tweaks to all chebyshev posts
This commit is contained in:
parent
869c35c1a4
commit
d44f4ad174
@ -9,7 +9,9 @@ date: "2021-08-18"
|
|||||||
date-modified: "2025-06-17"
|
date-modified: "2025-06-17"
|
||||||
categories:
|
categories:
|
||||||
- geometry
|
- geometry
|
||||||
|
- generating functions
|
||||||
- algebra
|
- algebra
|
||||||
|
- python
|
||||||
---
|
---
|
||||||
|
|
||||||
<style>
|
<style>
|
||||||
@ -18,6 +20,10 @@ categories:
|
|||||||
object-fit: contain;
|
object-fit: contain;
|
||||||
height: 100%;
|
height: 100%;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
.figure-img.wide {
|
||||||
|
max-width: 768px;
|
||||||
|
}
|
||||||
</style>
|
</style>
|
||||||
|
|
||||||
```{python}
|
```{python}
|
||||||
@ -53,7 +59,7 @@ When constructing a regular polygon, one wants a ratio between the length of a e
|
|||||||

|
](./central_angle_figures.png){.wide}
|
||||||
|
|
||||||
In a convex polygon, the total central angle is always one full turn, or 2π radians.
|
In a convex polygon, the total central angle is always one full turn, or 2π radians.
|
||||||
The central angle of a regular *n*-gon is ${2\pi \over n}$ radians,
|
The central angle of a regular *n*-gon is ${2\pi \over n}$ radians,
|
||||||
@ -216,7 +222,7 @@ Markdown(tabulate(
|
|||||||
for poly in [sympy.chebyshevu_poly(n - 1, z / 2) if n > 0 else sympy.sympify(0)]
|
for poly in [sympy.chebyshevu_poly(n - 1, z / 2) if n > 0 else sympy.sympify(0)]
|
||||||
],
|
],
|
||||||
headers=[
|
headers=[
|
||||||
"n",
|
"*n*",
|
||||||
"$[x^n]B(x; z / 2) = U_{n - 1}(z / 2)$",
|
"$[x^n]B(x; z / 2) = U_{n - 1}(z / 2)$",
|
||||||
"Factored",
|
"Factored",
|
||||||
],
|
],
|
||||||
@ -227,8 +233,8 @@ Markdown(tabulate(
|
|||||||
|
|
||||||
Evaluating the polynomials at $z / 2$ cancels the 2 in the denominator (and recurrence),
|
Evaluating the polynomials at $z / 2$ cancels the 2 in the denominator (and recurrence),
|
||||||
making these expressions much simpler.
|
making these expressions much simpler.
|
||||||
This evaluation can also be interpreted intuitively by recalling from the previous diagram
|
This evaluation has an interpretation in terms of the previous diagram --
|
||||||
we used *half* the length of a side.
|
recall we used *half* the length of a side as a leg of the right triangle.
|
||||||
For a unit circumradius, the side length itself is then $2\sin( {\pi / n} )$.
|
For a unit circumradius, the side length itself is then $2\sin( {\pi / n} )$.
|
||||||
To compensate for this doubling, the Chebyshev polynomial must be evaluated at half its normal argument.
|
To compensate for this doubling, the Chebyshev polynomial must be evaluated at half its normal argument.
|
||||||
|
|
||||||
@ -255,9 +261,9 @@ $$
|
|||||||
|
|
||||||
According to how we derived this series, when $z = 2\cos(\theta)$, the roots of this polynomial
|
According to how we derived this series, when $z = 2\cos(\theta)$, the roots of this polynomial
|
||||||
correspond to when $\sin(5\theta) / \sin(\theta) = 0$.
|
correspond to when $\sin(5\theta) / \sin(\theta) = 0$.
|
||||||
This relation itself is true when for $\theta = \pi / 5$, since $\sin(5 \pi / 5) = 0$.
|
This relation itself is true when $\theta = \pi / 5$, since $\sin(5 \pi / 5) = 0$.
|
||||||
|
|
||||||
One of the factors in terms must therefore be the minimal polynomial of $2\cos(\pi / 5 )$.
|
One of the factors must therefore be the minimal polynomial of $2\cos(\pi / 5 )$.
|
||||||
The former happens to be correct correct, since $2\cos( \pi / 5 ) = \varphi$, the golden ratio.
|
The former happens to be correct correct, since $2\cos( \pi / 5 ) = \varphi$, the golden ratio.
|
||||||
Note that the second factor is the first evaluated at -*z*.
|
Note that the second factor is the first evaluated at -*z*.
|
||||||
|
|
||||||
@ -278,7 +284,7 @@ $$
|
|||||||
Whichever is the minimal polynomial (the former), it is a cubic, and constructing
|
Whichever is the minimal polynomial (the former), it is a cubic, and constructing
|
||||||
a regular heptagon is equivalent to solving it for *z*.
