From a38b9f10dff0b48742db922e7067436bd1423d74 Mon Sep 17 00:00:00 2001 From: queue-miscreant Date: Tue, 18 Mar 2025 05:18:08 -0500 Subject: [PATCH] half-revisions to pentagons.3 --- posts/pentagons/1/index.qmd | 2 +- ... = 18 tatami.png => 18_hexagon_tatami.png} | Bin ...ron tatami.png => dodecahedron_tatami.png} | Bin ... t5t6dwdzC.png => drajmarsh_t5t6dwdzC.png} | Bin ...sh - t5t6uzC.png => drajmarsh_t5t6uzC.png} | Bin ...rajmarsh - t5zC.png => drajmarsh_t5zC.png} | Bin .../{drajmarsh - zC.png => drajmarsh_zC.png} | Bin ...third of frustum.png => frustum_third.png} | Bin posts/pentagons/3/index.qmd | 928 +++++++++++------- ...nverted t6.png => inverted_t6_frustum.png} | Bin ...decahedron.png => medial_dodecahedron.png} | Bin ...graph.png => regularized_tatami_graph.png} | Bin .../{t5 inverted t6.png => t5_t6_frustum.png} | Bin posts/pentagons/3/t5t6 graph.png | Bin 179843 -> 0 bytes .../3/{t6 frustum.png => t6_frustum.png} | Bin ...cious tatami.png => tatami_auspicious.png} | Bin .../3/{tatami graph.png => tatami_graph.png} | Bin ...ous tatami.png => tatami_inauspicious.png} | Bin ...atami topology.png => tatami_topology.png} | Bin ...r frustum.png => triangulated_frustum.png} | Bin ...i.png => truncated_icosahedron_tatami.png} | Bin 21 files changed, 595 insertions(+), 335 deletions(-) rename posts/pentagons/3/{f6 = 18 tatami.png => 18_hexagon_tatami.png} (100%) rename posts/pentagons/3/{dodecahedron tatami.png => dodecahedron_tatami.png} (100%) rename posts/pentagons/3/{drajmarsh - t5t6dwdzC.png => drajmarsh_t5t6dwdzC.png} (100%) rename posts/pentagons/3/{drajmarsh - t5t6uzC.png => drajmarsh_t5t6uzC.png} (100%) rename posts/pentagons/3/{drajmarsh - t5zC.png => drajmarsh_t5zC.png} (100%) rename posts/pentagons/3/{drajmarsh - zC.png => drajmarsh_zC.png} (100%) rename posts/pentagons/3/{third of frustum.png => frustum_third.png} (100%) rename posts/pentagons/3/{inverted t6.png => inverted_t6_frustum.png} (100%) rename posts/pentagons/3/{medial dodecahedron.png => medial_dodecahedron.png} (100%) rename posts/pentagons/3/{regularized tatami graph.png => regularized_tatami_graph.png} (100%) rename posts/pentagons/3/{t5 inverted t6.png => t5_t6_frustum.png} (100%) delete mode 100644 posts/pentagons/3/t5t6 graph.png rename posts/pentagons/3/{t6 frustum.png => t6_frustum.png} (100%) rename posts/pentagons/3/{auspicious tatami.png => tatami_auspicious.png} (100%) rename posts/pentagons/3/{tatami graph.png => tatami_graph.png} (100%) rename posts/pentagons/3/{inauspicious tatami.png => tatami_inauspicious.png} (100%) rename posts/pentagons/3/{tatami topology.png => tatami_topology.png} (100%) rename posts/pentagons/3/{triangulated triangular frustum.png => triangulated_frustum.png} (100%) rename posts/pentagons/3/{truncated icosahedron tatami.png => truncated_icosahedron_tatami.png} (100%) diff --git a/posts/pentagons/1/index.qmd b/posts/pentagons/1/index.qmd index 73edb33..7834ee6 100644 --- a/posts/pentagons/1/index.qmd +++ b/posts/pentagons/1/index.qmd @@ -633,7 +633,7 @@ goldberg_classes = { ), GoldbergData( parameter=(4, 1), - conway="tdwD", + conway="dkwD", conway_recipe="K300tdwD", ), ], diff --git a/posts/pentagons/3/f6 = 18 tatami.png b/posts/pentagons/3/18_hexagon_tatami.png similarity index 100% rename from posts/pentagons/3/f6 = 18 tatami.png rename to posts/pentagons/3/18_hexagon_tatami.png diff --git a/posts/pentagons/3/dodecahedron tatami.png b/posts/pentagons/3/dodecahedron_tatami.png similarity index 100% rename from posts/pentagons/3/dodecahedron tatami.png rename to posts/pentagons/3/dodecahedron_tatami.png diff --git a/posts/pentagons/3/drajmarsh - t5t6dwdzC.png b/posts/pentagons/3/drajmarsh_t5t6dwdzC.png similarity index 100% rename from posts/pentagons/3/drajmarsh - t5t6dwdzC.png rename to posts/pentagons/3/drajmarsh_t5t6dwdzC.png diff --git a/posts/pentagons/3/drajmarsh - t5t6uzC.png b/posts/pentagons/3/drajmarsh_t5t6uzC.png similarity index 100% rename from posts/pentagons/3/drajmarsh - t5t6uzC.png rename to posts/pentagons/3/drajmarsh_t5t6uzC.png diff --git a/posts/pentagons/3/drajmarsh - t5zC.png b/posts/pentagons/3/drajmarsh_t5zC.png similarity index 100% rename from posts/pentagons/3/drajmarsh - t5zC.png rename to posts/pentagons/3/drajmarsh_t5zC.png diff --git a/posts/pentagons/3/drajmarsh - zC.png b/posts/pentagons/3/drajmarsh_zC.png similarity index 100% rename from posts/pentagons/3/drajmarsh - zC.png rename to posts/pentagons/3/drajmarsh_zC.png diff --git a/posts/pentagons/3/third of frustum.png b/posts/pentagons/3/frustum_third.png similarity index 100% rename from posts/pentagons/3/third of frustum.png rename to posts/pentagons/3/frustum_third.png diff --git a/posts/pentagons/3/index.qmd b/posts/pentagons/3/index.qmd index 05b38fe..dd24fdb 100644 --- a/posts/pentagons/3/index.qmd +++ b/posts/pentagons/3/index.qmd @@ -1,258 +1,491 @@ --- +title: "12 Pentagons, Part 3" +description: | + Exploring even more symmetries based on the 12 pentagons condition. format: html: html-math-method: katex jupyter: python3 +date: "2021-06-09" +date-modified: "2025-03-16" +categories: + - geometry + - combinatorics + - symmetry +# Get rid of the figure label +crossref: + fig-title: "" + fig-labels: " " + tbl-title: "" + tbl-labels: " " + title-delim: "" + custom: + - key: fig + kind: float + reference-prefix: Figure + space-before-numbering: false + - key: tbl + kind: float + reference-prefix: Table + space-before-numbering: false --- + -12 Pentagons, Part 3 -==================== This is the third part in an investigation into answering the following question: -> A soccer ball is a (roughly spherical) figure made of pentagons and hexagons, each meeting 3 at a point. [T]here are 12 pentagons...how many hexagons can there be? +> A soccer ball is a (roughly spherical) figure made of pentagons and hexagons, each meeting 3 at a point. + [T]here are 12 pentagons...how many hexagons can there be? -The [first post]() in the series proved the 12 pentagons portion and investigated (dodecahedral) Goldberg polyhedra. The [second post]() investigated (tetrahedral) Goldberg polyhedra as well as other tetrahedral solutions. Yet more unconventional solutions are presented below. +The [first post](../1) in the series proved the 12 pentagons portion and investigated + (dodecahedral) Goldberg polyhedra. +The [second post](../2) investigated tetrahedral Goldberg polyhedra as well as other tetrahedral solutions. +Yet more unconventional solutions are presented below. -Introduction ------------- +Combinatorics of Goldberg-Coxeter Operators +------------------------------------------- +In the last post, it was discovered that certain solutions cannot be created easily from seed polyhedra + in a polyhedron viewer. +This prompts the question of how to calculate the vertex, edge, and face counts + without acquiring them from the output of such a program. -### Combinatorics of Goldberg-Coxeter Operators - -I mentioned previously that these solutions cannot be created easily from seed polyhedra in a polyhedron viewer. This prompts the question of how to calculate the vertex, edge, and face counts without acquiring them from the output of such a program. - -Each of the simple GC operators (*dk*, *c*, and *w*) has a combinatoric matrix form when applied to a vector of the vertex, edge, and face counts of a figure S. +Each of the simple GC operators (*c*, *dk*, and *w*) has a combinatoric matrix form + when applied to a vector of the vertex, edge, and face counts of a figure *S*. $$ -S = \begin{pmatrix} v \\ e \\ f \end{pmatrix} = \begin{pmatrix} 2F_6 + 20 \\ 3F_6 + 30 \\ F_6 + 12 \end{pmatrix} \\ -dk = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 3 & 0 \\ 1 & 0 & 1 \end{pmatrix}, ~ -c = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 