clang-format stereography c files

This commit is contained in:
queue-miscreant 2025-07-22 00:16:00 -05:00
parent 5fbf8970c2
commit 32294879c9
3 changed files with 232 additions and 198 deletions

View File

@ -0,0 +1,9 @@
BasedOnStyle: llvm
IndentWidth: 4
AlignAfterOpenBracket: BlockIndent
BinPackParameters: OnePerLine
BreakBeforeBraces: Custom
BraceWrapping:
AfterFunction: true
PointerAlignment: Left

View File

@ -1,19 +1,18 @@
#include <complex.h>
#include <math.h>
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <time.h> #include <time.h>
#include <math.h>
#include <complex.h>
#define STRRED "\x1b[31m" #define STRRED "\x1b[31m"
#define STRGREEN "\x1b[32m" #define STRGREEN "\x1b[32m"
#define STRNORM "\x1b[m" #define STRNORM "\x1b[m"
#define SECONDS_PER_NANOSECOND 1000000000
#define NUM_LOOPS 100000 #define NUM_LOOPS 100000
double complex complex_turn(double turn) double complex complex_turn(double turn) { return cexp(I * M_PI * turn); }
{
return cexp(I*M_PI*turn);
}
double complex approx_turn(double turn) double complex approx_turn(double turn)
{ {
@ -28,10 +27,12 @@ double complex approx_turn(double turn)
return (c * c - s * s) + I * (2 * c * s); return (c * c - s * s) + I * (2 * c * s);
} }
void print_errors(const double *inputs, void print_errors(
const double* inputs,
const double complex* ideals, const double complex* ideals,
const double complex* approxs, const double complex* approxs,
int n) int n
)
{ {
double c_error, s_error; double c_error, s_error;
double largest_c_error, largest_s_error; double largest_c_error, largest_s_error;
@ -70,41 +71,48 @@ void print_errors(const double *inputs,
total_c_error /= (double)n; total_c_error /= (double)n;
total_s_error /= (double)n; total_s_error /= (double)n;
printf("Squared error in cosines: \n"\ printf(
"\tAverage: %f (%f%% error)\n""\tLargest: %f (%f%% error)" \ "Squared error in cosines: \n"
"\n\t\tInput:\t\t%f\n\t\tValue:\t\t%f\n\t\tApproximation:\t%f\n" "\tAverage: %f (%f%% error)\n"
, total_c_error, sqrt(total_c_error) * 100 "\tLargest: %f (%f%% error)"
, largest_c_error, sqrt(largest_c_error) * 100 "\n\t\tInput:\t\t%f\n\t\tValue:\t\t%f\n\t\tApproximation:\t%f\n",
, inputs[largest_c_index] total_c_error, sqrt(total_c_error) * 100, largest_c_error,
, creal(ideals[largest_c_index]), creal(approxs[largest_c_index])); sqrt(largest_c_error) * 100, inputs[largest_c_index],
printf("Squared error in sines: \n"\ creal(ideals[largest_c_index]), creal(approxs[largest_c_index])
"\tAverage: %f (%f%% error)\n\tLargest: %f (%f%% error)" \ );
"\n\t\tInput:\t\t%f\n\t\tValue:\t\t%f\n\t\tApproximation:\t%f\n" printf(
, total_s_error, sqrt(total_s_error) * 100 "Squared error in sines: \n"
, largest_s_error, sqrt(largest_s_error) * 100 "\tAverage: %f (%f%% error)\n\tLargest: %f (%f%% error)"
, inputs[largest_c_index] "\n\t\tInput:\t\t%f\n\t\tValue:\t\t%f\n\t\tApproximation:\t%f\n",
, cimag(ideals[largest_s_index]), cimag(approxs[largest_s_index])); total_s_error, sqrt(total_s_error) * 100, largest_s_error,
sqrt(largest_s_error) * 100, inputs[largest_c_index],
cimag(ideals[largest_s_index]), cimag(approxs[largest_s_index])
);
} }
// time the length of the computation `f` in nanoseconds // time the length of the computation `f` in nanoseconds
long time_computation( double complex (*f)(double), long time_computation(
double complex (*f)(double),
const double* inputs, const double* inputs,
double complex* results, double complex* results,
int n) int n
)
{ {
size_t i; size_t i;
long tick; long tick_s;
long tick_ns;
struct timespec tp; struct timespec tp;
clock_gettime(CLOCK_MONOTONIC, &tp); clock_gettime(CLOCK_MONOTONIC, &tp);
tick = tp.tv_nsec; tick_ns = tp.tv_nsec;
tick_s = tp.tv_sec;
for (i = 0; i < n; i++) { for (i = 0; i < n; i++) {
results[i] = f(inputs[i]); results[i] = f(inputs[i]);
} }
//this isn't quite proper, since the clock may have ticked over a second
clock_gettime(CLOCK_MONOTONIC, &tp); clock_gettime(CLOCK_MONOTONIC, &tp);
return tp.tv_nsec - tick; return SECONDS_PER_NANOSECOND * (tp.tv_sec - tick_s) +
(tp.tv_nsec - tick_ns);
} }
int main(int argn, char** args) int main(int argn, char** args)
@ -130,12 +138,17 @@ int main(int argn, char **args)
double frac_speed; double frac_speed;
if (diff > 0) { if (diff > 0) {
frac_speed = rat_time / (double)trig_time; frac_speed = rat_time / (double)trig_time;
printf(STRRED "math.h" STRNORM " faster, speedup: %ldns (%2.2fx)\n", printf(
diff, frac_speed); STRRED "math.h" STRNORM " faster, speedup: %ldns (%2.2fx)\n", diff,
frac_speed
);
} else { } else {
frac_speed = trig_time / (double)rat_time; frac_speed = trig_time / (double)rat_time;
printf(STRGREEN "Approximation" STRNORM " faster, speedup: %ldns (%2.2fx)\n", printf(
-diff, frac_speed); STRGREEN "Approximation" STRNORM
" faster, speedup: %ldns (%2.2fx)\n",
-diff, frac_speed
);
print_errors(rands, trigs, rats, NUM_LOOPS); print_errors(rands, trigs, rats, NUM_LOOPS);
} }