|
a regular heptagon is equivalent to solving it for *z*.
|
||||||
But there are no (nondegenerate) cubics that one can produce via compass and straightedge,
|
But there are no (nondegenerate) cubics that one can produce via compass and straightedge,
|
||||||
and the construction fails.
|
and all constructions necessarily fail.
|
||||||
|
|
||||||
|
|
||||||
#### Decagons
|
#### Decagons
|
||||||
@ -341,7 +347,7 @@ Markdown(tabulate(
|
|||||||
n,
|
n,
|
||||||
"$" + sympy.latex(poly) + "$",
|
"$" + sympy.latex(poly) + "$",
|
||||||
k,
|
k,
|
||||||
int(poly.coeff(z, n - k)), # type: ignore
|
int(poly.coeff(z, k)), # type: ignore
|
||||||
]
|
]
|
||||||
for n, k in zip(range(4, 8), range(3, -1, -1))
|
for n, k in zip(range(4, 8), range(3, -1, -1))
|
||||||
for poly in [sympy.chebyshevu_poly(n - 1, z / 2) if n > 0 else sympy.sympify(0)]
|
for poly in [sympy.chebyshevu_poly(n - 1, z / 2) if n > 0 else sympy.sympify(0)]
|
||||||
@ -350,15 +356,15 @@ Markdown(tabulate(
|
|||||||
"*n*",
|
"*n*",
|
||||||
"$[x^n]B(x; z / 2)$",
|
"$[x^n]B(x; z / 2)$",
|
||||||
"*k*",
|
"*k*",
|
||||||
"$[z^{n - k}][x^n]B(x; z / 2)$",
|
"$[z^{k}][x^n]B(x; z / 2)$",
|
||||||
],
|
],
|
||||||
numalign="left",
|
numalign="left",
|
||||||
stralign="left",
|
stralign="left",
|
||||||
))
|
))
|
||||||
```
|
```
|
||||||
|
|
||||||
The last column looks like an alternating row of Pascal's triangle, and can be expressed
|
The last column looks like an alternating row of Pascal's triangle
|
||||||
as ${n - k \choose k}(-1)^k$.
|
(namely, ${n - \lfloor {k / 2} \rfloor - 1 \choose k}(-1)^k$).
|
||||||
This resemblance can be made more apparent by listing the coefficients of the polynomials in a table.
|
This resemblance can be made more apparent by listing the coefficients of the polynomials in a table.
|
||||||
|
|
||||||
```{python}
|
```{python}
|
||||||
@ -389,10 +395,10 @@ Markdown(tabulate(
|
|||||||
*[
|
*[
|
||||||
0 if k % 2 == 1
|
0 if k % 2 == 1
|
||||||
else rainbow_class(
|
else rainbow_class(
|
||||||
comb(n - (k // 2) - 1, nm - (k // 2)) * (-1)**(k // 2),
|
comb(n - (k // 2) - 1, k // 2) * (-1)**(k // 2),
|
||||||
n - (k // 2) - 1,
|
n - (k // 2) - 1,
|
||||||
)
|
)
|
||||||
for nm, k in zip(range(n), range(10))
|
for k in range(n)
|
||||||
]
|
]
|
||||||
]
|
]
|
||||||
for n in range(1, 11)
|
for n in range(1, 11)
|
||||||
@ -433,12 +439,13 @@ $$
|
|||||||
= x^{n+1} (1 + x^2)^{-n - 1}
|
= x^{n+1} (1 + x^2)^{-n - 1}
|
||||||
\\
|
\\
|
||||||
&= x^{n+1} \sum_{k=0}^\infty {-n - 1 \choose k}(x^2)^k
|
&= x^{n+1} \sum_{k=0}^\infty {-n - 1 \choose k}(x^2)^k
|
||||||
|
\quad \text{Binomial theorem}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
While the use of the binomial theorem in $1 + x^2$ is more than enough to justify
|
While the use of the binomial theorem is more than enough to justify
|
||||||
the appearance of Pascal's triangle (along with explaining the 0's),
|
the appearance of Pascal's triangle (along with explaining the 0's),
|
||||||
I will press onward until it becomes excruciatingly obvious.
|
I'll simplify further to explicitly show the alternating signs.