4 & 0 \\ 0 & 1 & 1 \end{pmatrix}, ~ -w = \begin{pmatrix} 1 & 4 & 0 \\ 0 & 7 & 0 \\ 0 & 2 & 1 \end{pmatrix} +\begin{gather*} + S = \begin{pmatrix} v \\ e \\ f \end{pmatrix} + = \begin{pmatrix} + 2F_6 + 20 \\ + 3F_6 + 30 \\ + F_6 + 12 + \end{pmatrix} + = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} F_6 + + \begin{pmatrix} 20 \\ 30 \\ 12 \end{pmatrix} \\ + \underset{ + \text{Class I} + }{ + c = \begin{pmatrix} + 1 & 2 & 0 \\ + 0 & 4 & 0 \\ + 0 & 1 & 1 + \end{pmatrix} + } \quad + \underset{ + \text{Class II} + }{ + dk = \begin{pmatrix} + 0 & 2 & 0 \\ + 0 & 3 & 0 \\ + 1 & 0 & 1 + \end{pmatrix} + } \quad + \underset{ + \text{Class III} + }{ + w = \begin{pmatrix} + 1 & 4 & 0 \\ + 0 & 7 & 0 \\ + 0 & 2 & 1 + \end{pmatrix} + } +\end{gather*} $$ -As a reminder, *tk* is a power of the *dk* operator. Powers of a matrix are more readily expressed when the matrix is diagonalized. +These operators are labelled with the classes of Goldberg polyhedra they construct + when applied to the dodecahedron. + +- *cD* = GC(2, 0) +- *dkD* = *tI* = GC(1, 1) +- *wD* = GC(2, 1) + +It's worth noting again that *dk* alternates between producing Class I and Class II solutions. + + +### Diagonalization + +*tk* is the square of the *dk* operator. +Unlike it, it preserves solution class. +Powers of a matrix are more readily expressed when the matrix is diagonalized. +We can diagonalize each of these operators to notice something they have in common. $$ \begin{align*} -dk &= \begin{pmatrix} 0 & 2 & 0 \\ 0 & 3 & 0 \\ 1 & 0 & 1 \end{pmatrix} = -\begin{pmatrix} -1 & 0 & 2 \\ 0 & 0 & 3 \\ 1 & 1 & 1 \end{pmatrix} -\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} -\begin{pmatrix} 1 & -2/3 & 0 \\ 1 & -1 & 1 \\ 0 & 1/3 & 0 \end{pmatrix} -\\ -c &= \begin{pmatrix} 1 & 2 & 0 \\ 0 & 4 & 0 \\ 0 & 1 & 1 \end{pmatrix} = -\begin{pmatrix} -1 & 0 & 2 \\ 0 & 0 & 3 \\ 1 & 1 & 1 \end{pmatrix} -\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix} -\begin{pmatrix} 1 & -2/3 & 0 \\ 1 & -1 & 1 \\ 0 & 1/3 & 0 \end{pmatrix} -\\ -w &= \begin{pmatrix} 1 & 4 & 0 \\ 0 & 7 & 0 \\ 0 & 2 & 1 \end{pmatrix} = -\begin{pmatrix} -1 & 0 & 2 \\ 0 & 0 & 3 \\ 1 & 1 & 1 \end{pmatrix} -\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{pmatrix} -\begin{pmatrix} 1 & -2/3 & 0 \\ 1 & -1 & 1 \\ 0 & 1/3 & 0 \end{pmatrix} + c &= \begin{pmatrix} + 1 & 2 & 0 \\ + 0 & 4 & 0 \\ + 0 & 1 & 1 + \end{pmatrix} + = \textcolor{red}{ + \begin{pmatrix} + -1 & 0 & 2 \\ + 0 & 0 & 3 \\ + 1 & 1 & 1 + \end{pmatrix} + } + \begin{pmatrix} + 1 & 0 & 0 \\ + 0 & 1 & 0 \\ + 0 & 0 & 4 + \end{pmatrix} + \textcolor{blue}{ + \begin{pmatrix} + 1 & -2/3 & 0 \\ + 1 & -1 & 1 \\ + 0 & 1/3 & 0 + \end{pmatrix} + } \\ + dk &= \begin{pmatrix} + 0 & 2 & 0 \\ + 0 & 3 & 0 \\ + 1 & 0 & 1 + \end{pmatrix} + = \textcolor{red}{ + \begin{pmatrix} + -1 & 0 & 2 \\ + 0 & 0 & 3 \\ + 1 & 1 & 1 + \end{pmatrix} + } + \begin{pmatrix} + 0 & 0 & 0 \\ + 0 & 1 & 0 \\ + 0 & 0 & 3 + \end{pmatrix} + \textcolor{blue}{ + \begin{pmatrix} + 1 & -2/3 & 0 \\ + 1 & -1 & 1 \\ + 0 & 1/3 & 0 + \end{pmatrix} + } + \\ + w &= \begin{pmatrix} + 1 & 4 & 0 \\ + 0 & 7 & 0 \\ + 0 & 2 & 1 + \end{pmatrix} + = \textcolor{red}{ + \begin{pmatrix} + -1 & 0 & 2 \\ + 0 & 0 & 3 \\ + 1 & 1 & 1 + \end{pmatrix} + } + \begin{pmatrix} + 1 & 0 & 0 \\ + 0 & 1 & 0 \\ + 0 & 0 & 7 + \end{pmatrix} + \textcolor{blue}{ + \begin{pmatrix} + 1 & -2/3 & 0 \\ + 1 & -1 & 1 \\ + 0 & 1/3 & 0 + \end{pmatrix} + } \end{align*} $$ -All of these operators share the same eigenvectors. This means that composition of these operators only modifies the diagonal matrix, specifically the upper-left and lower-right eigenvalues. Note also that: +All of these operators share the same eigenvectors, which can be seen + in the columns of the left outer matrix and rows of the right outer one. +This means that composition of these operators only modifies the diagonal matrix, + specifically the upper-left and lower-right eigenvalues. -- The (right) eigenvector (2, 3, 1), is shared by the general system governing the vertex, edge, and hexagon counts (simply look at the vector *S* to see this). In this system (not the one above), it has eigenvalue 0. -- The left eigenvector (1, -1, 1) has eigenvalue 1, which corresponds to the Euler characteristic being maintained. -- The left eigenvector, (3, -2, 0), when applied to general polyhedra corresponds to the edges and vertices added by the operation: *dk* forces all vertices to be degree-3 (hence the eigenvalue 0) and *c* and *w* maintain previous vertices while adding degree-3 ones (hence the eigenvalue 1). +Some of these eigenvectors have special interpretations: -All solutions share the same Euler characteristic and the condition 3V = 2E, so the rightmost multiplication simplifies things considerably. +- The left eigenvector (1, -1, 1) (right matrix, middle row) always has eigenvalue 1. + - The operation does not change the Euler characteristic. +- The left eigenvector (3, -2, 0) (right matrix, top row), when applied to general polyhedra + corresponds to the edges and vertices added by the operation: + - In *dk*, this vector has eigenvalue 0, forcing $3V = 2E$, i.e., all vertices to have degree 3. + - In *c* and *w*, this vector has eigenvalue 1. These operators only add degree-3 vertices. + +The (right) eigenvector (2, 3, 1), deserves special consideration. +It happens to be the same as the $F_6$-dependent component of *S*. +Its eigenvalue is different for the three operators -- + 4 in the case of *c*, 3 in the case of *dk*, and 7 in the case of *w*. +In all three cases, these coincide with the norm of the GC parameters: + +$$ +\begin{gather*} + cD = GC(2, 0) \longrightarrow \|2 + 0u\| = 2^2 + 2 \cdot 0 + 0^2 = 4 \\ + dkD = GC(1, 1) \longrightarrow \|1 + 1u\| = 1^2 + 1 \cdot 1 + 1^2 = 3 \\ + wD = GC(2, 1) \longrightarrow \|2 + 1u\| = 2^2 + 2 \cdot 1 + 1^2 = 7 +\end{gather*} +$$ + +Call this number $T = \|a + bu\| = a^2 + ab + b^2$. +We know that integers of this form are never congruent to 2 (mod 3). +Conveniently, this matches with the upper-left eigenvalue. + +Assuming for the sake of argument that this is true, it implies something interesting: + the GC operators produced from *T* are closed under multiplication. +This captures all powers of a given *T*, as well as products between it and other possible *T*s. +However, this combinatorial view misses some of the picture, since some feature counts + can be shared between two different classes at once. +This comes down to the existence of chiral pairs. +For example, [*ww*](https://levskaya.github.io/polyhedronisme/?recipe=K30wwD) + = $(2, 1) \circ (2, 1) = (5, 3)$, + but + [*ww'*](https://levskaya.github.io/polyhedronisme/?recipe=K30wrwD) + = $(2, 1) \circ (1, 2) = (7, 0)$. + +Ignoring this, it means we can characterize the possible hexagon counts given a certain *T*: $$ \begin{align*} -g_T S &= \begin{pmatrix} -1 & 0 & 2 \\ 0 & 0 & 3 \\ 1 & 1 & 1 \end{pmatrix} -\begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & T \end{pmatrix} -\begin{pmatrix} 1 & -{2 \over 3} & 0 \\ 1 & -1 & 1 \\ 0 & {1 \over 3} & 0 \end{pmatrix} -\begin{pmatrix} v \\ e \\ f \end{pmatrix} -\\[8pt] &= -\begin{pmatrix} -1 & 0 & 2 \\ 0 & 0 & 3 \\ 1 & 1 & 1 \end{pmatrix} -\begin{pmatrix} x & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & T \end{pmatrix} -\begin{pmatrix} v - {2 \over 3} e = 0 \\ v - e + f = 2 \\ {1 \over 3} e \end{pmatrix} -\\[8pt] &= -\begin{pmatrix} -1 & 0 & 2 \\ 0 & 0 & 3 \\ 1 & 1 & 1 \end{pmatrix} -\begin{pmatrix} 0 \\ 2 \\ {1 \over 3} T e \end{pmatrix} + g_T S &= \begin{pmatrix} + -1 & 0 & 2 \\ + 0 & 0 & 3 \\ + 1 & 1 & 1 + \end{pmatrix} + \begin{pmatrix} + x & 0 & 0 \\ + 0 & 1 & 0 \\ + 0 & 0 & T + \end{pmatrix} + \begin{pmatrix} + 1 & -{2 \over 3} & 0 \\ + 1 & -1 & 1 \\ + 0 & {1 \over 3} & 0 + \end{pmatrix} + \begin{pmatrix} v \\ e \\ f \end{pmatrix} \\[8pt] + &= + \begin{pmatrix} + -1 & 0 & 2 \\ + 0 & 0 & 3 \\ + 1 & 1 & 1 + \end{pmatrix} + \begin{pmatrix} + x & 0 & 0 \\ + 0 & 1 & 0 \\ + 0 & 0 & T + \end{pmatrix} + \begin{pmatrix} + v - {2 \over 3} e = 0 \\ + v - e + f = 2 \\ + {1 \over 3} e = F_6 + 10 + \end{pmatrix} \\[8pt] + &= + \begin{pmatrix} + -1 & 0 & 2 \\ + 0 & 0 & 3 \\ + 1 & 1 & 1 + \end{pmatrix} + \begin{pmatrix} 0 \\ 2 \\ T (F_6 + 10) \end{pmatrix} \\ + &= + \begin{pmatrix} T(2F_6 + 20) \\ T(3F_6 + 30) \\ T(F_6 + 10) + 2 \end{pmatrix} \\[8pt] + F'_6 &= T(F_6 + 10) - 10 \end{align*} $$ -Recall that each of the operators applied to the dodecahedron was a Goldberg polyhedron: *dkD* = *tI* = GC(1, 1), *cD* = GC(2, 0), and *wD* = GC(2, 1). The norm of each of these is 3, 4, and 7 respectively, which is also the eigenvalue T. In fact, all Goldberg-Coxeter operators, not just compositions of these three, simply set $T = \|a + bu\|$ (the eigenvalue x is T mod 3, which as previously mentioned, is never congruent to 2). - -This eigenvalue problem also implies something about the possible values of *T*: it is closed under multiplication. For any *T*, all its powers are *also* possible *T*, as are products between *T*. In fact, the existence of chiral pairs ($a \neq b$) and the ability to compose opposites is what can make *T* nonunique for a given pair (e.g.: $ww = (2, 1) \odot (2, 1) = (5, 3)$, but $ww' = (2, 1) \odot (1, 2) = (7, 0)$). - -Returning to the equation, - -$$ -\begin{align*} -\begin{pmatrix} -1 & 0 & 2 \\ 0 & 0 & 3 \\ 1 & 1 & 1 \end{pmatrix} -\begin{pmatrix} 0 \\ 2 \\ {1 \over 3} T e \end{pmatrix} &= -\begin{pmatrix} {2 \over 3} Te \\ Te \\ {1 \over 3}Te + 2 \end{pmatrix} -\\[8pt] &= -\begin{pmatrix} {2 \over 3} T(3F_6 + 30) \\ T(3F_6 + 30) \\ {1 \over 3}T(3F_6 + 30) + 2 \end{pmatrix} -\\[8pt] &= -\begin{pmatrix} 2T(F_6 + 10) \\ 3T(F_6 + 10) \\ T(F_6 + 10) + 2 \end{pmatrix} -\\[12pt] -F'_6 &= T(F_6 + 10) - 10 -\end{align*} -$$ - -This demonstrates the importance of both the constructed base solution figure *S* with $F_6$ hexagons and the possible values of *T*. +This demonstrates two things: the initial $F_6$ count from the choice of seed polygon *S* matters, + and the possible values of *T* can be used to grow this sequence -### A brief word about Symmetry +Searching for Other Seeds +------------------------- -The dodecahedron, and by extension dodecahedral solutions, have icosahedral symmetry. A sub-symmetry of this, being tetrahedral symmetry, was exploited in the previous post. However, there are further sub-symmetries which have not been encountered. For example, some "smaller" symmetries of the dodecahedron are the vertices under rotation and inversion (dihedral, degree 3) and the faces under rotation and inversion (dihedral, degree 5). One of these two symmetries must be shared by a solution. +The dodecahedron, and by extension dodecahedral solutions, have icosahedral symmetry. +Tetrahedral symmetry, a sub-symmetry of this, was exploited in the previous post. -Rather than the typical construction based on paths between pentagons, this section will focus on certain base cases followed by a rudimentary application of the Conway operators above. The particular symmetry group of each figure will be mentioned in each section. +However, there are further sub-symmetries which have not been encountered. +For example, some lesser symmetries of the dodecahedron are the vertices under rotation + and inversion ([dihedral](https://en.wikipedia.org/wiki/Dihedral_group), degree 3) + and the faces under rotation and inversion (dihedral, degree 5). + +Rather than the typical construction based on paths between pentagons, + this section will focus on certain base cases followed by a rudimentary application + of the Conway operators above. +The particular symmetry group of each figure will be mentioned in each section. -Deltahedra ----------- +### Degenerate Deltahedra -*Deltahedra* are polyhedra formed by equilateral triangles, a [table of which](https://en.wikipedia.org/wiki/Deltahedron) is available on Wikipedia. Equilateral triangles are important since three to five of them can be joined at a convex vertex, and if coplanar arrangements are allowed, up to six of them. Degree-5 and degree-6 vertices can be dualized or truncated to pentagons and hexagons respectively; additionally, if the former operation is used, then the triangles become degree-3 vertices. +*Deltahedra* are polyhedra formed by equilateral triangles, + a [table of which](https://en.wikipedia.org/wiki/Deltahedron) is available on Wikipedia. +Equilateral triangles are important since three to five of them can be joined at a convex vertex, + and if coplanar arrangements are allowed, up to six. +Degree-5 and degree-6 vertices can be dualized or truncated to pentagons and hexagons respectively. +Additionally, when dualizing, all of the triangles become degree-3 vertices, producing a solution. -All convex deltahedra besides the tetrahedron and the icosahedron contain degree-4 vertices. These pose a problem since they become quadrilaterals. Though selective (pyramidal) augmentation can correct these vertices to degree-5 (and those of degree-5 to degree-6), this section will focus on the coplanar entries on the table. +All convex deltahedra besides the tetrahedron and icosahedron contain degree-4 vertices. +These vertices pose a problem since their duals are quadrilaterals. +However, it's reasonably easy to "correct" these vertices to a higher degree + by selectively raising pyramids on faces (*augmenting*). +This section will focus on the coplanar entries on the table. -### Triangulated Rhombohedron (Dih3) +#### Triangulated Rhombohedron ($Dih_3$) -The figure made by cutting the short diagonals of a *trigonal trapezohedron* (a rhombohedron like the cube) is one such degree-4 vertex-free deltahedron. It can also be seen as either a *biaugmentation* (by tetrahedra on opposite faces) of an octahedron or as a [*gyroelongated triangular bipyramid*](https://en.wikipedia.org/wiki/Gyroelongated_bipyramid). Truncating the order-5 vertices produces an eggy-looking figure, and one for which the polyhedron viewer I typically use refuses to comply. Try using this viewer (which unfortunately does not support hotlinking recipes) with the recipe t5z applied to the cube. This figure inherits the dihedral symmetry of degree 3 that the vertices of the dodecahedron have. + +The figure made by cutting the short diagonals of a + [rhombohedron](https://en.wikipedia.org/wiki/Rhombohedron) + is one such degree-4 vertex-free deltahedron. +It can also be seen as the figure formed by adding two triangular pyramids + to opposite faces of an octahedron (a *biaugmentation*) + or as a [*gyroelongated triangular bipyramid*](https://en.wikipedia.org/wiki/Gyroelongated_bipyramid). -:::::: {layout-ncol=2} -::::: {.column width="49%"} -:::: {layout-ncol=2} -::: {} -![](./drajmarsh - zC.png) +Unfortunately, the polyhedron viewer I typically use is unsuitable for visualizing this figure. +[This viewer](https://drajmarsh.bitbucket.io/poly3d.html) + supports more operations, and features an operator *z* which triangulates faces. +It produces the desired figure when applied to the cube + (which is topologically equivalent to rhombohedra), -Biaugmented octahedron +Truncating the order-5 vertices produces an eggy-looking figure, +It inherits the dihedral symmetry of degree 3 from the vertices of the dodecahedron. + +:::: {.row layout-ncol="2" layout-valign="center"} +::: {.column .slim-column layout="[[1,1],[1]]"} +![ + Biaugmented octahedron +](./drajmarsh_zC.png) + +![ + Base case: order-5 truncation of left figure +](./drajmarsh_t5zC.png) + +![ + Graph of the pole of the base case.