View File

@ -1,5 +1,5 @@
#include <stdio.h>
#include <math.h> #include <math.h>
#include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <time.h> #include <time.h>
@ -33,7 +33,8 @@ void rational(double turn, struct circle *ret)
ret->s = 2 * c * s; ret->s = 2 * c * s;
} }
double errors(int n, const struct circle *circles1, const struct circle *circles2) double
errors(int n, const struct circle* circles1, const struct circle* circles2)
{ {
double c_error, s_error; double c_error, s_error;
double largest_c_error, largest_s_error; double largest_c_error, largest_s_error;
@ -67,12 +68,18 @@ double errors(int n, const struct circle *circles1, const struct circle *circles
total_c_error /= (double)n; total_c_error /= (double)n;
total_s_error /= (double)n; total_s_error /= (double)n;
printf("Squared error in cosines: \n\tAverage: %f (%f%% error)\n\tLargest: %f (%f%% error)\n" printf(
, total_c_error, sqrt(total_c_error) * 100 "Squared error in cosines: \n\tAverage: %f (%f%% error)\n\tLargest: %f "
, largest_c_error, sqrt(largest_c_error) * 100); "(%f%% error)\n",
printf("Squared error in sines: \n\tAverage: %f (%f%% error)\n\tLargest: %f (%f%% error)\n" total_c_error, sqrt(total_c_error) * 100, largest_c_error,
, total_s_error, sqrt(total_s_error) * 100 sqrt(largest_c_error) * 100
, largest_s_error, sqrt(largest_s_error) * 100); );
printf(
"Squared error in sines: \n\tAverage: %f (%f%% error)\n\tLargest: %f "
"(%f%% error)\n",
total_s_error, sqrt(total_s_error) * 100, largest_s_error,
sqrt(largest_s_error) * 100
);
return 0; return 0;
} }
@ -117,12 +124,17 @@ int main(int argn, char **args)
long linSpeed = rat_time - trig_time; long linSpeed = rat_time - trig_time;
if (linSpeed > 0) { if (linSpeed > 0) {
fracSpeed = rat_time / (double)trig_time; fracSpeed = rat_time / (double)trig_time;
printf(STRRED "math.h" STRNORM " faster, speedup: %ldns (%2.2fx)\n", printf(
linSpeed, fracSpeed); STRRED "math.h" STRNORM " faster, speedup: %ldns (%2.2fx)\n",
linSpeed, fracSpeed
);
} else { } else {
fracSpeed = trig_time / (double)rat_time; fracSpeed = trig_time / (double)rat_time;
printf(STRGREEN "Approximation" STRNORM " faster, speedup: %ldns (%2.2fx)\n", printf(
-linSpeed, fracSpeed); STRGREEN "Approximation" STRNORM
" faster, speedup: %ldns (%2.2fx)\n",
-linSpeed, fracSpeed
);
errors(10000, rats, trigs); errors(10000, rats, trigs);
} }
} }