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
@ -507,7 +514,7 @@ Conveniently, $U_{2 -\ 1}(z / 2) = z$ is also a factor, and 2 is likewise a fact
|
|||||||
|
|
||||||
This pattern is present throughout the table; $n = 6$ contains factors for
|
This pattern is present throughout the table; $n = 6$ contains factors for
|
||||||
$n = 2 \text{ and } 3$ and the prime numbers have no smaller factors.
|
$n = 2 \text{ and } 3$ and the prime numbers have no smaller factors.
|
||||||
If this observation is legitimate, call the new term $f_n(z)$
|
If this observation is legitimate, call the newest term $f_n(z)$
|
||||||
and denote $p_n(z) = U_{n -\ 1}( z / 2 )$.
|
and denote $p_n(z) = U_{n -\ 1}( z / 2 )$.
|
||||||
|
|
||||||
|
|
||||||
@ -711,9 +718,9 @@ Markdown(tabulate(
|
|||||||
)
|
)
|
||||||
]
|
]
|
||||||
] + [[
|
] + [[
|
||||||
"",
|
"-",
|
||||||
"[OEIS A055034](http://oeis.org/A055034)",
|
"[OEIS A055034](http://oeis.org/A055034)",
|
||||||
"",
|
"-",
|
||||||
"[OEIS A187360](http://oeis.org/A187360)",
|
"[OEIS A187360](http://oeis.org/A187360)",
|
||||||
]],
|
]],
|
||||||
headers=[
|
headers=[
|
||||||
|
|||||||
@ -8,11 +8,24 @@ format:
|
|||||||
date: "2021-08-19"
|
date: "2021-08-19"
|
||||||
date-modified: "2025-06-24"
|
date-modified: "2025-06-24"
|
||||||
categories:
|
categories:
|
||||||
- geometry
|
|
||||||
- algebra
|
- algebra
|
||||||
|
- linear algebra
|
||||||
|
- generating functions
|
||||||
- graph theory
|
- graph theory
|
||||||
|
- python
|
||||||
---
|
---
|
||||||
|
|
||||||
|
<style>
|
||||||
|
.figure-img {
|
||||||
|
max-width: 512px;
|
||||||
|
object-fit: contain;
|
||||||
|
height: 100%;
|
||||||
|
}
|
||||||
|
|
||||||
|
.figure-img.wide {
|
||||||
|
max-width: 768px;
|
||||||
|
}
|
||||||
|
</style>
|
||||||
|
|
||||||
In the [previous post](../1), I tied the geometry regular polygons to a sequence of polynomials
|
In the [previous post](../1), I tied the geometry regular polygons to a sequence of polynomials
|
||||||
though some clever algebraic manipulation.
|
though some clever algebraic manipulation.
|
||||||
@ -36,17 +49,18 @@ Only examining these figures by their connectedness is precisely the kind of thi
|
|||||||
*graph theory* deals with.
|
*graph theory* deals with.
|
||||||
"Graph" is a potentially confusing term, since it has nothing to do with "graphs of functions",
|
"Graph" is a potentially confusing term, since it has nothing to do with "graphs of functions",
|
||||||
but the name is supposed to evoke the fact that they are "drawings".
|
but the name is supposed to evoke the fact that they are "drawings".
|
||||||
For the graphs we're interested, there's some additional terminology:
|
For the graphs we're interested in, there's some additional terminology:
|
||||||
|
|
||||||
- Vertices themselves are sometimes instead called *nodes*
|
- Vertices themselves are sometimes instead called *nodes*
|
||||||
- Edge in the graph have no direction associated to them, so the graph is called *undirected*.
|
- Edge in the graph have no direction in how they connect nodes, so the graph is called *undirected*.
|
||||||
- Additionally, these graphs are *planar* since the nodes can be arranged
|
- If the nodes in a graph can be arranged so that no edges appear to intersect,
|
||||||
so that no edges appear to intersect.
|
the graph is *planar*.
|
||||||
- The lower-right figure in the above diagram has intersecting edges,
|
- For example, lower-right figure in the above diagram appears to have intersecting edges,
|
||||||
but the nodes can be rearranged to look like the other graphs, so it is planar.
|
but the nodes can be rearranged to look like the other graphs, so it is planar.
|
||||||
|
|
||||||
Graphs themselves typically come in families.
|
It's easiest to study families of graphs, rather than isolated examples.
|
||||||
If the graph is a simple loop, it is called a [*cycle graph*](https://en.wikipedia.org/wiki/Cycle_graph).
|
If the graph is a simple loop of nodes, it is called a
|
||||||
|
[*cycle graph*](https://en.wikipedia.org/wiki/Cycle_graph).
|
||||||
They are denoted by $C_n$, where *n* is the number of nodes.
|
They are denoted by $C_n$, where *n* is the number of nodes.
|
||||||
In a cycle graph, since all nodes are identical to each other (they all connect to two edges)
|
In a cycle graph, since all nodes are identical to each other (they all connect to two edges)
|
||||||
and all edges are identical to each other (they connect identical vertices),
|
and all edges are identical to each other (they connect identical vertices),
|
||||||
@ -67,8 +81,12 @@ In the case of an undirected graph, these are unordered pairs.
