &= z p_{3}(z) - p_1(z) p_1(z)
|
||||
\\
|
||||
&= z (z^3 - z^2) - z^2
|
||||
\\
|
||||
&= z^2 (z^2 - 3)
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Next, we have both $T_{2,1}$ and $T_{1,2}$.
|
||||
By symmetry, these are the same graph, so we have characteristic polynomial
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
t_{1,2}(z) &= z p_{4}(z) - p_1(z) p_2(z)
|
||||
\\
|
||||
&= z (z^4 - 3z^2 + 2) - z \cdot (z^2 - 1)
|
||||
\\
|
||||
&= z (z^4 - 4z^2 + 2)
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Finally, let's look at $T_{1,3}$ and $T_{2,2}$, the trees we used to derive the rule.
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
t_{1,3}(z) &= z p_{5}(z) - p_1(z) p_3(z)
|
||||
\\
|
||||
&= z (z^5 - 4z^3 + 3z) - z \cdot (z^3 - 2z)
|
||||
\\
|
||||
&= z^2 (z^4 - 5z^2 + 5)
|
||||
\\[10pt]
|
||||
t_{2,2}(z) &= z p_{5}(z) - p_2(z) p_2(z)
|
||||
\\
|
||||
&= z (z^5 - 4z^3 + 3z) - ( z^2 - 1 )^2
|
||||
\\
|
||||
&= (z^2 - 1)(z^4 - 4z^2 + 1)
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Many of these expressions factor surprisingly nicely.
|
||||
Further, some of these might seem familiar.
|
||||
From the last post, we saw that $z^4 - 5z^2 + 5$ is a factor of $p_9(z)$, from which we know
|
||||
it is the minimal polynomial of $2 \cos(\pi / 10)$.
|
||||
|
||||
This is also true for:
|
||||
|
||||
- In $t_{1,2}$, the factor $z^4 - 4z^2 + 2$, $p_7(z)$, and $2 \cos(\pi / 8)$, respectively
|
||||
- In $t_{2,2}$, the factor $z^4 - 4z^2 + 1$, $p_11(z)$, and $2 \cos(\pi / 12)$, respectively
|
||||
|
||||
We established that the subscripts of the tree (*a* and *b*) indicate constituent *n*-paths,
|
||||
which we know to correspond to *n+1*-gons.
|
||||
But these trees also seem to "know" about higher polygons.
|
||||
|
||||
|
||||
### Some Extra Trees
|
||||
|
||||
$T_{2,3}$ is the first tree not to partition two equal paths or a path and a single node.
|
||||
In this regard, the next such tree is $T_{2,4}$.
|
||||
|
||||
These graphs turn out to have characteristic polynomials whose factors we haven't seen before.
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
t_{2,3}(z)
|
||||
&= z (z^{6} - 6 z^{4} + 9 z^{2} - 3)
|
||||
\\
|
||||
t_{2,4}(z)
|
||||
&= z^{8} - 7 z^{6} + 14 z^{4} - 8 z^{2} + 1
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Searching the OEIS for the coefficients of $t_{2,4}$ returns sequence
|
||||
[A228786](http://oeis.org/A228786), which informs that it is the minimal polynomial
|
||||
of $2\sin( \pi/15 )$.
|
||||
This sequence also informs that the unknown factor in the other polynomial is
|
||||
the minimal polynomial of $2\sin( \pi / 9 )$:
|
||||
|
||||
In fact, both of these polynomials show up in factorizations of Chebyshev polynomials
|
||||
of the *first* kind (specifically, $2T_15(z / 2)$ and $2T_9(z / 2)$).
|
||||
Perhaps this is not surprising since we were already working with those of the second kind.
|
||||
However, it is interesting to see them appear from the addition of a single node.
|
||||
|
||||
|
||||
Closing
|
||||
-------
|
||||
|
||||
Regardless of whether chains or polygons are more fundamental, it is certainly interesting
|
||||
that they are just an algebraic stone's (a *calculus*'s?) toss away from one another.
|
||||
Perhaps Euler skipped such stones from the bridges of Koenigsberg which inspired him
|
||||
to initiate graph theory.
|
||||
|
||||
Trees are certainly more complicated than either, and we only investigated those removed
|
||||
from a path by a single node.
|
||||
Regardless, they still related to Chebyshev polynomials, albeit through their factors.
|
||||
|
||||
In fact, I was initially prompted to look into them due to a remarkable correspondence between
|
||||
certain trees and Platonic solids.
|
||||
I have since reorganized these thoughts, as from the perspective of this article, the relationship
|
||||
is tangential at best.
|
||||
BIN
posts/math/chebyshev/2/path_graphs.png
(Stored with Git LFS)
Normal file
BIN
posts/math/chebyshev/2/quadrilaterals.png
(Stored with Git LFS)
Normal file
BIN
posts/math/chebyshev/2/tree_graphs.png
(Stored with Git LFS)
Normal file
4
posts/math/chebyshev/_metadata.yml
Normal file
@ -0,0 +1,4 @@
|
||||
# freeze computational output
|
||||
freeze: auto
|
||||
|
||||
sidebar: chebyshev-sidebar
|
||||