tweaks to all chebyshev posts
This commit is contained in:
parent
869c35c1a4
commit
e4aa0dd8d9
@ -9,7 +9,9 @@ date: "2021-08-18"
|
||||
date-modified: "2025-06-17"
|
||||
categories:
|
||||
- geometry
|
||||
- generating functions
|
||||
- algebra
|
||||
- python
|
||||
---
|
||||
|
||||
<style>
|
||||
@ -18,6 +20,10 @@ categories:
|
||||
object-fit: contain;
|
||||
height: 100%;
|
||||
}
|
||||
|
||||
.figure-img.wide {
|
||||
max-width: 768px;
|
||||
}
|
||||
</style>
|
||||
|
||||
```{python}
|
||||
@ -53,7 +59,7 @@ When constructing a regular polygon, one wants a ratio between the length of a e
|
||||

|
||||
](./central_angle_figures.png){.wide}
|
||||
|
||||
In a convex polygon, the total central angle is always one full turn, or 2π radians.
|
||||
The central angle of a regular *n*-gon is ${2\pi \over n}$ radians,
|
||||
@ -216,7 +222,7 @@ Markdown(tabulate(
|
||||
for poly in [sympy.chebyshevu_poly(n - 1, z / 2) if n > 0 else sympy.sympify(0)]
|
||||
],
|
||||
headers=[
|
||||
"n",
|
||||
"*n*",
|
||||
"$[x^n]B(x; z / 2) = U_{n - 1}(z / 2)$",
|
||||
"Factored",
|
||||
],
|
||||
@ -227,8 +233,8 @@ Markdown(tabulate(
|
||||
|
||||
Evaluating the polynomials at $z / 2$ cancels the 2 in the denominator (and recurrence),
|
||||
making these expressions much simpler.
|
||||
This evaluation can also be interpreted intuitively by recalling from the previous diagram
|
||||
we used *half* the length of a side.
|
||||
This evaluation has an interpretation in terms of the previous diagram --
|
||||
recall we used *half* the length of a side as a leg of the right triangle.
|
||||
For a unit circumradius, the side length itself is then $2\sin( {\pi / n} )$.
|
||||
To compensate for this doubling, the Chebyshev polynomial must be evaluated at half its normal argument.
|
||||
|
||||
@ -255,9 +261,9 @@ $$
|
||||
|
||||
According to how we derived this series, when $z = 2\cos(\theta)$, the roots of this polynomial
|
||||
correspond to when $\sin(5\theta) / \sin(\theta) = 0$.
|
||||
This relation itself is true when for $\theta = \pi / 5$, since $\sin(5 \pi / 5) = 0$.
|
||||
This relation itself is true when $\theta = \pi / 5$, since $\sin(5 \pi / 5) = 0$.
|
||||
|
||||
One of the factors in terms must therefore be the minimal polynomial of $2\cos(\pi / 5 )$.
|
||||
One of the factors must therefore be the minimal polynomial of $2\cos(\pi / 5 )$.
|
||||
The former happens to be correct correct, since $2\cos( \pi / 5 ) = \varphi$, the golden ratio.
|
||||
Note that the second factor is the first evaluated at -*z*.
|
||||
|
||||
@ -278,7 +284,7 @@ $$
|
||||
Whichever is the minimal polynomial (the former), it is a cubic, and constructing
|
||||
a regular heptagon is equivalent to solving it for *z*.
|
||||
But there are no (nondegenerate) cubics that one can produce via compass and straightedge,
|
||||
and the construction fails.
|
||||
and all constructions necessarily fail.
|
||||
|
||||
|
||||
#### Decagons
|
||||
@ -341,7 +347,7 @@ Markdown(tabulate(
|
||||
n,
|
||||
"$" + sympy.latex(poly) + "$",
|
||||
k,
|
||||
int(poly.coeff(z, n - k)), # type: ignore
|
||||
int(poly.coeff(z, k)), # type: ignore
|
||||
]
|
||||
for n, k in zip(range(4, 8), range(3, -1, -1))
|
||||
for poly in [sympy.chebyshevu_poly(n - 1, z / 2) if n > 0 else sympy.sympify(0)]
|
||||
@ -350,15 +356,15 @@ Markdown(tabulate(
|
||||
"*n*",
|
||||
"$[x^n]B(x; z / 2)$",
|
||||
"*k*",
|
||||
"$[z^{n - k}][x^n]B(x; z / 2)$",
|
||||
"$[z^{k}][x^n]B(x; z / 2)$",
|
||||
],
|
||||
numalign="left",
|
||||
stralign="left",
|
||||
))
|
||||
```
|
||||
|
||||
The last column looks like an alternating row of Pascal's triangle, and can be expressed
|
||||
as ${n - k \choose k}(-1)^k$.