|
|||||||
While such a list is convenient, it doesn't convey a lot of information about the graph
|
While such a list is convenient, it doesn't convey a lot of information about the graph
|
||||||
besides the number of edges.
|
besides the number of edges.
|
||||||
|
|
||||||
Alternatively, these pairs can also be interpreted as addresses in a matrix,
|
Alternatively, these pairs can also be interpreted as addresses in a square matrix,
|
||||||
called an *adjacency matrix*.
|
called an *adjacency matrix*.
|
||||||
|
Each column and row correspond to a specific node, and an entry is 1
|
||||||
|
when the nodes of a row and column of are joined by an edge (and 0 otherwise).
|
||||||
|
For undirected graphs, these matrices are symmetric, since it is possible
|
||||||
|
to traverse an edge in either direction.
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
@ -113,13 +131,10 @@ $$
|
|||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
Each adjacency matrix is square, where each column and row refer to a specific node.
|
Swapping the labels on two nodes is will exchange two rows and two columns
|
||||||
An entry is 1 when the nodes corresponding to the row and column of its address are joined by an edge (and zero otherwise).
|
of the adjacency matrix.
|
||||||
For undirected graphs, these matrices are symmetric, since it is possible to traverse an edge in either direction.
|
Just one of these swaps would flip the sign of its determinant, but since they occur in pairs,
|
||||||
|
the determinant is invariant of the labelling (equally, a graph invariant).
|
||||||
Swapping the labels on two nodes is as simple as exchanging two rows and two columns.
|
|
||||||
Just one of these swaps would flip the sign of the determinant of the adjacency matrix.
|
|
||||||
However, since they occur in pairs, the determinant is invariant of the labelling (equally, a graph invariant).
|
|
||||||
|
|
||||||
|
|
||||||
Prismatic Recurrence
|
Prismatic Recurrence
|
||||||
@ -292,7 +307,7 @@ The various $P_n$ are in fact the adjacency matrices of a path on *n* nodes.
|
|||||||
|
|
||||||

|
](./path_graphs.png){.wide}
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
@ -409,20 +424,20 @@ Therefore, the sequence of polynomials $p_n(\lambda)$ is:
|
|||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{gather*}
|
\begin{gather*}
|
||||||
p_0(\lambda) &= && 1
|
p_0(\lambda) &=&& && 1
|
||||||
\\
|
\\
|
||||||
p_1(\lambda) &= && \lambda
|
p_1(\lambda) &=&& && \lambda
|
||||||
\\
|
\\
|
||||||
p_2(\lambda) &= \lambda \lambda - 1
|
p_2(\lambda) &=&& \lambda \lambda - 1
|
||||||
&=& \lambda^2 - 1
|
&=& \lambda^2 - 1
|
||||||
\\
|
\\
|
||||||
p_3(\lambda) &= \lambda (\lambda^2 - 1) - \lambda
|
p_3(\lambda) &=&& \lambda (\lambda^2 - 1) - \lambda
|
||||||
&=& \lambda(\lambda^2 - 2)
|
&=& \lambda(\lambda^2 - 2)
|
||||||
\\
|
\\
|
||||||
p_4(\lambda) &= \lambda (\lambda(\lambda^2 - 2)) - (\lambda^2 - 1)
|
p_4(\lambda) &=&& \lambda (\lambda(\lambda^2 - 2)) - (\lambda^2 - 1)
|
||||||
&=& \lambda^4 - 3\lambda^2 + 1
|
&=& \lambda^4 - 3\lambda^2 + 1
|
||||||
\\
|
\\
|
||||||
\vdots & \vdots && \vdots
|
\vdots & && \vdots && \vdots
|
||||||
\end{gather*}
|
\end{gather*}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
@ -442,7 +457,7 @@ $$
|
|||||||
P(x; \lambda) = {B(x; \lambda / 2) \over x} = {1 \over 1 - \lambda x +\ x^2}
|
P(x; \lambda) = {B(x; \lambda / 2) \over x} = {1 \over 1 - \lambda x +\ x^2}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
Discarding the initial $c_0$ and $c_1$ by setting them to 0[^2], the generating function is
|
Discarding the initial $c_0$ and $c_1$ by setting them to zero[^2], the generating function is
|
||||||
|
|
||||||
[^2]: It's a good idea to ask why we can do this.
|
[^2]: It's a good idea to ask why we can do this.
|
||||||
Try examining $c_2$ and $c_3$.
|
Try examining $c_2$ and $c_3$.
