add old c files for pade approximants
This commit is contained in:
parent
3799b5c077
commit
5fbf8970c2
143
posts/stereo/1/stereo_complex.c
Normal file
143
posts/stereo/1/stereo_complex.c
Normal file
@ -0,0 +1,143 @@
|
|||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <time.h>
|
||||||
|
#include <math.h>
|
||||||
|
#include <complex.h>
|
||||||
|
|
||||||
|
#define STRRED "\x1b[31m"
|
||||||
|
#define STRGREEN "\x1b[32m"
|
||||||
|
#define STRNORM "\x1b[m"
|
||||||
|
|
||||||
|
#define NUM_LOOPS 100000
|
||||||
|
|
||||||
|
double complex complex_turn(double turn)
|
||||||
|
{
|
||||||
|
return cexp(I*M_PI*turn);
|
||||||
|
}
|
||||||
|
|
||||||
|
double complex approx_turn(double turn)
|
||||||
|
{
|
||||||
|
const static double a = 8*M_SQRT2/3 - 3;
|
||||||
|
const static double b = 4 - 8*M_SQRT2/3;
|
||||||
|
|
||||||
|
double p = turn*(b * turn * turn + a);
|
||||||
|
double q = p*p;
|
||||||
|
double r = 1 + q;
|
||||||
|
double c = (1 - q) / r, s = 2*p / r;
|
||||||
|
|
||||||
|
return (c*c - s*s) + I*(2*c*s);
|
||||||
|
}
|
||||||
|
|
||||||
|
void print_errors(const double *inputs,
|
||||||
|
const double complex *ideals,
|
||||||
|
const double complex *approxs,
|
||||||
|
int n)
|
||||||
|
{
|
||||||
|
double c_error, s_error;
|
||||||
|
double largest_c_error, largest_s_error;
|
||||||
|
size_t largest_c_index, largest_s_index;
|
||||||
|
|
||||||
|
double total_c_error = 0, total_s_error = 0;
|
||||||
|
|
||||||
|
size_t i;
|
||||||
|
double complex ideal, approx;
|
||||||
|
|
||||||
|
for (i = 0; i < n; i++) {
|
||||||
|
ideal = ideals[i];
|
||||||
|
approx = approxs[i];
|
||||||
|
|
||||||
|
//squared error in c components
|
||||||
|
c_error = creal(ideal) - creal(approx);
|
||||||
|
c_error *= c_error;
|
||||||
|
//squared error in s components
|
||||||
|
s_error = cimag(ideal) - cimag(approx);
|
||||||
|
s_error *= s_error;
|
||||||
|
|
||||||
|
if (largest_c_error < c_error) {
|
||||||
|
largest_c_error = c_error;
|
||||||
|
largest_c_index = i;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (largest_s_error < s_error) {
|
||||||
|
largest_s_error = s_error;
|
||||||
|
largest_s_index = i;
|
||||||
|
}
|
||||||
|
|
||||||
|
total_c_error += c_error;
|
||||||
|
total_s_error += s_error;
|
||||||
|
}
|
||||||
|
//these now contain the *average* squared error
|
||||||
|
total_c_error /= (double) n;
|
||||||
|
total_s_error /= (double) n;
|
||||||
|
|
||||||
|
printf("Squared error in cosines: \n"\
|
||||||
|
"\tAverage: %f (%f%% error)\n""\tLargest: %f (%f%% error)" \
|
||||||
|
"\n\t\tInput:\t\t%f\n\t\tValue:\t\t%f\n\t\tApproximation:\t%f\n"
|
||||||
|
, total_c_error, sqrt(total_c_error) * 100
|
||||||
|
, largest_c_error, sqrt(largest_c_error) * 100
|
||||||
|
, inputs[largest_c_index]
|
||||||
|
, creal(ideals[largest_c_index]), creal(approxs[largest_c_index]));
|
||||||
|
printf("Squared error in sines: \n"\
|
||||||
|
"\tAverage: %f (%f%% error)\n\tLargest: %f (%f%% error)" \
|
||||||
|
"\n\t\tInput:\t\t%f\n\t\tValue:\t\t%f\n\t\tApproximation:\t%f\n"
|
||||||
|
, total_s_error, sqrt(total_s_error) * 100
|
||||||
|
, largest_s_error, sqrt(largest_s_error) * 100
|
||||||
|
, inputs[largest_c_index]
|
||||||
|
, cimag(ideals[largest_s_index]), cimag(approxs[largest_s_index]));