|
||||
The last column looks like an alternating row of Pascal's triangle
|
||||
(namely, ${n - \lfloor {k / 2} \rfloor - 1 \choose k}(-1)^k$).
|
||||
This resemblance can be made more apparent by listing the coefficients of the polynomials in a table.
|
||||
|
||||
```{python}
|
||||
@ -389,10 +395,10 @@ Markdown(tabulate(
|
||||
*[
|
||||
0 if k % 2 == 1
|
||||
else rainbow_class(
|
||||
comb(n - (k // 2) - 1, nm - (k // 2)) * (-1)**(k // 2),
|
||||
comb(n - (k // 2) - 1, k // 2) * (-1)**(k // 2),
|
||||
n - (k // 2) - 1,
|
||||
)
|
||||
for nm, k in zip(range(n), range(10))
|
||||
for k in range(n)
|
||||
]
|
||||
]
|
||||
for n in range(1, 11)
|
||||
@ -433,12 +439,13 @@ $$
|
||||
= x^{n+1} (1 + x^2)^{-n - 1}
|
||||
\\
|
||||
&= x^{n+1} \sum_{k=0}^\infty {-n - 1 \choose k}(x^2)^k
|
||||
\quad \text{Binomial theorem}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
While the use of the binomial theorem in $1 + x^2$ is more than enough to justify
|
||||
While the use of the binomial theorem is more than enough to justify
|
||||
the appearance of Pascal's triangle (along with explaining the 0's),
|
||||
I will press onward until it becomes excruciatingly obvious.
|
||||
I'll simplify further to explicitly show the alternating signs.
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
@ -507,7 +514,7 @@ Conveniently, $U_{2 -\ 1}(z / 2) = z$ is also a factor, and 2 is likewise a fact
|
||||
|
||||
This pattern is present throughout the table; $n = 6$ contains factors for
|
||||
$n = 2 \text{ and } 3$ and the prime numbers have no smaller factors.
|
||||
If this observation is legitimate, call the new term $f_n(z)$
|
||||
If this observation is legitimate, call the newest term $f_n(z)$
|
||||
and denote $p_n(z) = U_{n -\ 1}( z / 2 )$.
|
||||
|
||||
|
||||
@ -711,9 +718,9 @@ Markdown(tabulate(
|
||||
)
|
||||
]
|
||||
] + [[
|
||||
"",
|
||||
"-",
|
||||
"[OEIS A055034](http://oeis.org/A055034)",
|
||||
"",
|
||||
"-",
|
||||
"[OEIS A187360](http://oeis.org/A187360)",
|
||||
]],
|
||||
headers=[
|
||||
|
||||
@ -8,11 +8,24 @@ format:
|
||||
date: "2021-08-19"
|
||||
date-modified: "2025-06-24"
|
||||
categories:
|
||||
- geometry
|
||||
- algebra
|
||||
- linear algebra
|
||||
- generating functions
|
||||
- graph theory
|
||||
- python
|
||||
---
|
||||
|
||||
<style>
|
||||
.figure-img {
|
||||
max-width: 512px;
|
||||
object-fit: contain;
|
||||
height: 100%;
|
||||
}
|
||||
|
||||
.figure-img.wide {
|
||||
max-width: 768px;
|
||||
}
|
||||
</style>
|
||||
|
||||
In the [previous post](../1), I tied the geometry regular polygons to a sequence of polynomials
|
||||
though some clever algebraic manipulation.
|
||||
@ -36,17 +49,18 @@ Only examining these figures by their connectedness is precisely the kind of thi
|
||||
*graph theory* deals with.