|
||||||
@ -450,7 +465,7 @@ Discarding the initial $c_0$ and $c_1$ by setting them to 0[^2], the generating
|
|||||||
$$
|
$$
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
c_{n+2}(\lambda) &= \lambda p_{n+1}(\lambda) - 2(p_n(\lambda) + 1)
|
c_{n+2}(\lambda) &= \lambda p_{n+1}(\lambda) - 2(p_n(\lambda) + 1)
|
||||||
\\ \\
|
\\[14pt]
|
||||||
{C(x; \lambda) - c_0(\lambda) - x c_1(\lambda) \over x^2}
|
{C(x; \lambda) - c_0(\lambda) - x c_1(\lambda) \over x^2}
|
||||||
&= \lambda \left( {P(x; \lambda) - 1 \over x} \right)
|
&= \lambda \left( {P(x; \lambda) - 1 \over x} \right)
|
||||||
- 2\left( P(x; \lambda) + {1 \over 1 - x} \right)
|
- 2\left( P(x; \lambda) + {1 \over 1 - x} \right)
|
||||||
@ -465,7 +480,7 @@ $$
|
|||||||
+ 2 x^3 + x^2 \lambda^2 - 4 x^2
|
+ 2 x^3 + x^2 \lambda^2 - 4 x^2
|
||||||
\\
|
\\
|
||||||
&= x^2 (\lambda - 2) (x^2 - \lambda x - x + \lambda + 2)
|
&= x^2 (\lambda - 2) (x^2 - \lambda x - x + \lambda + 2)
|
||||||
\\ \\
|
\\[14pt]
|
||||||
C(x; \lambda) &= x^2 (\lambda - 2)
|
C(x; \lambda) &= x^2 (\lambda - 2)
|
||||||
{(x^2 - (\lambda + 1) x + \lambda + 2)
|
{(x^2 - (\lambda + 1) x + \lambda + 2)
|
||||||
\over (1 - x)(1 - \lambda x + x^2)}
|
\over (1 - x)(1 - \lambda x + x^2)}
|
||||||
@ -507,36 +522,18 @@ Paths are degenerate trees, but we can make them slightly more interesting by in
|
|||||||
|
|
||||||

|
](./tree_graphs.png){.wide}
|
||||||
|
|
||||||
|
In this notation, the subscripts denote the consituent paths if the "added" node and the
|
||||||
|
one it is connected to are both removed.
|
||||||
|
It's easy to see that $T_{a,b} \cong T_{a,b}$, since this just swaps the arms.
|
||||||
|
Also, $T_{a, 0} \cong T_{0, a} \cong P_{a + 2}$.
|
||||||
|
|
||||||
|
Let's try dissecting some of the larger trees.
|
||||||
|
The adjacency matrices for $T_{1,3}$ and $T_{2,2}$ are:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
T_{1,1} := \begin{matrix}[
|
|
||||||
(0, 1), \\
|
|
||||||
(1, 2), \\
|
|
||||||
(1, 3)
|
|
||||||
]\end{matrix} & \cong
|
|
||||||
\begin{pmatrix}
|
|
||||||
0 & 1 & 0 & 0 \\
|
|
||||||
1 & 0 & 1 & 1 \\
|
|
||||||
0 & 1 & 0 & 0 \\
|
|
||||||
0 & 1 & 0 & 0
|
|
||||||
\end{pmatrix}
|
|
||||||
\\ \\
|
|
||||||
T_{1,2} := \begin{matrix} [
|
|
||||||
(0, 1), \\
|
|
||||||
(1, 2), \\
|
|
||||||
(2, 3), \\
|
|
||||||
(1, 4)
|
|
||||||
]\end{matrix} & \cong
|
|
||||||
\begin{pmatrix}
|
|
||||||
0 & 1 & 0 & 0 & 0 \\
|
|
||||||
1 & 0 & 1 & 0 & 1 \\
|
|
||||||
0 & 1 & 0 & 1 & 0 \\
|
|
||||||
0 & 0 & 1 & 0 & 0 \\
|
|
||||||
0 & 1 & 0 & 0 & 0
|
|
||||||
\end{pmatrix}
|
|
||||||
\\ \\
|
|
||||||
T_{1,3} := \begin{matrix}[
|
T_{1,3} := \begin{matrix}[
|
||||||
(0, 1), \\
|
(0, 1), \\
|
||||||
(1, 2), \\
|
(1, 2), \\
|
||||||
@ -571,13 +568,7 @@ $$
|
|||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
The subscripts denote the consituent paths if the "added" node and the
|
Starting with $T_{1,3}$, its characteristic polynomial is:
|
||||||
one it is connected to are both removed.
|
|
||||||
It's easy to see that $T_{a,b} \cong T_{a,b}$, since this just swaps the arms.
|
|
||||||
Also, $T_{a, 0} \cong T_{0, a} \cong P_{a + 2}$.
|
|
||||||
|
|
||||||
Let's try dissecting one of the larger trees.