+ On the opposite pole, blue and red hexagons are exchanged. +](./truncated gyroelongated bipyramid pole.png) ::: -::: {} -![](./drajmarsh - t5zC.png) +:::: {.column} -Base case: order-5 truncation of left figure -::: -:::: - -:::: {} -![](./truncated gyroelongated bipyramid pole.png) - -Graph of the pole of the base case. On the opposite pole, blue and red hexagons are exchanged. -:::: -::::: - -::::: {.column width="49%"} - -Conway | $F_6$ | V | E ---------|----------|-----|----- -t5C = B | 6 | 32 | 48 -dkB | 38 | 96 | 144 -cB | 54 | 128 | 192 -wB | 102 | 224 | 336 -tkB | 134 | 288 | 432 -$g_T B$ | 16T - 10 | 32T | 48T - -::::: -:::::: - - -### Triangular Frustum (Dih3) - -This figure is formed by a group of four triangles as a base, three half-hexagons on the edges, and closed by a triangle atop. It can also be seen as an augmented octahedron, but with the tetrahedra placed around a single face (a *triaugmentation*). Unfortunately, this figure is not easily constructible from normal seed polyhedra, even in the alternative viewer. However, it is still possible to operate on its projection as a planar graph. Truncating all vertices except those of degree 3 ($t_5 t_6$) produces a figure with 8 hexagons and indeed, 12 pentagons. In this case, the pentagons gather in groups of 4 and are separated by three bands of hexagons joined by two hexagons at either end. The symmetry inherited by this figure is also dihedral of degree 3, but centered about a hexagon, rather than a complex of pentagons. - -::::: {} -:::: {layout-ncol="4"} -::: {} -![](./triangulated triangular frustum.png) -::: - -::: {} -![](./t6 frustum.png) -::: - -::: {} -![](./inverted t6.png) -::: - -::: {} -![](./t5 inverted t6.png) -::: -:::: -Construction based on planar graph (1). First, the degree-6 vertices are truncated (2). Then, the graph is inverted (3) and the degree-5 vertices are truncated (4). -::::: - - - -:::: {layout-ncol="2"} -::: {.column width="49%"} -![](./third of frustum.png) - -One-third of the figure, showing a group of four pentagons. Pentagons in green, band hexagons in red, cap hexagons in blue. -::: - -::: {.column width="49%"} - -Conway | $F_6$ | V | E ---------|----------|-----|----- -F | 8 | 36 | 54 -dkF | 44 | 108 | 162 -cF | 62 | 144 | 216 -wF | 116 | 252 | 378 -tkF | 152 | 324 | 486 -$g_T F$ | 18T - 10 | 36T | 54T +| Conway | $F_6$ | V | E | +|---------|----------|-----|-----| +| t5C = B | 6 | 32 | 48 | +| dkB | 38 | 96 | 144 | +| cB | 54 | 128 | 192 | +| wB | 102 | 224 | 336 | +| tkB | 134 | 288 | 432 | +| $g_T B$ | 16T - 10 | 32T | 48T | ::: :::: -*** -The remaining entries of the Wikipedia table with no degree-4 vertices (save the hexagonal antiprism, which I will discuss in the next section) are easily accessible from the tetrahedron. For example, the "augmented tetrahedron" is simply a subdivided tetrahedron (*uT*) and the "(subdivided) truncated tetrahedron" is the hexakis truncated tetrahedron ($k_6 tT$). +#### Base-Triangulated Frustum ($Dih_3$) -Larger subdivisions (in the $u_n$ sense) of the above two cases are also coplanar deltahedra, so this can be performed before the truncation. Triangular subdivision can add degree-6 vertices, so for the triangulated rhombohedron, an additional order-6 truncation needs to be done. Doing so means $t_5 t_6$ is applied to either case to form the solution figure. +Consider two faces of a figure, one a single equilateral triangle and the other + containing four coplanar ones. +These two faces can be joined by three triples of triangles in the shape of a half-hexagon. +This figure can be seen as an octahedron with three tetrahedra placed around it (a *triaugmentation*), + or as triangulation of the triangular prism. -An example subidivision is shown below. Note how the 3 pentagons at the pole have been separated from another 3 by a triangle of hexagons. I am fairly sure it is possible for mismatched pole configurations to be joined to one another for a more selective subdivision. Other Goldberg-Coxeter operations other than *u* can also be used; *dwd* for example connects non-polar pentagons with spirals of hexagons. +Truncating all vertices except those of degree 3 ($t_5 t_6$) produces a figure + with 8 hexagons and indeed, 12 pentagons. +Unfortunately, this figure is not easily constructible from normal seed polyhedra, + even in the alternative viewer. +However, it is still possible to operate on its projection as a planar graph: -::::: {} -:::: {layout-ncol="2"} -::: {.column width="49%"} -![](./drajmarsh - t5t6uzC.png) +::: {#fig-triangular-frustum layout-ncol="4"} +![Initial graph](./triangulated_frustum.png) -$F_6$ = 60, V = 140, E = 210 +![After truncating degree-6 vertices](./t6_frustum.png) + +![After redrawing by "inverting" the interior and exterior](./inverted_t6_frustum.png) + +![After truncating degree-5 vertices](./t5_t6_frustum.png) ::: -::: {.column width="49%"} -![](./drajmarsh - t5t6dwdzC.png) +The pentagons gather in groups of 4 and are separated by three bands of hexagons, + joined by two hexagons at either end. +The symmetry inherited by this figure is also dihedral of degree 3, but centered about a hexagon, + rather than (a complex of) pentagons. + +:::: {layout-ncol="2" layout-valign="center"} +[ +![ + One-third of the figure, showing a group of four pentagons.
+ Pentagons in green, band hexagons in red, cap hexagons in blue. +](./frustum_third.png){.column .slim-column} +](./frustum_third.png){target="_blank"} + +::: {.column} + +| Conway | $F_6$ | V | E | +|---------|----------|-----|-----| +| F | 8 | 36 | 54 | +| dkF | 44 | 108 | 162 | +| cF | 62 | 144 | 216 | +| wF | 116 | 252 | 378 | +| tkF | 152 | 324 | 486 | +| $g_T F$ | 18T - 10 | 36T | 54T | -$F_6$ = 114, V = 248, E = 372 ::: :::: -Left: $t_5 t_6 uzC$, Right: $t_5 t_6 dwdzC$ -::::: +#### Others -Other Solutions ---------------- +Before their respective truncations, both of these figures of triangles which are compatible with + (dual) Goldberg-Coxeter operators. +For example, larger triangular subdivisions (in the $u_n$ sense) will also give degenerate deltahedra, +Triangular subdivision can add degree-6 vertices, so for the triangulated rhombohedron, + an additional order-6 truncation needs to be done. +Doing so means $t_5 t_6$ is applied to either case to form the solution figure. -This section is for polyhedra which are either more easily constructible or are not easily derived from deltahedra. +An example subidivision is shown below. +Note how the 3 pentagons at the pole have been separated from another 3 by a triangle of hexagons. +I am fairly sure it is possible for mismatched pole configurations to be joined to one another + for a more selective subdivision. +Other Goldberg-Coxeter operations other than *u* can also be used; + *dwd* for example connects non-polar pentagons with spirals of hexagons. +::: {#fig-triangular-frustum-subdivision layout-ncol="2"} +![ + $t_5 t_6 uzC$
+ $F_6$ = 60, V = 140, E = 210 +](./drajmarsh_t5t6uzC.png) -### Truncated Trapezohedron (Dih6) - -A *trapezohedron* is the polyhedral dual of an antiprism; an example is a d10, which is the pentagonal case. Despite the name "*n*-gonal trapezohedron," the figure is made entirely from 2*n* kites with the long edges meeting at points and the short edges meeting with each other. Truncating the order-*n* vertices where the long edges of the kites meet produces a truncated trapezohedron, which possesses two regular *n*-gonal "caps" separated by a ring of pentagons. In a way, they can be considered as the pentagonal analogue to prisms (quadrilaterals) and antiprisms (triangles). - -The dodecahedron itself can be realized as a (order-5) truncated pentagonal trapezohedron ($t_5 d A_5$), which emphasizes its degree-5 dihedral symmetry. The next largest truncated trapezohedron is the hexagonal case ($t_6 d A_6$), which contains and 2 hexagons and has dihedral symmetry of degree 6 (which itself contains that of degree 3). - -:::: {layout-ncol="2"} -::: {.column width="49%"} -![](./polyhedronisme-K300t6dA6.png) - -Base case: truncated hexagonal trapezohedron +![ + $t_5 t_6 dwdzC$
+ $F_6$ = 114, V = 248, E = 372 +](./drajmarsh_t5t6dwdzC.png) ::: -::: {.column width="49%"} + +### Truncated Trapezohedron ($Dih_6$) + +A *trapezohedron* is the polyhedral dual of an antiprism. +An example is a d10, which is the [pentagonal case](https://en.wikipedia.org/wiki/Pentagonal_trapezohedron). +Despite the name "*n*-gonal trapezohedron", the figure is made entirely from 2*n* kites + with the long edges meeting at points and the short edges meeting with each other. + +Truncating the order-*n* vertices where the long edges of the kites meet produces a + [truncated trapezohedron](https://en.wikipedia.org/wiki/Truncated_trapezohedron), +These figures possess two regular *n*-gonal "caps" separated by a ring of pentagons. +In a way, they can be considered as a pentagonal analogue to prisms (quadrilaterals) + and antiprisms (triangles). + +The dodecahedron itself can be realized as a (order-5) truncated pentagonal trapezohedron ($t_5 d A_5$), + which emphasizes its degree-5 dihedral symmetry. +The next largest truncated trapezohedron is the hexagonal case ($t_6 d A_6$), + which contains and 2 hexagons and has dihedral symmetry of degree 6. +This is a symmetry beyond that of the icosahedron, but exists due to the symmetry of the hexagon. + +:::: {layout-ncol="2" layout-valign="center"} +![ + Base case: truncated hexagonal trapezohedron +](./polyhedronisme-K300t6dA6.png) + +::: {.column} Conway | $F_6$ | V | E -------------------------------------------------------------------------------|----------|-----|----- @@ -266,213 +499,223 @@ $g_T T_6$ | ::: :::: -Medially-Separated Dodecahedron (Dih5) --------------------------------------- -As the "truncated pentagonal trapezohedron", the dodecahedron can be separated into halves along an equator (specifically, along the [Petrie polygon](https://en.wikipedia.org/wiki/Petrie_polygon)). This produces two halves with the pole configuration of the dodecahedron, joined together with hexagons. Organizing the pentagons into two pairs of 6 is similar to the earlier case with the triangulated cube, but with a different arrangement of pentagons. The resultant figure has dihedral symmetry of degree 5. Interestingly, it is also the first solution polyhedron with an odd number of faces. +### Medially-Separated Dodecahedron ($Dih_5$) + +As the "truncated pentagonal trapezohedron", the dodecahedron can be separated into halves along an equator + (specifically, along the [Petrie polygon](https://en.wikipedia.org/wiki/Petrie_polygon)). +This produces two halves with the pole configuration of the dodecahedron, joined together with hexagons. +Organizing the pentagons into two pairs of 6 is similar to the earlier case with the triangulated cube, + but with a different arrangement of pentagons. +The resultant figure has dihedral symmetry of degree 5. -:::::: {layout-ncol="2"} -::::: {.column width="49%"} :::: {layout-ncol="2"} -::: {.column width="49%"} -![](./dodecahedral graph.png) +::: {.column .slim-column layout="[[1,1],[1]]"} +![ + Dodecahedral graph +](./dodecahedral graph.png) -Dodecahedral graph +![ + Pole configuration of solution +](./dodeca graph 2.png) + +![ + Complete base solution.