|
||||||
|
}
|
||||||
|
|
||||||
|
//time the length of the computation `f` in nanoseconds
|
||||||
|
long time_computation( double complex (*f)(double),
|
||||||
|
const double *inputs,
|
||||||
|
double complex *results,
|
||||||
|
int n)
|
||||||
|
{
|
||||||
|
size_t i;
|
||||||
|
long tick;
|
||||||
|
struct timespec tp;
|
||||||
|
|
||||||
|
clock_gettime(CLOCK_MONOTONIC, &tp);
|
||||||
|
tick = tp.tv_nsec;
|
||||||
|
for (i = 0; i < n; i++) {
|
||||||
|
results[i] = f(inputs[i]);
|
||||||
|
}
|
||||||
|
//this isn't quite proper, since the clock may have ticked over a second
|
||||||
|
clock_gettime(CLOCK_MONOTONIC, &tp);
|
||||||
|
|
||||||
|
return tp.tv_nsec - tick;
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argn, char **args)
|
||||||
|
{
|
||||||
|
long trig_time, rat_time;
|
||||||
|
|
||||||
|
double rands[NUM_LOOPS];
|
||||||
|
double complex trigs[NUM_LOOPS];
|
||||||
|
double complex rats[NUM_LOOPS];
|
||||||
|
|
||||||
|
size_t i;
|
||||||
|
for (i = 0; i < NUM_LOOPS; i++) {
|
||||||
|
rands[i] = rand() / (double) RAND_MAX;
|
||||||
|
}
|
||||||
|
|
||||||
|
trig_time = time_computation(&complex_turn, rands, trigs, NUM_LOOPS);
|
||||||
|
printf("Timing for %d math.h sin and cos:\t%ldns\n", NUM_LOOPS, trig_time);
|
||||||
|
|
||||||
|
rat_time = time_computation(&approx_turn, rands, rats, NUM_LOOPS);
|
||||||
|
printf("Timing for %d approximations:\t%ldns\n", NUM_LOOPS, rat_time);
|
||||||
|
|
||||||
|
long diff = rat_time - trig_time;
|
||||||
|
double frac_speed;
|
||||||
|
if (diff > 0) {
|
||||||
|
frac_speed = rat_time / (double) trig_time;
|
||||||
|
printf(STRRED "math.h" STRNORM " faster, speedup: %ldns (%2.2fx)\n",
|
||||||
|
diff, frac_speed);
|
||||||
|
} else {
|
||||||
|
frac_speed = trig_time / (double) rat_time;
|
||||||
|
printf(STRGREEN "Approximation" STRNORM " faster, speedup: %ldns (%2.2fx)\n",
|
||||||
|
-diff, frac_speed);
|
||||||
|
print_errors(rands, trigs, rats, NUM_LOOPS);
|
||||||
|
}
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
128
posts/stereo/1/stereo_math.c
Normal file
128
posts/stereo/1/stereo_math.c
Normal file
@ -0,0 +1,128 @@
|
|||||||
|
#include <stdio.h>
|
||||||
|
#include <math.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <time.h>
|
||||||
|
|
||||||
|
#define STRRED "\x1b[31m"
|
||||||
|
#define STRGREEN "\x1b[32m"
|
||||||
|
#define STRNORM "\x1b[m"
|
||||||
|
|
||||||
|
struct circle {
|
||||||
|
double c;
|
||||||
|
double s;
|
||||||
|
};
|
||||||
|
|
||||||
|
double a = 8*M_SQRT2/3 - 3;
|
||||||
|
double b = 4 - 8*M_SQRT2/3;
|
||||||
|
|
||||||
|
void trig(double turn, struct circle *ret)
|
||||||
|
{
|
||||||
|
double arg = M_PI * turn;
|
||||||
|
ret->c = cos(arg);
|
||||||
|
ret->s = sin(arg);
|
||||||
|
}
|
||||||
|
|
||||||
|
void rational(double turn, struct circle *ret)
|
||||||
|
{
|
||||||
|
double p = turn*(b * turn * turn + a);
|
||||||
|
double q = p*p;
|
||||||
|
double r = 1 + q;
|
||||||
|
double c = (1 - q) / r, s = 2*p / r;
|
||||||
|
|
||||||
|
ret->c = c*c - s*s;
|
||||||
|
ret->s = 2*c*s;
|
||||||
|
}
|
||||||
|
|
||||||
|
double errors(int n, const struct circle *circles1, const struct circle *circles2)
|
||||||
|
{
|
||||||
|
double c_error, s_error;
|
||||||
|