|
|
||||||
|
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
@ -593,7 +584,7 @@ $$
|
|||||||
\end{matrix}
|
\end{matrix}
|
||||||
\right |
|
\right |
|
||||||
\\
|
\\
|
||||||
&= (-1)^{6 + 6} \lambda m_{6,6} + (-1)^{2 + 6} (-1) m_{2,6}
|
&= \lambda (-1)^{6 + 6} m_{6,6} + (-1) (-1)^{2 + 6} m_{2,6}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
@ -614,7 +605,7 @@ $$
|
|||||||
\end{matrix}
|
\end{matrix}
|
||||||
\right |
|
\right |
|
||||||
\\
|
\\
|
||||||
&= (-1)^{5 + 2} (-1)
|
&= (-1) (-1)^{5 + 2}
|
||||||
\left |
|
\left |
|
||||||
\begin{matrix}
|
\begin{matrix}
|
||||||
\lambda & 0 & 0 & 0 \\
|
\lambda & 0 & 0 & 0 \\
|
||||||
@ -645,7 +636,7 @@ $$
|
|||||||
\end{matrix}
|
\end{matrix}
|
||||||
\right |
|
\right |
|
||||||
\\
|
\\
|
||||||
&= (-1)^{6 + 6} \lambda m_{6,6} + (-1)^{3 + 6} (-1) m_{3,6}
|
&= (-1)^{6 + 6} \lambda m_{6,6} + (-1) (-1)^{3 + 6} m_{3,6}
|
||||||
\\ \\
|
\\ \\
|
||||||
m_{3,6}
|
m_{3,6}
|
||||||
&= \left |
|
&= \left |
|
||||||
@ -658,7 +649,7 @@ $$
|
|||||||
\end{matrix}
|
\end{matrix}
|
||||||
\right |
|
\right |
|
||||||
\\
|
\\
|
||||||
&= (-1)^{5 + 3} (-1)
|
&= (-1) (-1)^{5 + 3}
|
||||||
\left |
|
\left |
|
||||||
\begin{matrix}
|
\begin{matrix}
|
||||||
\lambda & -1 & 0 & 0 \\
|
\lambda & -1 & 0 & 0 \\
|
||||||
@ -674,7 +665,7 @@ Here we get something similar: a combination of $p_5(\lambda)$ and an extra term
|
|||||||
In this case, the final determinant can be written as $p_2(\lambda)^2$.
|
In this case, the final determinant can be written as $p_2(\lambda)^2$.
|
||||||
|
|
||||||
Now it can be observed that the extra terms are the polynomials corresponding
|
Now it can be observed that the extra terms are the polynomials corresponding
|
||||||
to $P_a$ and $P_b$ ($p_1(\lambda) = \lambda$, after all).
|
to $P_a$ and $P_b$ (recall that $p_1(\lambda) = \lambda$, after all).
|
||||||
In both cases, the second expansion was necessary to get rid of the symmetric -1
|
In both cases, the second expansion was necessary to get rid of the symmetric -1
|
||||||
entries added to the matrix.
|
entries added to the matrix.
|
||||||
The sign of this extra term is always negative, since the -1 entries cancel
|
The sign of this extra term is always negative, since the -1 entries cancel
|
||||||
@ -683,10 +674,10 @@ The sign of this extra term is always negative, since the -1 entries cancel
|
|||||||
Therefore, the expression for these characteristic polynomials should be:
|
Therefore, the expression for these characteristic polynomials should be:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
t_{a,b}(z) = z \cdot p_{a + b + 1}(z) - p_a(z) p_b(z)
|
t_{a,b}(\lambda) = \lambda p_{a + b + 1}(\lambda) - p_a(z) p_b(\lambda)
|
||||||
$$
|
$$
|
||||||
|
|
||||||
Note that if *b* is 0, this coincides with the recurrence for $p_n(z)$.
|
Note that if *b* is 0, this agrees with the recurrence for $p_n(\lambda)$.
|
||||||
|
|
||||||
|
|
||||||
### Examining Small Trees
|
### Examining Small Trees
|
||||||
@ -694,13 +685,14 @@ Note that if *b* is 0, this coincides with the recurrence for $p_n(z)$.
|
|||||||
Due to the subscript of the first term of the RHS, this recurrence is harder to turn into
|
Due to the subscript of the first term of the RHS, this recurrence is harder to turn into
|
||||||
a generating function.
|
a generating function.
|
||||||
Instead, let's look at a few smaller trees to see what kind of polynomials they build.
|
Instead, let's look at a few smaller trees to see what kind of polynomials they build.
|
||||||
|
We'll also change the variable of the polynomial to *z* for simplicity.
|
||||||
|
|
||||||
The first tree of note is $T_{1,1}$.
|
The first tree of note is $T_{1,1}$.