Note how the outer face has been rotated when compared with the dodecahedral graph. +](./petrial expanded dodecahedron.png) ::: -::: {.column width="49%"} -![](./dodeca graph 2.png) +::: {.column} + +| Conway | $F_6$ | V | E | +|-----------------|----------|-----|-----| +| $D_p$ | 5 | 30 | 45 | +| $dkD_p$ | 35 | 90 | 135 | +| $cD_p$ | 50 | 120 | 180 | +| $wD_p$ | 95 | 210 | 315 | +| $tkD_p$ | 125 | 270 | 405 | +| $g_T D_p$ | 15T - 10 | 30T | 45T | -Pole configuration of solution ::: :::: -:::: {} -![](./petrial expanded dodecahedron.png) - -Complete base solution. Note how the outer face has been rotated when compared with the dodecahedral graph -:::: -::::: - -::::: {.column width="49%"} - -Conway | $F_6$ | V | E -----------------|----------|-----|----- -$D_p$ | 5 | 30 | 45 -$dkD_p$ | 35 | 90 | 135 -$cD_p$ | 50 | 120 | 180 -$wD_p$ | 95 | 210 | 315 -$tkD_p$ | 125 | 270 | 405 -$g_T D_p$ | 15T - 10 | 30T | 45T - -::::: -:::::: +Interestingly, this is also the first solution polyhedron with an odd number of faces. -Truncated Gyro-Pyramids (Dih5, Dih6) ------------------------------------- +### Truncated Gyro-Pyramids ($Dih_5$, $Dih_6$) -In the previous post, I used the Conway operator *g*, which is called "gyro". It is the dual operator to snubbing, intuition for which can be seen by looking at the [snub cube](https://en.wikipedia.org/wiki/Snub_cube). A *gyro-pyramid* (i.e., the gyro operator applied to pyramids) can roughly be described as a ring of 2*n* pentagons which alternate in orientation, the points of which have an additional edge connecting to one of two antipodal endpoints. Truncating these these adds a face with the same number of edges as the original pyramid, surrounded by hexagons. Solution polyhedra can be found by examining the pentagonal ($t_5 g Y_5$) and hexagonal ($t_6 g Y_6$) cases. The former has dihedral symmetry of degree 5 and the latter has that of degree 6 (which contains degree 3). +*g*, for "gyro", is a Conway operator I have used, but refused to explain. +A *gyro-pyramid* (i.e., the gyro operator applied to pyramids, + [example]](https://levskaya.github.io/polyhedronisme/?recipe=K300gY5)) + can roughly be described as a ring of 2*n* pentagons which alternate in orientation, + the tips of which have an additional edge connecting to one of two antipodal endpoints. +Truncating these endpoints these adds a face which is the same as the base of the original pyramid, + surrounded by hexagons. -::::: {layout-ncol="2"} -:::: {.column width="49%"} -::: {} -![](./polyhedronisme-K300t5K30gY5.png) +Solution polyhedra can be found by examining the pentagonal ($t_5 g Y_5$) and hexagonal ($t_6 g Y_6$) cases. +The former has dihedral symmetry of degree 5 and the latter has that of degree 6. -Base case 1: truncated pentagonal gyro-pyramid +:::: {layout-ncol="2" layout-valign="center"} +::: {.column .slim-column} +![ + Base case 1: truncated pentagonal gyro-pyramid +](./polyhedronisme-K300t5K30gY5.png) + +![ + Base case 2: truncated hexagonal gyro-pyramid +](./polyhedronisme-K300t6K30gY6.png) ::: -::: {} -![](./polyhedronisme-K300t6K30gY6.png) +::: {.column} + +| Conway | $F_6$ | V | E | +|-----------------------------------------------------------------------------------|----------|-----|-----| +| [$t_5gY_5 = G_5$](https://levskaya.github.io/polyhedronisme/?recipe=K300t5K30gY5) | 10 | 40 | 60 | +| [$dkG_5$](https://levskaya.github.io/polyhedronisme/?recipe=dkK300t5K30gY5) | 50 | 120 | 180 | +| [$cG_5$](https://levskaya.github.io/polyhedronisme/?recipe=K300dudt5K30gY5) | 70 | 160 | 240 | +| [$wG_5$](https://levskaya.github.io/polyhedronisme/?recipe=K300wK30t5K30gY5) | 130 | 280 | 420 | +| [$tkG_5$](https://levskaya.github.io/polyhedronisme/?recipe=tkK300t5K30gY5) | 170 | 360 | 540 | +| $g_T G_5$ | 20T - 10 | 40T | 60T | +| [$t_6gY_6 = G_6$](https://levskaya.github.io/polyhedronisme/?recipe=K300t6K30gY6) | 14 | 48 | 72 | +| [$dkG_6$](https://levskaya.github.io/polyhedronisme/?recipe=dkK300t6K30gY6) | 62 | 144 | 216 | +| [$cG_6$](https://levskaya.github.io/polyhedronisme/?recipe=K300dudK40t6gY6) | 86 | 192 | 288 | +| [$wG_6$](https://levskaya.github.io/polyhedronisme/?recipe=K300wK30t6K30gY6) | 158 | 336 | 504 | +| [$tkG_6$](https://levskaya.github.io/polyhedronisme/?recipe=tkK300t6K30gY6) | 206 | 432 | 648 | +| $g_T G_6$ | 24T - 10 | 48T | 72T | -Base case 2: truncated hexagonal gyro-pyramid ::: :::: -:::: {.column width="49%"} - -Conway | $F_6$ | V | E -----------------------------------------------------------------------------------|----------|-----|----- -[$t_5gY_5 = G_5$](https://levskaya.github.io/polyhedronisme/?recipe=K300t5K30gY5) | 10 | 40 | 60 -[$dkG_5$](https://levskaya.github.io/polyhedronisme/?recipe=dkK300t5K30gY5) | 50 | 120 | 180 -[$cG_5$](https://levskaya.github.io/polyhedronisme/?recipe=K300dudt5K30gY5) | 70 | 160 | 240 -[$wG_5$](https://levskaya.github.io/polyhedronisme/?recipe=K300wK30t5K30gY5) | 130 | 280 | 420 -[$tkG_5$](https://levskaya.github.io/polyhedronisme/?recipe=tkK300t5K30gY5) | 170 | 360 | 540 -$g_T G_5$ | 20T - 10 | 40T | 60T -[$t_6gY_6 = G_6$](https://levskaya.github.io/polyhedronisme/?recipe=K300t6K30gY6) | 14 | 48 | 72 -[$dkG_6$](https://levskaya.github.io/polyhedronisme/?recipe=dkK300t6K30gY6) | 62 | 144 | 216 -[$cG_6$](https://levskaya.github.io/polyhedronisme/?recipe=K300dudK40t6gY6) | 86 | 192 | 288 -[$wG_6$](https://levskaya.github.io/polyhedronisme/?recipe=K300wK30t6K30gY6) | 158 | 336 | 504 -[$tkG_6$](https://levskaya.github.io/polyhedronisme/?recipe=tkK300t6K30gY6) | 206 | 432 | 648 -$g_T G_6$ | 24T - 10 | 48T | 72T - -:::: -::::: - -The pentagonal case demonstrates something interesting: an appeal to the equation $12 = 10 + 2 = 5 \cdot 2 + 2$. The similar equation $12 = 7 + 5$ is unlikely to bear fruit, as an odd number of pentagons cannot alternate up and down. +The pentagonal case demonstrates something interesting: an appeal to the partition + $12 = 10 + 1 + 1$. +The similar partition $12 = 5 + 5 + 1 + 1$ is unlikely to bear fruit, + as an odd number of pentagons cannot alternate up and down. -Japanese Floor Tiling ---------------------- +### Japanese Floor Tiling -*Tatami* are a Japanese traditional style of floor mat, used even today in Japan as an intuitive measure for the surface area of living spaces. A single mat has an aspect ratio of 2:1, but the complexity comes in how they are arranged. Layouts are termed "inauspicious" (不祝儀敷き, *fushūgi-jiki*) when there are points where four mats meet, while "auspicious" (祝儀敷き, *shūgi-jiki*) layouts have all mats meet in