double largest_c_error, largest_s_error;
|
||||||
|
|
||||||
|
double total_c_error = 0, total_s_error = 0;
|
||||||
|
|
||||||
|
int i;
|
||||||
|
struct circle circle1, circle2;
|
||||||
|
|
||||||
|
for (i = 0; i < n; i++) {
|
||||||
|
circle1 = circles1[i];
|
||||||
|
circle2 = circles2[i];
|
||||||
|
|
||||||
|
//squared error in c components
|
||||||
|
c_error = circle1.c - circle2.c;
|
||||||
|
c_error *= c_error;
|
||||||
|
//squared error in s components
|
||||||
|
s_error = circle1.s - circle2.s;
|
||||||
|
s_error *= s_error;
|
||||||
|
|
||||||
|
if (largest_c_error < c_error)
|
||||||
|
largest_c_error = c_error;
|
||||||
|
|
||||||
|
if (largest_s_error < s_error)
|
||||||
|
largest_s_error = s_error;
|
||||||
|
|
||||||
|
total_c_error += c_error;
|
||||||
|
total_s_error += s_error;
|
||||||
|
}
|
||||||
|
//these now contain the *average* squared error
|
||||||
|
total_c_error /= (double) n;
|
||||||
|
total_s_error /= (double) n;
|
||||||
|
|
||||||
|
printf("Squared error in cosines: \n\tAverage: %f (%f%% error)\n\tLargest: %f (%f%% error)\n"
|
||||||
|
, total_c_error, sqrt(total_c_error) * 100
|
||||||
|
, largest_c_error, sqrt(largest_c_error) * 100);
|
||||||
|
printf("Squared error in sines: \n\tAverage: %f (%f%% error)\n\tLargest: %f (%f%% error)\n"
|
||||||
|
, total_s_error, sqrt(total_s_error) * 100
|
||||||
|
, largest_s_error, sqrt(largest_s_error) * 100);
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argn, char **args)
|
||||||
|
{
|
||||||
|
//struct circle ret;
|
||||||
|
int i;
|
||||||
|
|
||||||
|
struct timespec tp;
|
||||||
|
long tick;
|
||||||
|
long trig_time, rat_time;
|
||||||
|
|
||||||
|
double rands[10000];
|
||||||
|
struct circle trigs[10000];
|
||||||
|
struct circle rats[10000];
|
||||||
|
|
||||||
|
for (i = 0; i < 10000; i++) {
|
||||||
|
rands[i] = rand() / (double) RAND_MAX;
|
||||||
|
}
|
||||||
|
|
||||||
|
clock_gettime(CLOCK_MONOTONIC, &tp);
|
||||||
|
tick = tp.tv_nsec;
|
||||||
|
for (i = 0; i < 10000; i++) {
|
||||||
|
trig(rands[i], trigs+i);
|
||||||
|
}
|
||||||
|
clock_gettime(CLOCK_MONOTONIC, &tp);
|
||||||
|
// this isn't quite proper, since the clock may have ticked over a second
|
||||||
|
trig_time = tp.tv_nsec - tick;
|
||||||
|
printf("Timing for 10000 math.h sin and cos:\t%ldns\n", trig_time);
|
||||||
|
|
||||||
|
clock_gettime(CLOCK_MONOTONIC, &tp);
|
||||||
|
tick = tp.tv_nsec;
|
||||||
|
for (i = 0; i < 10000; i++) {
|
||||||
|
rational(rands[i], rats+i);
|
||||||
|
}
|
||||||
|
clock_gettime(CLOCK_MONOTONIC, &tp);
|
||||||
|
rat_time = tp.tv_nsec - tick;
|
||||||
|
printf("Timing for 10000 approximations:\t%ldns\n", rat_time);
|
||||||
|
|
||||||
|
double fracSpeed;
|
||||||
|
long linSpeed = rat_time - trig_time;
|
||||||
|
if (linSpeed > 0) {
|
||||||
|
fracSpeed = rat_time / (double) trig_time;
|
||||||
|
printf(STRRED "math.h" STRNORM " faster, speedup: %ldns (%2.2fx)\n",
|
||||||
|
linSpeed, fracSpeed);
|
||||||
|
} else {
|
||||||
|
fracSpeed = trig_time / (double) rat_time;
|
||||||
|
printf(STRGREEN "Approximation" STRNORM " faster, speedup: %ldns (%2.2fx)\n",
|
||||||
|
-linSpeed, fracSpeed);
|
||||||
|
errors(10000, rats, trigs);
|
||||||
|
}
|
||||||
|
}
|
||||||
Loading…
x
Reference in New Issue
Block a user