|
||||||
This has characteristic polynomial
|
This has characteristic polynomial
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
t_{1,1}(z) &= z \cdot p_{3} - p_1(z) p_1(z)
|
t_{1,1}(z) &= z p_{3}(z) - p_1(z) p_1(z)
|
||||||
\\
|
\\
|
||||||
&= z (z^3 - z^2) - z^2
|
&= z (z^3 - z^2) - z^2
|
||||||
\\
|
\\
|
||||||
@ -713,9 +705,9 @@ By symmetry, these are the same graph, so we have characteristic polynomial
|
|||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
t_{1,2}(z) &= z \cdot p_{4} - p_1(z) p_2(z)
|
t_{1,2}(z) &= z p_{4}(z) - p_1(z) p_2(z)
|
||||||
\\
|
\\
|
||||||
&= z (z^4 - 3z^2 + 2) - z (z^2 - 1)
|
&= z (z^4 - 3z^2 + 2) - z \cdot (z^2 - 1)
|
||||||
\\
|
\\
|
||||||
&= z (z^4 - 4z^2 + 2)
|
&= z (z^4 - 4z^2 + 2)
|
||||||
\end{align*}
|
\end{align*}
|
||||||
@ -725,13 +717,13 @@ Finally, let's look at $T_{1,3}$ and $T_{2,2}$, the trees we used to derive the
|
|||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
t_{1,3}(z) &= z \cdot p_{5} - p_1(z) p_3(z)
|
t_{1,3}(z) &= z p_{5}(z) - p_1(z) p_3(z)
|
||||||
\\
|
\\
|
||||||
&= z (z^5 - 4z^3 + 3z) - z \cdot (z^3 - 2z)
|
&= z (z^5 - 4z^3 + 3z) - z \cdot (z^3 - 2z)
|
||||||
\\
|
\\
|
||||||
&= z^2 (z^4 - 5z^2 + 5)
|
&= z^2 (z^4 - 5z^2 + 5)
|
||||||
\\[10pt]
|
\\[10pt]
|
||||||
t_{2,2}(z) &= z \cdot p_{5} - p_2(z) p_2(z)
|
t_{2,2}(z) &= z p_{5}(z) - p_2(z) p_2(z)
|
||||||
\\
|
\\
|
||||||
&= z (z^5 - 4z^3 + 3z) - ( z^2 - 1 )^2
|
&= z (z^5 - 4z^3 + 3z) - ( z^2 - 1 )^2
|
||||||
\\
|
\\
|
||||||
@ -746,10 +738,8 @@ From the last post, we saw that $z^4 - 5z^2 + 5$ is a factor of $p_9(z)$, from w
|
|||||||
|
|
||||||
This is also true for:
|
This is also true for:
|
||||||
|
|
||||||
- In $t_{1,2}$,
|
- In $t_{1,2}$, the factor $z^4 - 4z^2 + 2$, $p_7(z)$, and $2 \cos(\pi / 8)$, respectively
|
||||||
- $z^4 - 4z^2 + 2$, $p_7(z)$, and $2 \cos(\pi / 8)$, respectively
|
- In $t_{2,2}$, the factor $z^4 - 4z^2 + 1$, $p_11(z)$, and $2 \cos(\pi / 12)$, respectively
|
||||||
- In $t_{2,2}$,
|
|
||||||
- $z^4 - 4z^2 + 1$, $p_11(z)$, and $2 \cos(\pi / 12)$, respectively
|
|
||||||
|
|
||||||
We established that the subscripts of the tree (*a* and *b*) indicate constituent *n*-paths,
|
We established that the subscripts of the tree (*a* and *b*) indicate constituent *n*-paths,
|
||||||
which we know to correspond to *n+1*-gons.
|
which we know to correspond to *n+1*-gons.
|
||||||
|
|||||||
@ -9,8 +9,21 @@ date: "2021-08-27"
|
|||||||
date-modified: "2025-06-25"
|
date-modified: "2025-06-25"
|
||||||
categories:
|
categories:
|
||||||
- algebra
|
- algebra
|
||||||
|
- generating functions
|
||||||
---
|
---
|
||||||
|
|
||||||
|
<style>
|
||||||
|
.figure-img {
|
||||||
|
max-width: 512px;
|
||||||
|
object-fit: contain;
|
||||||
|
height: 100%;
|
||||||
|
}
|
||||||
|
|
||||||
|
.figure-img.wide {
|
||||||
|
max-width: 768px;
|
||||||
|
}
|
||||||
|
</style>
|
||||||
|
|
||||||
|
|
||||||
In the [previous](../1) [two](../2) posts, I made clear the ties between the
|
In the [previous](../1) [two](../2) posts, I made clear the ties between the
|
||||||
Chebyshev polynomials, constructibile polygons, and graph theory.
|
Chebyshev polynomials, constructibile polygons, and graph theory.