threes. For a sample of the fascination mathematicians have with these arrangements, you need only [search for "tatami" in the OEIS](http://oeis.org/search?q=tatami&language=english&go=Search) to find dozens of combinatorial sequences. +*Tatami* are a Japanese traditional style of floor mat, used even today in Japan + as an intuitive measure for the surface area of living spaces. +A single mat has an aspect ratio of 2:1, but the complexity comes in how they are arranged. +Layouts are termed "inauspicious" (不祝儀敷き, *fushūgi-jiki*) when there are points where four mats meet, + while "auspicious" (祝儀敷き, *shūgi-jiki*) layouts have all mats meet in threes. +For a sample of the fascination mathematicians have with these arrangements, + you need only [search for "tatami" in the OEIS](http://oeis.org/search?q=tatami&language=english&go=Search) + to find dozens of combinatorial sequences. -:::: {layout-ncol="3"} -::: {.column width="32%"} -![](./inauspicious tatami.png) +::: {layout-ncol="3"} +![ + Inauspicious 4x4 layout +](./tatami_inauspicious.png) -Inauspicious 4x4 layout +![ + Auspicious 4x4 layout +](./tatami_auspicious.png) + +![ + Possible topologies for a single mat +](./tatami_topology.png) ::: -::: {.column width="32%"} -![](./auspicious tatami.png) +Topologically, each *tatami* mat in an arrangement can be thought of as either a quadrilateral, + a pentagon or a hexagon. +Obviously, when considered alone, one mat is a rectangle, as is each mat in the inauspicious layout above. +When two mats are affixed to one side of the mat, it becomes a pentagon, + as in the auspicious layout above; all 8 mats are pentagons. +When done to both sides, it becomes a hexagon. -Auspicious 4x4 layout +Naturally, the interplay between the latter two elements, as well as the condition + that all mats meet in threes has a direct application to the problem at hand. +In fact, the graph of the whirl operation on the surface of a cube + clearly makes the shape of one of these arrangements (with a half-mat included): + +:::: {#fig-tatami-polyhedron} +::: {layout="[[-2,1,-1,1,-2]]"} +Conway wC + +Tearoom layout ::: -::: {.column width="32%"} -![](./tatami topology.png) - -Possible topologies for a single mat -::: -:::: - -Topologically, each *tatami* mat in an arrangement can be thought of as either a quadrilateral, a pentagon or a hexagon. Obviously when considered alone, one mat is a rectangle, as is each mat in a stack of them like in the inauspicious layout above. When two mats are affixed to one side of the mat, it becomes a pentagon, as in the auspicious layout above; all 8 mats are pentagons. Finally, when done to both sides, it becomes a hexagon. - -::::: {layout-ncol="2"} -:::: {.column width="49%"} -

-Conway wC -Tearoom layout -

-::: {} Images were retrieved from Wikimedia and belong to their respective owners. -::: :::: -:::: {.column width="49%"} -Naturally, the interplay between the latter two elements, as well as the condition that all mats meet in threes has a direct application to the problem at hand. In fact, the graph of the whirl operation on the surface of a cube (left) clearly makes the shape of one of these arrangements (with a half-mat included, right). Two things pose a small issue for auspicious floor layouts: +Two things pose a small issue for auspicious floor layouts: - when interpreted as a graph, the external face very quickly accumulates a large number of edges and - each of the mats at the corners of the room have a single degree-2 vertex -Both of these can be (partially) amended by connecting pairs of corner vertices, which creates additional faces while decreasing the number of edges on the perimeter. -:::: -::::: +Both of these can be (partially) amended by connecting pairs of corner vertices, + which creates additional faces while decreasing the number of edges on the perimeter. -The standard 4x6 auspicious layout is shown below, with corners connected and pentagons/hexagons identified. Next to it is an equivalent graph with a regular hexagon as an outer face. As a 3D figure, it has only three hexagons and degree-3 dihedral symmetry, another odd number. +The standard 4x6 auspicious layout is shown below, with corners connected and pentagons/hexagons identified. +Next to it is an equivalent graph with a regular hexagon as an outer face. +As a 3D figure, it has only three hexagons and degree-3 dihedral symmetry, another odd number. -::::: {layout-ncol="2"} -:::: {.column width="49%"} -::: {} -![](./tatami graph.png) +:::: {layout-ncol="2" layout-valign="center"} +::: {.column .slim-column} +![](./tatami_graph.png) + +![](./regularized_tatami_graph.png) ::: -::: {} -![](./regularized tatami graph.png) +::: {.column} + +| Conway | $F_6$ | V | E | +|---------------|----------|-----|-----| +| $M$ | 3 | 26 | 39 | +| $dkM$ | 29 | 78 | 117 | +| $cM$ | 42 | 104 | 156 | +| $wM$ | 81 | 182 | 273 | +| $tkM$ | 107 | 234 | 351 | +| $g_T M$ | 13T - 10 | 26T | 39T | + ::: :::: -:::: {.column width="49%"} - -Conway | $F_6$ | V | E ---------------|----------|-----|----- -$M$ | 3 | 26 | 39 -$dkM$ | 29 | 78 | 117 -$cM$ | 42 | 104 | 156 -$wM$ | 81 | 182 | 273 -$tkM$ | 107 | 234 | 351 -$g_T M$ | 13T - 10 | 26T | 39T - -:::: -::::: - -While the chamfer and whirl are both multiples of 3, the dual-kis somewhat strangely bears 29 and 107, which are both prime. In fact, up to $(dk)^{11}$, the values are either prime or semiprime, and up to $(dk)^{28}$, the values are either 1-, 2-, or 3-, almost primes. +While *c* and *w* produce counts which are multiples of 3, + *dk* somewhat strangely generates 29 and 107, which are both prime. +In fact, up to $(dk)^{11}$, the values are either prime or semiprime, + and up to $(dk)^{28}$, the values are either 1-, 2-, or 3-, almost primes. -### Tatamified Projections +#### Tatamified Projections -While other rectangular *tatami* arrangements contain either too few or too many edges, further graphs of solutions can be generated by using mats with non-rectangular arrangements (connecting corners as necessary), or more easily, nonstandard aspect ratios. Some of these are shown below: +While other rectangular *tatami* arrangements contain either too few or too many edges, + graphs of solution polyhedra can be produced by using mats with nonstandard aspect ratios + (and connecting corners as necessary). + +Some of these are shown below: + +::: {layout-ncol="2"} +![ + Dodecahedral graph, as a *tatami* arrangement with a single 4x1 mat. +](./dodecahedron_tatami.png) + +![ + Medially-separated dodecahedron, as