|
||||
"Graph" is a potentially confusing term, since it has nothing to do with "graphs of functions",
|
||||
but the name is supposed to evoke the fact that they are "drawings".
|
||||
For the graphs we're interested, there's some additional terminology:
|
||||
For the graphs we're interested in, there's some additional terminology:
|
||||
|
||||
- Vertices themselves are sometimes instead called *nodes*
|
||||
- Edge in the graph have no direction associated to them, so the graph is called *undirected*.
|
||||
- Additionally, these graphs are *planar* since the nodes can be arranged
|
||||
so that no edges appear to intersect.
|
||||
- The lower-right figure in the above diagram has intersecting edges,
|
||||
- Edge in the graph have no direction in how they connect nodes, so the graph is called *undirected*.
|
||||
- If the nodes in a graph can be arranged so that no edges appear to intersect,
|
||||
the graph is *planar*.
|
||||
- For example, lower-right figure in the above diagram appears to have intersecting edges,
|
||||
but the nodes can be rearranged to look like the other graphs, so it is planar.
|
||||
|
||||
Graphs themselves typically come in families.
|
||||
If the graph is a simple loop, it is called a [*cycle graph*](https://en.wikipedia.org/wiki/Cycle_graph).
|
||||
It's easiest to study families of graphs, rather than isolated examples.
|
||||
If the graph is a simple loop of nodes, it is called a
|
||||
[*cycle graph*](https://en.wikipedia.org/wiki/Cycle_graph).
|
||||
They are denoted by $C_n$, where *n* is the number of nodes.
|
||||
In a cycle graph, since all nodes are identical to each other (they all connect to two edges)
|
||||
and all edges are identical to each other (they connect identical vertices),
|
||||
@ -67,8 +81,12 @@ In the case of an undirected graph, these are unordered pairs.
|
||||
While such a list is convenient, it doesn't convey a lot of information about the graph
|
||||
besides the number of edges.
|
||||
|
||||
Alternatively, these pairs can also be interpreted as addresses in a matrix,
|
||||
Alternatively, these pairs can also be interpreted as addresses in a square matrix,
|
||||
called an *adjacency matrix*.
|
||||
Each column and row correspond to a specific node, and an entry is 1
|
||||
when the nodes of a row and column of are joined by an edge (and 0 otherwise).
|
||||
For undirected graphs, these matrices are symmetric, since it is possible
|
||||
to traverse an edge in either direction.
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
@ -113,13 +131,10 @@ $$
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Each adjacency matrix is square, where each column and row refer to a specific node.
|
||||
An entry is 1 when the nodes corresponding to the row and column of its address are joined by an edge (and zero otherwise).
|
||||
For undirected graphs, these matrices are symmetric, since it is possible to traverse an edge in either direction.
|
||||
|
||||
Swapping the labels on two nodes is as simple as exchanging two rows and two columns.
|
||||
Just one of these swaps would flip the sign of the determinant of the adjacency matrix.
|
||||
However, since they occur in pairs, the determinant is invariant of the labelling (equally, a graph invariant).
|
||||
Swapping the labels on two nodes is will exchange two rows and two columns
|
||||
of the adjacency matrix.
|
||||
Just one of these swaps would flip the sign of its determinant, but since they occur in pairs,
|
||||
the determinant is invariant of the labelling (equally, a graph invariant).
|
||||
|
||||
|
||||
Prismatic Recurrence
|
||||
@ -292,7 +307,7 @@ The various $P_n$ are in fact the adjacency matrices of a path on *n* nodes.