|
||||||
@ -90,20 +103,28 @@ Using a generic quadratic polynomial $p_2(z) = a z^2 + b z + c$, the second and
|
|||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
1 \cdot p_2 &= \int_{-1}^1 (a z^2 + b z + c) dz
|
\langle 1, p_2 \rangle
|
||||||
= \left[
|
&= \int_{-1}^1 (a z^2 + b z + c) dz
|
||||||
{a z^3 \over 3} + c z
|
= \left[
|
||||||
\right]_{-1}^1
|
{a z^3 \over 3} + c z
|
||||||
= {2 \over 3}a + 2c = 0 \implies a = -3c
|
\right]_{-1}^1
|
||||||
|
= {2 \over 3}a + 2c = 0
|
||||||
\\
|
\\
|
||||||
z \cdot p_2 &= \int_{-1}^1 (a z^3 + b z^2 + c z) dz
|
&\implies a = -3c
|
||||||
|
\\[14pt]
|
||||||
|
\langle z, p_2 \rangle
|
||||||
|
&= \int_{-1}^1 (a z^3 + b z^2 + c z) dz
|
||||||
= \left[
|
= \left[
|
||||||
{b z^3 \over 3}
|
{b z^3 \over 3}
|
||||||
\right]_{-1}^1
|
\right]_{-1}^1
|
||||||
= {2 \over 3}b = 0 \implies b = 0
|
= {2 \over 3}b = 0
|
||||||
\\
|
\\
|
||||||
p_2 \cdot p_2 &= \int_{-1}^1 (a z^2 + c)^2 dz
|
&\implies b = 0
|
||||||
= \int_{-1}^1 (a^2 z^4 + 2ac z^2 + c^2) dz = {2 \over 5}
|
\\[14pt]
|
||||||
|
\langle p_2, p_2 \rangle
|
||||||
|
&= \int_{-1}^1 (a z^2 + c)^2 dz
|
||||||
|
= \int_{-1}^1 (a^2 z^4 + 2ac z^2 + c^2) dz
|
||||||
|
= {2 \over 5}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
@ -113,7 +134,7 @@ The final integral, though not challenging, requires some additional steps to re
|
|||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\int_{-1}^1 (a^2 z^4 + 2ac z^2 + c^2) dz
|
\langle p_2, p_2 \rangle
|
||||||
&= \left[
|
&= \left[
|
||||||
a^2 {z^5 \over 5} + ( 2ac ) {z^3 \over 3} + c^2 z
|
a^2 {z^5 \over 5} + ( 2ac ) {z^3 \over 3} + c^2 z
|
||||||
\right]_{-1}^1
|
\right]_{-1}^1
|
||||||
@ -145,15 +166,20 @@ This family is called the
|
|||||||
named after Adrien-Marie Legendre.
|
named after Adrien-Marie Legendre.
|
||||||
Intriguingly, only a few surviving portraits of this mathematician are known, one of which is a fairly humorous caricature.
|
Intriguingly, only a few surviving portraits of this mathematician are known, one of which is a fairly humorous caricature.
|
||||||
|
|
||||||
::: {.row .centered}
|
<!-- TODO: better wikimedia imports -->
|
||||||
<a title="Julien-Léopold Boilly, Public domain, via Wikimedia Commons" href="https://commons.wikimedia.org/wiki/File:Legendre.jpg">
|
<div class="quarto-figure quarto-figure-center">
|
||||||
<img width="256" alt="Legendre" src="https://upload.wikimedia.org/wikipedia/commons/0/03/Legendre.jpg?20210711144200">
|
<figure class="figure">
|
||||||
</a>
|
<a title="Julien-Léopold Boilly, Public domain, via Wikimedia Commons" href="https://commons.wikimedia.org/wiki/File:Legendre.jpg">
|
||||||
|
<img class="img-fluid figure-img" alt="Legendre" src="https://upload.wikimedia.org/wikipedia/commons/0/03/Legendre.jpg?20210711144200">
|
||||||
|
</a>
|
||||||
|
|
||||||
Public domain image retrieved from Wikimedia
|
<figcaption>
|
||||||
:::
|
Public domain image retrieved from Wikimedia
|
||||||
|
</figcaption>
|
||||||
|
</figure>
|
||||||
|
</div>
|
||||||
|
|
||||||
Such a family is useful when doing numeric computations involving integrals.
|
An orthogonal family of polynomials is useful when doing numeric computations involving integrals.
|
||||||
Expressing a (scaled and shifted) general polynomial in an orthogonal basis not only
|
Expressing a (scaled and shifted) general polynomial in an orthogonal basis not only
|
||||||
simplifies the math, but can prevent errors from accumulating.
|
simplifies the math, but can prevent errors from accumulating.
|
||||||
These polynomials also have applications in electrical engineering.
|
These polynomials also have applications in electrical engineering.
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user