seen above. +](./medial_dodecahedron.png) + +![ + Truncated icosahedral graph. Note the path of 2x1 mats. +](./truncated_icosahedron_tatami.png) -:::: {layout-ncol="2"} -::: {.column width="49%"} -![](./dodecahedron tatami.png) - -Dodecahedral graph, as a *tatami* arrangement with a single 4x1 mat +![ + Triacontahedron (not a base case shown above), initially similar to tI. +](./18_hexagon_tatami.png) ::: -::: {.column width="49%"} -![](./medial dodecahedron.png) -Medially-separated dodecahedron, as seen above -::: +Final Tabulation +---------------- -::: {.column width="49%"} -![](./truncated icosahedron tatami.png) - -Truncated icosahedron graph. Note the path of 2x1 mats -::: - -::: {.column width="49%"} -![](./f6 = 18 tatami.png) - -Triacontahedron (not a base case shown above), initially similar to tI -::: -:::: - - -Final Tabulation and Closing ----------------------------- - -The solutions examined have been collected in the table below. Roughly, the possible values for $F_6$ are 2, 3, 4, 5, 6, 8, 10, 12, 14, 18, 20, 24, 26, 28, 29..., though there is nothing exhaustive about the examples considered. In particular, it should be possible to generate further values from selective subdivisions of deltahedra, or by using selective GC operators which still preserve certain symmetries. +The solutions examined have been collected in the table below. | Symmetry | Classification | $F_6$ | Example values |-------------|--------------------------------------|------------|----------------------------------------- | Icosahedral | Dodecahedral Goldberg | $10T - 10$ | 20, 30, 60, 80, 110, 120, 150, 180, 200 | Tetrahedral | Tetrahedral Goldberg Antitruncations | $2T - 14$ | 4, 10, 12, 18, 24, 28, 36, 40, 42, 48, 58, 60, 64 -| | Edge-preserving | $4((n+1)^2 - 3$ | 24, 52, 88, 132, 184, 244, 312, 388, 472, 564 +| | Edge-preserving | $4((n+1)^2 - 3)$ | 24, 52, 88, 132, 184, 244, 312, 388, 472, 564 | | Other | $2TT' - 4T' - 10$ | 32, 46, 50, 56, 70, 74, 78, 88, 92, 102 | | | $(4(n+1)^2 - 2)T - 10$ | 172, 176, 184, 238, 424, 548 | $Dih_3$ | Rhombohedron | $16T - 10$ | 6, 38, 54, 102, 134, 182, 198 @@ -487,10 +730,27 @@ T, T' are members of the sequence 1, 3, 4, 7, 9, 12, 13, 16, 19, 21... ([OEIS A0 \*: This is the result of a GC operator applied to $2T - 14$, which requires *T* > 7 -Small naturals which do not appear on the list are 1, 7, 9, 11, and 13. Without constructing them, I am unsure whether they can exist. Some possible symmetries are $7 = 5 + 2$ (five equatorial and two polar hexagons, Dih5) and $11 = 9 + 2$ (three hexagons along three lines of longitude or three triangles of hexagons pointing toward a pole, Dih3). +The first few possible values for $F_6$ are 2, 3, 4, 5, 6, 8, 10, 12, 14, 18, 20, 24, 26, 28, 29..., + though there is nothing exhaustive about the examples considered. +In particular, selective GC operators which preserve certain symmetries are the best candidates + for producing new solutions. -*** +Some small naturals which do not appear on the list are 1, 7, 9, 11, and 13. +Without constructing them, I am unsure whether they can exist. +Some possible partitions to consider are $7 = 5 + 1 + 1$ (five equatorial and two polar hexagons, $Dih_5$) + and $11 = 3 + 3 + 3 + 1 + 1$ (three hexagons along three lines of longitude + or three triangles of hexagons pointing toward a pole, $Dih_3$). -Despite the Goldberg-Coxeter construction for dodecahedra being well-known, the 12 pentagons rule applies to a much broader class of polyhedra. In fact, due to the GC construction, any polyhedron satisfying the condition can be expanded and twisted into larger and larger solutions, which have little to do with soccer balls. -Polyhedron images were generated using [polyHédronisme](https://levskaya.github.io/polyhedronisme/) and Dr. Andrew J. Marsh's [polyhedron generator](https://drajmarsh.bitbucket.io/poly3d.html). Nets and graphs were created with GeoGebra. Other images were retrieved from Wikimedia and belong to their respective owners. +Closing +------- + +Despite the Goldberg-Coxeter construction for dodecahedra being well-known, + the 12 pentagons rule applies to a much broader class of polyhedra. +In fact, due to the GC construction, any polyhedron satisfying its conditions can be expanded + and twisted into larger and larger solutions, which are far out of the way of ordinary soccer balls. + +Polyhedron images were generated using [polyHédronisme](https://levskaya.github.io/polyhedronisme/) + and Dr. Andrew J. Marsh's [polyhedron generator](https://drajmarsh.bitbucket.io/poly3d.html). +Nets and graphs were created with GeoGebra. +Other images were retrieved from Wikimedia and belong to their respective owners. diff --git a/posts/pentagons/3/inverted t6.png b/posts/pentagons/3/inverted_t6_frustum.png similarity index 100% rename from posts/pentagons/3/inverted t6.png rename to posts/pentagons/3/inverted_t6_frustum.png diff --git a/posts/pentagons/3/medial dodecahedron.png b/posts/pentagons/3/medial_dodecahedron.png similarity index 100% rename from posts/pentagons/3/medial dodecahedron.png rename to posts/pentagons/3/medial_dodecahedron.png diff --git a/posts/pentagons/3/regularized tatami graph.png b/posts/pentagons/3/regularized_tatami_graph.png similarity index 100% rename from posts/pentagons/3/regularized tatami graph.png rename to posts/pentagons/3/regularized_tatami_graph.png diff --git a/posts/pentagons/3/t5 inverted t6.png b/posts/pentagons/3/t5_t6_frustum.png similarity index 100% rename from posts/pentagons/3/t5 inverted t6.png rename to posts/pentagons/3/t5_t6_frustum.png diff --git a/posts/pentagons/3/t5t6 graph.png b/posts/pentagons/3/t5t6 graph.png deleted file mode 100644 index 5d277804940ed80d3d087e7957e7f115ea88765d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 179843 zcmeFYhgXwZ&^~H8f=5N{bWlO*AiWo*gY+g{rT5;O%0UD}=s~H{J4gvF6jA9N0s%q~ zp%*Ek2ks8|t^2$8Pq_EXa;>~8ChzQ-{me7Z%zg<~Q;{RNMtSYRg$pDK^3oa?E?iN$ zaN(b%t3==vE$RDK;O!sR7YbTe!OQQe*{2H^9$rw8ey-(}v^wD#X}I9Ma5S~VE0)H% z&~$XwjZq!DV;pf=v#?AhN24O0e1!J+7OZkue|dl<-_E0#JEp^)bfT~vbFza&ZJxK19)1(B5fd;81R^_E-v0r{_{g;ux4doR2mLOM?F ziNd&Au7X7oUbhx%r%28(FZ|Gwaw2#^c>Q}-<>L9(!;4MK=T{dP9tvJLzkK)4KRJIt zjC?nJ@9*WETS=GBFC{O1(ER(MyyXAh^gI;*pNQ!Xe{)FxpFiIZ4-d`IyLbm;;9Dev z_qyk0aN$)=ZhG%#$k6zBVX}zl@<^$vjg?iTJ(`7uWguPV^A1u|)w(}jrlY5)VQLLP zW%`jhg=rVwfq)v)h?Eps{2Zf1|I{gds-U1?1)AF4(=&{TkSMlH_1AHo?^19LAw=>F zj|0ESGoa9${woGk15}Q6X{Dv55%{`J?7;F+0WRWnKO#XQFd(7!AMpLRXIPGWKtn@w z7$b3TxBg&05#!^~^x=vRCR~6Q+!)DA$kp+SztX^4qze?YShJ8aSZsu7!LP=#>h9n- z0!`M|)|eM>fd8-NIm345_`&u9?