zenzicubi.co/posts/stereo/1/stereo_complex.c

157 lines
4.2 KiB
C

#include <complex.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define STRRED "\x1b[31m"
#define STRGREEN "\x1b[32m"
#define STRNORM "\x1b[m"
#define SECONDS_PER_NANOSECOND 1000000000
#define NUM_LOOPS 100000
double complex complex_turn(double turn) { return cexp(I * M_PI * turn); }
double complex approx_turn(double turn)
{
const static double a = 8 * M_SQRT2 / 3 - 3;
const static double b = 4 - 8 * M_SQRT2 / 3;
double p = turn * (b * turn * turn + a);
double q = p * p;
double r = 1 + q;
double c = (1 - q) / r, s = 2 * p / r;
return (c * c - s * s) + I * (2 * c * s);
}
void print_errors(
const double* inputs,
const double complex* ideals,
const double complex* approxs,
int n
)
{
double c_error, s_error;
double largest_c_error, largest_s_error;
size_t largest_c_index, largest_s_index;
double total_c_error = 0, total_s_error = 0;
size_t i;
double complex ideal, approx;
for (i = 0; i < n; i++) {
ideal = ideals[i];
approx = approxs[i];
// squared error in c components
c_error = creal(ideal) - creal(approx);
c_error *= c_error;
// squared error in s components
s_error = cimag(ideal) - cimag(approx);
s_error *= s_error;
if (largest_c_error < c_error) {
largest_c_error = c_error;
largest_c_index = i;
}
if (largest_s_error < s_error) {
largest_s_error = s_error;
largest_s_index = i;
}
total_c_error += c_error;
total_s_error += s_error;
}
// these now contain the *average* squared error
total_c_error /= (double)n;
total_s_error /= (double)n;
printf(
"Squared error in cosines: \n"
"\tAverage: %f (%f%% error)\n"
"\tLargest: %f (%f%% error)"
"\n\t\tInput:\t\t%f\n\t\tValue:\t\t%f\n\t\tApproximation:\t%f\n",
total_c_error, sqrt(total_c_error) * 100, largest_c_error,
sqrt(largest_c_error) * 100, inputs[largest_c_index],
creal(ideals[largest_c_index]), creal(approxs[largest_c_index])
);
printf(
"Squared error in sines: \n"
"\tAverage: %f (%f%% error)\n\tLargest: %f (%f%% error)"
"\n\t\tInput:\t\t%f\n\t\tValue:\t\t%f\n\t\tApproximation:\t%f\n",
total_s_error, sqrt(total_s_error) * 100, largest_s_error,
sqrt(largest_s_error) * 100, inputs[largest_c_index],
cimag(ideals[largest_s_index]), cimag(approxs[largest_s_index])
);
}
// time the length of the computation `f` in nanoseconds
long time_computation(
double complex (*f)(double),
const double* inputs,
double complex* results,
int n
)
{
size_t i;
long tick_s;
long tick_ns;
struct timespec tp;
clock_gettime(CLOCK_MONOTONIC, &tp);
tick_ns = tp.tv_nsec;
tick_s = tp.tv_sec;
for (i = 0; i < n; i++) {
results[i] = f(inputs[i]);
}
clock_gettime(CLOCK_MONOTONIC, &tp);
return SECONDS_PER_NANOSECOND * (tp.tv_sec - tick_s) +
(tp.tv_nsec - tick_ns);
}
int main(int argn, char** args)
{
long trig_time, rat_time;
double rands[NUM_LOOPS];
double complex trigs[NUM_LOOPS];
double complex rats[NUM_LOOPS];
size_t i;
for (i = 0; i < NUM_LOOPS; i++) {
rands[i] = rand() / (double)RAND_MAX;
}
trig_time = time_computation(&complex_turn, rands, trigs, NUM_LOOPS);
printf("Timing for %d math.h sin and cos:\t%ldns\n", NUM_LOOPS, trig_time);
rat_time = time_computation(&approx_turn, rands, rats, NUM_LOOPS);
printf("Timing for %d approximations:\t%ldns\n", NUM_LOOPS, rat_time);
long diff = rat_time - trig_time;
double frac_speed;
if (diff > 0) {
frac_speed = rat_time / (double)trig_time;
printf(
STRRED "math.h" STRNORM " faster, speedup: %ldns (%2.2fx)\n", diff,
frac_speed
);
} else {
frac_speed = trig_time / (double)rat_time;
printf(
STRGREEN "Approximation" STRNORM
" faster, speedup: %ldns (%2.2fx)\n",
-diff, frac_speed
);
print_errors(rands, trigs, rats, NUM_LOOPS);
}
return 0;
}