#include #include #include #include #include #define STR_RED "\x1b[31m" #define STR_GREEN "\x1b[32m" #define STR_NORM "\x1b[m" #define SECONDS_PER_NANOSECOND 1000000000 #define NUM_LOOPS 100000 #define SQRT_NUM_LOOPS 100 struct circle { double c; double s; }; void turn_update(double turn, void* result); void approx_turn_update(double turn, void* result); #ifdef USE_COMPLEX #define EXTRACT_REAL(a) creal(a) #define EXTRACT_IMAG(a) cimag(a) #define CIRCLE_TYPE double complex #else #define EXTRACT_REAL(a) (a.c) #define EXTRACT_IMAG(a) (a.s) #define CIRCLE_TYPE struct circle #endif void print_errors( const double* inputs, const CIRCLE_TYPE* ideals, const CIRCLE_TYPE* approxs, int n ) { double c_error, s_error; double largest_c_error, largest_s_error; size_t largest_c_index, largest_s_index; double total_c_error = 0, total_s_error = 0; size_t i; CIRCLE_TYPE ideal, approx; for (i = 0; i < n; i++) { ideal = ideals[i]; approx = approxs[i]; // squared error in c components c_error = EXTRACT_REAL(ideal) - EXTRACT_REAL(approx); c_error *= c_error; // squared error in s components s_error = EXTRACT_IMAG(ideal) - EXTRACT_IMAG(approx); s_error *= s_error; if (largest_c_error < c_error) { largest_c_error = c_error; largest_c_index = i; } if (largest_s_error < s_error) { largest_s_error = s_error; largest_s_index = i; } total_c_error += c_error; total_s_error += s_error; } // these now contain the *average* squared error total_c_error /= (double)n; total_s_error /= (double)n; printf( "Squared error in cosines: \n" "\tAverage: %f (%f%% error)\n" "\tLargest: %f (%f%% error)\n" "\t\tInput:\t\t%f\n" "\t\tValue:\t\t%f\n" "\t\tApproximation:\t%f\n", total_c_error, sqrt(total_c_error) * SQRT_NUM_LOOPS, largest_c_error, sqrt(largest_c_error) * SQRT_NUM_LOOPS, inputs[largest_c_index], EXTRACT_REAL(ideals[largest_c_index]), EXTRACT_REAL(approxs[largest_c_index]) ); printf( "Squared error in sines: \n" "\tAverage: %f (%f%% error)\n" "\tLargest: %f (%f%% error)\n" "\t\tInput:\t\t%f\n" "\t\tValue:\t\t%f\n" "\t\tApproximation:\t%f\n", total_s_error, sqrt(total_s_error) * SQRT_NUM_LOOPS, largest_s_error, sqrt(largest_s_error) * SQRT_NUM_LOOPS, inputs[largest_c_index], EXTRACT_IMAG(ideals[largest_s_index]), EXTRACT_IMAG(approxs[largest_s_index]) ); } // time the length of the computation `f` in nanoseconds long time_computation( void (*f)(double, void*), const double* inputs, CIRCLE_TYPE* results, int n ) { size_t i; struct timespec tp1; struct timespec tp2; clock_gettime(CLOCK_MONOTONIC, &tp1); for (i = 0; i < n; i++) { f(inputs[i], results + i); } clock_gettime(CLOCK_MONOTONIC, &tp2); return SECONDS_PER_NANOSECOND * (tp2.tv_sec - tp1.tv_sec) + (tp2.tv_nsec - tp1.tv_sec); } int main(int argn, char** args) { long trig_time, rat_time; double rands[NUM_LOOPS]; CIRCLE_TYPE trigs[NUM_LOOPS]; CIRCLE_TYPE rats[NUM_LOOPS]; size_t i; for (i = 0; i < NUM_LOOPS; i++) { rands[i] = rand() / (double)RAND_MAX; } trig_time = time_computation(&turn_update, rands, trigs, NUM_LOOPS); printf( #ifdef USE_COMPLEX "Timing for %d complex.h cexp:\t%ldns\n", #else "Timing for %d math.h sin and cos:\t%ldns\n", #endif NUM_LOOPS, trig_time ); rat_time = time_computation(&approx_turn_update, rands, rats, NUM_LOOPS); printf("Timing for %d approximations:\t%ldns\n", NUM_LOOPS, rat_time); long diff = rat_time - trig_time; double frac_speed; if (diff > 0) { frac_speed = rat_time / (double)trig_time; printf( STR_RED "stdlib" STR_NORM " faster, speedup: %ldns (%2.2fx)\n", diff, frac_speed ); } else { frac_speed = trig_time / (double)rat_time; printf( STR_GREEN "Approximation" STR_NORM " faster, speedup: %ldns (%2.2fx)\n", -diff, frac_speed ); print_errors(rands, trigs, rats, NUM_LOOPS); } return 0; }