|
||||
|
||||

|
||||
](./path_graphs.png){.wide}
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
@ -409,20 +424,20 @@ Therefore, the sequence of polynomials $p_n(\lambda)$ is:
|
||||
|
||||
$$
|
||||
\begin{gather*}
|
||||
p_0(\lambda) &= && 1
|
||||
p_0(\lambda) &=&& && 1
|
||||
\\
|
||||
p_1(\lambda) &= && \lambda
|
||||
p_1(\lambda) &=&& && \lambda
|
||||
\\
|
||||
p_2(\lambda) &= \lambda \lambda - 1
|
||||
p_2(\lambda) &=&& \lambda \lambda - 1
|
||||
&=& \lambda^2 - 1
|
||||
\\
|
||||
p_3(\lambda) &= \lambda (\lambda^2 - 1) - \lambda
|
||||
p_3(\lambda) &=&& \lambda (\lambda^2 - 1) - \lambda
|
||||
&=& \lambda(\lambda^2 - 2)
|
||||
\\
|
||||
p_4(\lambda) &= \lambda (\lambda(\lambda^2 - 2)) - (\lambda^2 - 1)
|
||||
p_4(\lambda) &=&& \lambda (\lambda(\lambda^2 - 2)) - (\lambda^2 - 1)
|
||||
&=& \lambda^4 - 3\lambda^2 + 1
|
||||
\\
|
||||
\vdots & \vdots && \vdots
|
||||
\vdots & && \vdots && \vdots
|
||||
\end{gather*}
|
||||
$$
|
||||
|
||||
@ -442,7 +457,7 @@ $$
|
||||
P(x; \lambda) = {B(x; \lambda / 2) \over x} = {1 \over 1 - \lambda x +\ x^2}
|
||||
$$
|
||||
|
||||
Discarding the initial $c_0$ and $c_1$ by setting them to 0[^2], the generating function is
|
||||
Discarding the initial $c_0$ and $c_1$ by setting them to zero[^2], the generating function is
|
||||
|
||||
[^2]: It's a good idea to ask why we can do this.
|
||||
Try examining $c_2$ and $c_3$.
|
||||
@ -450,7 +465,7 @@ Discarding the initial $c_0$ and $c_1$ by setting them to 0[^2], the generating
|
||||
$$
|
||||
\begin{align*}
|
||||
c_{n+2}(\lambda) &= \lambda p_{n+1}(\lambda) - 2(p_n(\lambda) + 1)
|
||||
\\ \\
|
||||
\\[14pt]
|
||||
{C(x; \lambda) - c_0(\lambda) - x c_1(\lambda) \over x^2}
|
||||
&= \lambda \left( {P(x; \lambda) - 1 \over x} \right)
|
||||
- 2\left( P(x; \lambda) + {1 \over 1 - x} \right)
|
||||
@ -465,7 +480,7 @@ $$
|
||||
+ 2 x^3 + x^2 \lambda^2 - 4 x^2
|
||||
\\
|
||||
&= x^2 (\lambda - 2) (x^2 - \lambda x - x + \lambda + 2)
|
||||
\\ \\
|
||||
\\[14pt]
|
||||
C(x; \lambda) &= x^2 (\lambda - 2)
|
||||
{(x^2 - (\lambda + 1) x + \lambda + 2)
|
||||
\over (1 - x)(1 - \lambda x + x^2)}
|
||||
@ -507,36 +522,18 @@ Paths are degenerate trees, but we can make them slightly more interesting by in
|
||||
|
||||

|
||||
](./tree_graphs.png){.wide}
|
||||
|
||||
In this notation, the subscripts denote the consituent paths if the "added" node and the
|
||||
one it is connected to are both removed.
|
||||
It's easy to see that $T_{a,b} \cong T_{a,b}$, since this just swaps the arms.
|
||||
Also, $T_{a, 0} \cong T_{0, a} \cong P_{a + 2}$.
|
||||
|
||||
Let's try dissecting some of the larger trees.
|
||||
The adjacency matrices for $T_{1,3}$ and $T_{2,2}$ are:
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
T_{1,1} := \begin{matrix}[
|
||||
(0, 1), \\
|
||||
(1, 2), \\
|
||||
(1, 3)
|
||||
]\end{matrix} & \cong
|
||||
\begin{pmatrix}
|
||||
0 & 1 & 0 & 0 \\
|
||||
1 & 0 & 1 & 1 \\
|
||||
0 & 1 & 0 & 0 \\
|
||||
0 & 1 & 0 & 0
|
||||
\end{pmatrix}
|
||||
\\ \\
|
||||
T_{1,2} := \begin{matrix} [
|
||||
(0, 1), \\
|
||||
(1, 2), \\
|
||||
(2, 3), \\
|
||||
(1, 4)
|
||||
]\end{matrix} & \cong
|
||||
\begin{pmatrix}
|
||||
0 & 1 & 0 & 0 & 0 \\
|
||||
1 & 0 & 1 & 0 & 1 \\
|
||||
0 & 1 & 0 & 1 & 0 \\
|
||||
0 & 0 & 1 & 0 & 0 \\
|
||||
0 & 1 & 0 & 0 & 0
|
||||
\end{pmatrix}
|
||||
\\ \\
|
||||
T_{1,3} := \begin{matrix}[
|
||||
(0, 1), \\
|
||||
(1, 2), \\
|
||||
@ -571,13 +568,7 @@ $$
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
The subscripts denote the consituent paths if the "added" node and the
|
||||
one it is connected to are both removed.
|
||||
It's easy to see that $T_{a,b} \cong T_{a,b}$, since this just swaps the arms.
|
||||
Also, $T_{a, 0} \cong T_{0, a} \cong P_{a + 2}$.
|
||||
|
||||
Let's try dissecting one of the larger trees.
|
||||
|
||||
Starting with $T_{1,3}$, its characteristic polynomial is:
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
@ -593,7 +584,7 @@ $$
|
||||
\end{matrix}
|
||||
\right |
|
||||
\\
|
||||
&= (-1)^{6 + 6} \lambda m_{6,6} + (-1)^{2 + 6} (-1) m_{2,6}
|
||||
&= \lambda (-1)^{6 + 6} m_{6,6} + (-1) (-1)^{2 + 6} m_{2,6}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
@ -614,7 +605,7 @@ $$
|
||||
\end{matrix}
|
||||
\right |
|
||||
\\
|
||||
&= (-1)^{5 + 2} (-1)
|
||||
&= (-1) (-1)^{5 + 2}
|
||||
\left |
|
||||
\begin{matrix}
|
||||
\lambda & 0 & 0 & 0 \\
|
||||
@ -645,7 +636,7 @@ $$
|
||||
\end{matrix}
|
||||
\right |
|
||||
\\
|
||||
&= (-1)^{6 + 6} \lambda m_{6,6} + (-1)^{3 + 6} (-1) m_{3,6}
|
||||
&= (-1)^{6 + 6} \lambda m_{6,6} + (-1) (-1)^{3 + 6} m_{3,6}
|
||||
\\ \\
|
||||
m_{3,6}
|
||||
&= \left |
|
||||
@ -658,7 +649,7 @@ $$
|
||||
\end{matrix}
|
||||
\right |
|
||||
\\
|
||||
&= (-1)^{5 + 3} (-1)
|
||||
&= (-1) (-1)^{5 + 3}
|
||||
\left |
|
||||
\begin{matrix}
|
||||
\lambda & -1 & 0 & 0 \\
|
||||
@ -674,7 +665,7 @@ Here we get something similar: a combination of $p_5(\lambda)$ and an extra term
|
||||
In this case, the final determinant can be written as $p_2(\lambda)^2$.
|
||||
|
||||
Now it can be observed that the extra terms are the polynomials corresponding
|
||||
to $P_a$ and $P_b$ ($p_1(\lambda) = \lambda$, after all).
|
||||
to $P_a$ and $P_b$ (recall that $p_1(\lambda) = \lambda$, after all).
|
||||
In both cases, the second expansion was necessary to get rid of the symmetric -1
|
||||
entries added to the matrix.
|
||||
The sign of this extra term is always negative, since the -1 entries cancel
|
||||
@ -683,10 +674,10 @@ The sign of this extra term is always negative, since the -1 entries cancel
|
||||
Therefore, the expression for these characteristic polynomials should be:
|
||||
|
||||
$$
|
||||
t_{a,b}(z) = z \cdot p_{a + b + 1}(z) - p_a(z) p_b(z)
|
||||
t_{a,b}(\lambda) = \lambda p_{a + b + 1}(\lambda) - p_a(z) p_b(\lambda)
|
||||
$$
|
||||
|
||||
Note that if *b* is 0, this coincides with the recurrence for $p_n(z)$.
|
||||
Note that if *b* is 0, this agrees with the recurrence for $p_n(\lambda)$.
|
||||
|
||||
|
||||
### Examining Small Trees
|
||||
@ -694,13 +685,14 @@ Note that if *b* is 0, this coincides with the recurrence for $p_n(z)$.
|
||||
Due to the subscript of the first term of the RHS, this recurrence is harder to turn into
|
||||
a generating function.
|
||||
Instead, let's look at a few smaller trees to see what kind of polynomials they build.
|
||||
We'll also change the variable of the polynomial to *z* for simplicity.
|
||||
|
||||
The first tree of note is $T_{1,1}$.
|
||||
This has characteristic polynomial
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
t_{1,1}(z) &= z \cdot p_{3} - p_1(z) p_1(z)
|
||||
t_{1,1}(z) &= z p_{3}(z) - p_1(z) p_1(z)
|
||||
\\
|
||||
&= z (z^3 - z^2) - z^2
|
||||
\\
|
||||
@ -713,9 +705,9 @@ By symmetry, these are the same graph, so we have characteristic polynomial
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
t_{1,2}(z) &= z \cdot p_{4} - p_1(z) p_2(z)
|
||||
t_{1,2}(z) &= z p_{4}(z) - p_1(z) p_2(z)
|
||||
\\
|
||||
&= z (z^4 - 3z^2 + 2) - z (z^2 - 1)
|
||||
&= z (z^4 - 3z^2 + 2) - z \cdot (z^2 - 1)
|
||||
\\
|
||||
&= z (z^4 - 4z^2 + 2)
|
||||
\end{align*}
|
||||
@ -725,13 +717,13 @@ Finally, let's look at $T_{1,3}$ and $T_{2,2}$, the trees we used to derive the
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
t_{1,3}(z) &= z \cdot p_{5} - p_1(z) p_3(z)
|
||||
t_{1,3}(z) &= z p_{5}(z) - p_1(z) p_3(z)
|
||||
\\
|
||||
&= z (z^5 - 4z^3 + 3z) - z \cdot (z^3 - 2z)
|
||||
\\
|
||||
&= z^2 (z^4 - 5z^2 + 5)
|
||||
\\[10pt]
|
||||
t_{2,2}(z) &= z \cdot p_{5} - p_2(z) p_2(z)
|
||||
t_{2,2}(z) &= z p_{5}(z) - p_2(z) p_2(z)
|
||||
\\
|
||||
&= z (z^5 - 4z^3 + 3z) - ( z^2 - 1 )^2
|
||||
\\
|
||||
@ -746,10 +738,8 @@ From the last post, we saw that $z^4 - 5z^2 + 5$ is a factor of $p_9(z)$, from w
|
||||
|
||||
This is also true for:
|
||||
|
||||
- In $t_{1,2}$,
|
||||
- $z^4 - 4z^2 + 2$, $p_7(z)$, and $2 \cos(\pi / 8)$, respectively
|
||||
- In $t_{2,2}$,
|
||||
- $z^4 - 4z^2 + 1$, $p_11(z)$, and $2 \cos(\pi / 12)$, respectively
|
||||
- In $t_{1,2}$, the factor $z^4 - 4z^2 + 2$, $p_7(z)$, and $2 \cos(\pi / 8)$, respectively
|
||||
- In $t_{2,2}$, the factor $z^4 - 4z^2 + 1$, $p_11(z)$, and $2 \cos(\pi / 12)$, respectively
|
||||
|
||||
We established that the subscripts of the tree (*a* and *b*) indicate constituent *n*-paths,
|
||||
which we know to correspond to *n+1*-gons.
|
||||
|
||||
@ -9,8 +9,21 @@ date: "2021-08-27"
|
||||
date-modified: "2025-06-25"
|
||||
categories:
|
||||
- algebra
|
||||
- generating functions
|
||||
---
|
||||
|
||||
<style>
|
||||
.figure-img {
|
||||
max-width: 512px;
|
||||
object-fit: contain;
|
||||
height: 100%;
|
||||
}
|
||||
|
||||
.figure-img.wide {
|
||||
max-width: 768px;
|
||||
}
|
||||
</style>
|
||||
|
||||
|
||||
In the [previous](../1) [two](../2) posts, I made clear the ties between the
|
||||
Chebyshev polynomials, constructibile polygons, and graph theory.
|
||||
@ -90,20 +103,28 @@ Using a generic quadratic polynomial $p_2(z) = a z^2 + b z + c$, the second and
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
1 \cdot p_2 &= \int_{-1}^1 (a z^2 + b z + c) dz
|
||||
= \left[
|
||||
{a z^3 \over 3} + c z
|
||||
\right]_{-1}^1
|
||||
= {2 \over 3}a + 2c = 0 \implies a = -3c
|
||||
\langle 1, p_2 \rangle
|
||||
&= \int_{-1}^1 (a z^2 + b z + c) dz
|
||||
= \left[
|
||||
{a z^3 \over 3} + c z
|
||||
\right]_{-1}^1
|
||||
= {2 \over 3}a + 2c = 0
|
||||
\\
|
||||
z \cdot p_2 &= \int_{-1}^1 (a z^3 + b z^2 + c z) dz
|
||||
&\implies a = -3c
|
||||
\\[14pt]
|
||||
\langle z, p_2 \rangle
|
||||
&= \int_{-1}^1 (a z^3 + b z^2 + c z) dz
|
||||
= \left[
|
||||
{b z^3 \over 3}
|
||||
\right]_{-1}^1
|
||||
= {2 \over 3}b = 0 \implies b = 0
|
||||
= {2 \over 3}b = 0
|
||||
\\
|
||||
p_2 \cdot p_2 &= \int_{-1}^1 (a z^2 + c)^2 dz
|
||||
= \int_{-1}^1 (a^2 z^4 + 2ac z^2 + c^2) dz = {2 \over 5}
|
||||
&\implies b = 0
|
||||
\\[14pt]
|
||||
\langle p_2, p_2 \rangle
|
||||
&= \int_{-1}^1 (a z^2 + c)^2 dz
|
||||
= \int_{-1}^1 (a^2 z^4 + 2ac z^2 + c^2) dz
|
||||
= {2 \over 5}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
@ -113,7 +134,7 @@ The final integral, though not challenging, requires some additional steps to re
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
\int_{-1}^1 (a^2 z^4 + 2ac z^2 + c^2) dz
|
||||
\langle p_2, p_2 \rangle
|
||||
&= \left[
|
||||
a^2 {z^5 \over 5} + ( 2ac ) {z^3 \over 3} + c^2 z
|
||||
\right]_{-1}^1
|
||||
@ -145,15 +166,20 @@ This family is called the
|
||||
named after Adrien-Marie Legendre.
|
||||
Intriguingly, only a few surviving portraits of this mathematician are known, one of which is a fairly humorous caricature.
|
||||
|
||||
::: {.row .centered}
|
||||
<a title="Julien-Léopold Boilly, Public domain, via Wikimedia Commons" href="https://commons.wikimedia.org/wiki/File:Legendre.jpg">
|
||||
<img width="256" alt="Legendre" src="https://upload.wikimedia.org/wikipedia/commons/0/03/Legendre.jpg?20210711144200">
|
||||
</a>
|
||||
<!-- TODO: better wikimedia imports -->
|
||||
<div class="quarto-figure quarto-figure-center">
|
||||
<figure class="figure">
|
||||
<a title="Julien-Léopold Boilly, Public domain, via Wikimedia Commons" href="https://commons.wikimedia.org/wiki/File:Legendre.jpg">
|
||||
<img class="img-fluid figure-img" alt="Legendre" src="https://upload.wikimedia.org/wikipedia/commons/0/03/Legendre.jpg?20210711144200">
|
||||
</a>
|
||||
|
||||
Public domain image retrieved from Wikimedia
|
||||
:::
|
||||
<figcaption>
|
||||
Public domain image retrieved from Wikimedia
|
||||
</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
|
||||
Such a family is useful when doing numeric computations involving integrals.
|
||||
An orthogonal family of polynomials is useful when doing numeric computations involving integrals.
|
||||
Expressing a (scaled and shifted) general polynomial in an orthogonal basis not only
|
||||
simplifies the math, but can prevent errors from accumulating.
|
||||
These polynomials also have applications in electrical engineering.
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user