&oz*CdzQ=ksi7dH)dP1G~E>R|NK@gMsTdkF|`(f zV61CdT+9u?ub42FvV!|eV{Q}D%Cn%cLY zKYuc~5uz|oa~3y^j*UIr(K7R`BYcd$Wp@If3t~cHnUMDTUS~Ni&)iv75r98bSbKmw z@H_lT))4u-82tCU2suI`zl${}eH+}c-^{79s2AUv)k+s=7$JUW<&sF)MDdU25UxGM zzu;1IpTn^Fo1-6wO4xb!cXbLYGjqRzV||u+Cya}lV9)v&l)w?0%|C;$<2p@FG(I=J6Ev|v6dc&p%UVY(B#2r%fgloju`HK%~X;g~7IS#Djmn(zARvz(VxVUOm= zVzH%z1OnT;a%N+ls@0iSP%syOQReaO`wt$lNJyB7r)~sP0f@W{p+5T(`1%EgX`26~ zKtdoc{BH&L|6u`4Ihr8sz4+wx^tYZAu>!#N`NhR5;o;$1UZM#+mQWj8Tin-PKiSV@ zoH{BhJ$MIP8fsu5on8)_3%-XcF+qV}TJ$940UEU(%vMeia7?*&{rZMyBDifeG0-UE z8&AQdlVwImhR@+r4%~G?Wune|8=9I|SctTgIMNe4S}kW`Vv=_aiDW=m!UInO2%qE^ z6b%0O@gw8}0jfcT^)oY3(lwz_BKa`SRB& z&p-oCwo?l-GEB#NDNNmV7S-#wI#`((2~^yErqP}S|M%<7+Gx3)k&)3|;|w@lyAjZQ z^vM17xvsA~WA(m!nZsTO*myoc!7rIm@UzI5=W%QUi@r%M_^rL+W5DSNUSauaV{eV? z0wy`@L&rW3@LLq74A0NYQvf!v{c|ZlH&-nn zpn+0tCAMGw}VLQRy`^wBaD_pRO{KvbD9v%gf8q>ikr@wQ@~iLmx5UtU16fLh60~!?-Mi9E zW`YFu4wUF92-$fse>7K~j=iKZl zYOnvy&%>h$k}?rVNr)`Td1M)GU0vKxJ+0&B;bE-%*lMrPA8CBt-8eb8fT*qAK?UMb z3f@)AjM~r0k*>XBIXsp<2#!|epRP-cDD~##$Cs{gm0ji3k%uAw!3)r8w2pwwgjCf z_BY9U19r;~CkLn09aM(JBw`Y&`c83Od%TEU^-;{IgHI=%3bix4PUa5B((Ui_5TWM;`#+@D2_o?Nv zsm;2*j;l#|vAeORL13cnuZ(MQzl2?}lauxdOys57I(k{Bn^mXU<#Y#uJ1gXx2+ zG*Yi3IyLkhvc((gWKE1;G4Kd89pLYt91^HR|9sE-toD@MlgD%7hJtqMx1isv5G~3Pp?K*DOE0^wc|caj_S;6-l@6^01C~Zlzl+m=Ja>ZVjwLx8_R}9n z$seC=Vp^Xllv{KU>@}YH<405Rqt(N38iRWJdYctT%>}ibgrkHZp^?1d6CHOFcWYkJ z!?a$Jrw^QnvacZh;l74&hP=WGY44gEmNw5N$A&$+3iCmt`d#$Y(%ce{O})1!J$(iX zC#$xMbDD+ufAD;6Iak&&vqKTL?cc`TemkFCyz4N<*9qHBPw2J3yj_)l)g2O0@H#La zVruL29A;r}RGcHRt^5^2Ewh%(pky2&r>Ccv&&2t8A>5&qpeNt89BACkx8-Y zx?$DN{_kv^p!9KcKItr*BbT$s+XGhyL$mL0Rf~1(Sg`y`OtUko%-<@|($vWKD#N24 zXOhKc0y{QtJT?yW3*Vy=a*iGI1QoQHCl9H&oKr+-A zGGFuNzGlc>pK+L2tWC?Fd^+TbvbD04H;v-DlJPwFaoWDCY^m;Lateypwy3+L@vix< zb6eGO(yg9`f&Cw@Z0;ozxw!27hPHx$$&%c-!9sq6g)$s8E1e6l+M5meDc9u~T46N* z7T^{|Sd8jags?-He9&jS+xg2P5U%A0w-;+UH|1N}Mk?9j4F+vIty|m-B7lq!qTW?IfYjvm)G2ntvhpf{^mOk6Eqq3?^)r?KO=2lNs7K za0P5?*-){OfZ+yoVM z=+)C?$7#@k|7g8Nf?Mf2J#<{I_t973eT*6DNaRx8Zrr!*U}LITaNk{(_*UYFpR#eY zTP;q7vnj3c7Y=SW`WaJ?JWazMLFBmh#G4b`M>;n(2UWy-2R9=R6X51MXH{x2jT2}rCmTtC$ylBbLGCw`SZUf}3xlFkh zZJe}j*r1{IhwXv*P>z(w+_a`gG8yW6u(>V$t%X|ca$(ieUDXq{W*HgGi9WZ>b-p5x zkm9<@ry}=aoec>9PhPlbtG@&@;+_d5!b#nbghlHOq-HPThI8b zqKo2N5rxZ7SUTA?omEQxQZ`R%Clq95Kk_?F<_3R$u)O-Uyw+*=1CT#%c?Xd`$l}5m z5ywItG&SFqTrD{$_YPs5S?M*Mv4IXLKE+AVrS?KmpAty%I?dZUZ4y1n%>*Gvb1uYQ ze}@|v$xT8VQCcu1tdaneei`|Eak-doz|yBNefDREbIIDKWuDKk z7)rY$T{APa7H8|+qUY=(Qv>u7{xTe@HjVtii}6IHUn`iTz4LuQ0?mKZ>v)frHnP;d zo!tCEY_83kM@>D&UH$T^(`<0(!@l~lnnW#Q_2ja?9hGs8DgY*yHjciXvL(z@$tuiHee= z?O8I8zh2jB@EiOOMNPRh*i=Al=H}anKdecNO-_!7z!n=uRb{WIgfpH?~9SmfQmXDY0k6sRzEcSjpggIk;#Fm0(Oh52JNE;X%tH~aP|Oz+)@ zSRR3osO9dF`j+^a6>V*IMkBplv{XxmNl!aTamNy3B|;`i^rsq)+z-r{d^IZrb|eBa zO^&xYcaV+V%K=pfx0U9Lbe%oak82yYYdQE*QvUS&be0huzh=n}yN7mP9#IEnP>SBj zUSXNglihuO7Ad+L@Zo~BePa-&7HEe{jdrD5kW0r?@qgOO*l0u#vd83VF?)3!RpRhn zr7|{F3VTNFhXUW?;H=uU#ai#zE@H)_3Rd|>^%3?(+1jcxt(clA_5f+~_LuBm;j$WR zU)JfU`eu}l?!g(w``Xt!)wI_zTNVo)I*8O$tR+xk+hd%`0X#hTJN4sHN_^zI;dzdJ21R%JBNqS=k$C6RZ^O zLFOIJZjMMkWMqj)NRd)jpgR}Nx2P$ z4XVF9hUyM>*CN+t&9sB1I2J;W8M#KXlY5d(W*+h(#-1=vxqCJfiG12Z9{lle$j2={ zy-6KZ76wp()n^Ky#OR})?PwZ(z`?bNwI9Vd2?ly`~x#+}GsjAv2 z1IRSIE#I=8U%@|DkLrIjF@g_!5#%4UN?;j`3;{BcL@nebaK7BNeOe0Bxe;{*js9_L zN20jrfNd(mMVdWmZPV8{Lf0T(f-BE`^C<3tmURG5L!p!=r#{19IAHDjCM)HXFUzwqUcJX93Wc-6dvHiW!|KNK&iDBd- z4H!4|ZpFB`m#Kc+)deK160D7kQW|Wc_2bSm0{R>(K1T7a8D&qXV)b43 zx8|5Fucv#HTH}cnajtxUW3&728%`0E2%Q|OJ3qS%)497xj%y4MD)tnnNdKj3hm;XA zUsVp^kw(~=M>0T$N%*VLuPH|pI5hEV#+G^FTzi+w&qL@M zAaPd4?@`z_WViU2bU3f>Z!VXaQ)%-$)_{>Ba;$}%4{oGA0T1F1qq$pUwloMgfuYxu zLG&0wxiEkQ>Ij`A?blyli+6)B*=Y>#nJ?HJ&i8gE(tIL$;7W}%7Au;s6^QvijWO`F zFi}!!g514NK^y5zO;9ngJimkN%%PfbA7h%!Ynv<4NpIP|z=f?>Fq5(IC@bTG<9&DJ z$e0~26Ri6DS%AP@dkPGLIlgXrlqHD~NWLalYN(Wi=PTuoI(=T~=i-sODzoOZU)ntly&wAD!8Mj?XGb<=4Jd(HL&s7j2kf z_BKk{U!Te#ksIoBVP>{P_*3Lh{sDNu)c)HenTWV{sM;}S)#({CABg0izqTGw(CA0f7fk7gQ~DjLq%=(tG?ihZ=! zpSBm+?l18blr$6F!lPb~1K13s`8g+}DsWs}1@m@Vl@hla8%6^3*pmgKD;p$A{EE>)rqcYo(t_Z$ z%`E53a|bS*SEPG@zxhqH7i#FatDuWY8k--6I`Y1xR0v1O%ZG5T4q5S%PuUCm9==s( zO^vId{8BBa8~EsCLw2BjUUPZTL1paFA=L!STG>X{7DH{&B1pMprE}EozbXvWpFHh-V94DGVf!jk1N~1k^g5pK$r^XT#%%^is{m@{$ zfON&V9e)BFs0}2y0@YPqLr_j&PSoP7V_^|`g94a13<>=Bd91w}Y(cOhrz-aiCQex#yd z`--DVk*r8t<=_TjIl(X}NrCf}%IJ)m2BGU0Ej+{V(>IG2L6m#-EFyQJP36o%XJ=Gq z99#}#fU7Xv87RJ6V)Kxfddj}`^&xk6zHuy4_={+XfK)^YzKo&SlXwGBr;85)VjR=U zI?yH8$P|xa1b3m9^B3UAJ@~URH`1Ru42pyo`B`;+`2xKuM!8}gPc6p{^%L^We^siG zawAY<1@cdbd+ny#@mLufdy!t2aNPQa_^;_4v`ylKlpuZ}Gm@0w% zgxS_^t}B)5$^p2&{&^m^hr;~nl^F;E4n`^&GFAtyS@f!(F2O-F;GTK%JrgaJ2Gilx zG&WWkuze)tC*BAfE`&`bQZ#y2F2%|QwUekkVb1ZZ1$8o-K?urjn%Uzj$2+2*x}y(_ zklsDZA7}2C+?AhP?nxqSrf6;`yQge+zJQa^tw04vt0_lV<%9ozu#Xr&A~i zn$w57Ar!Y+XHhit6Jx%!LzyUN?>a!w)}WXuv_v_lhe2-U0d;zxmg1$47y;F1Pb>To z1gJ(QdfB~_1)%>Hac7z0>M;AHk3dxBXDYaMn zjX=lziKhSbhl8f0h04GR33SJLqo&GiDr|BbreyoTPF=y-9fa+GzxX8S+Oc=^+nFU? zPl2#M&S_xf4Amu?>lLHX5Qr%&CAIc1z%bmxNjpA-$Xz~<9Qm5HF1pkcEA6<(4`+*G zdsQ@UU9O?Au{!k2hH4#RV!6+)jqpOSbt)=|G3Yu6)I1O`(->HLq~2OWr^6%)+tH_Z z@26cf@koz@g0XVNZP6mbA!VG=G$|7W)S_448J@@KMeYoTPjFgimOrUPBLzEH^7|@q zsj$u!C7=4&R$3b=zDfgY8I!EpC2BGU^a>@x$hNKXw;l zJhR%&Vo+;bW=JT;rXW!ZDD4_jqR(79CsSW!ASS)Ghc1SzG@~zCtJW;JOsPPl?DCFm z=M|#{Z)VzrTK0JUk`qycvcz+?&VjICgV6R#f?)imOuNrBbr)xj>?mle(hDw(6zY3hCCC+NjC zeakx+tUYkEnWz^wS1tvQRfChWk)AhlpvZb_HuYHz*y_Qu>L^^bwGs3>z0eLpsD4CU z(WI?qj4_xGOg}$kHz(3sPHN3S%>DC8tA7AkT6FY#HP9wKem-P0!j2Z?j%L%-KW<~W z{~(sJo>rr?jBSX+*HDkPG4qv|{*+NkL3oa)R&Ulo^Gd9q)}wYXtp}XY9WtrqWybV` z4^SMf^qJD}yuG@i^Q$4b?ALR`6hJ+o`$Zg^A$@1uv11O1(wT=pT;RJnU@Wv*m8i%QW?`k%y%jqo zWrLl&XLT@++p2!sLbHBkLH#)c=&ZJyYV>P+1e>&G;H9%%Y{j4(@ zzkY`C2(A$qBfx>|t)LXy>2bt&zzTK0l|41*Vl8XCQo8N%v;FO!3kH+}DW-%n_D7*wqr7@*L91(zqJ z5^-;i!&tq!UPm&&!MPL>VZn^ph#eBZr=bG|HPg?}#}C9{K<~W!UAUJfiVF&~DAvVx zthO~yQ<&Y{UG9UFu-7_GaPneNn%cmYHm(t

gYfPn!G)I(vR@`sUaqx+sN}(XpOt04BitjUrKk)8wIqIiI~q zewFH~)<}(*b$#u3eWeEuDtgM9y3YghhS~jJ(#FflYWxmeo(`U%Bwtt7Q;tVx;bE`TDe+uRH?m; zl&Q_gHWjEp=YWWT5SqN{%R~mnOY@=iE~}vFCyY?Tlsh9tgP{TK z_PqOA9GR-Bp3yiRq4UxSG={xJ#D{0P+Akm{C%z2SP8L!V+Hu3l8x*FkCzCjj+@)zM zm-HwECny$wBG0sAbu;uoWc7yjl_P|C(ul(#p_ZF8=)pRZ2gcUK*o9F(906;tM_M9* zpN~&gV~3mZn{5@r3EIM}0TW`#qCF0}mrKQ(3LVM2pE_U;k!-qlYO!24zK&HylqH!J zpmqJhc>8QH%RWJ-3JSU}_fwBpy=WF)M@ zC2HQkDANBf0}fp2nXN+H0eg@{WbcmDb*`xcRt5)hQDELA2;`J5<~>S7pO8*5p9s+t z-GOjXt~u!bnhcDi`M13^BO0=0`yk(}KOq*iv1+Yjwq~4A_Jpv5xRY;8jFjqw?@{+?mzBKz0k~DK5qR!TAJw{*I_Mr<(%%Sy zP9>hrFe6>4QzJk+kXNwK-*Rfe%8U&_;b7H0pDiV7ptkyS+##Z}rw)w!}kF5R1nu53e|7}I>^T!sX+q8SI9Ff`o$Wt)mb|~S@f`@Z0 zuQ%q!gfq?pwbhyv=Q_;F$S9Eo=i+1gVo(rPx3%xS_c~t1SS)F)7KG%R#rv=Yj(9Vm zenCHGqU-dH5sL%$Nc`-{?H^L$X`PdgO3Q+-YAu!KNx9&R8OzGgT9EmeU2IhXmre9S zYIEhMWT+13ftJ1v=A@JKp7mO~eVJLiJmqI1_vu*#CHb zYrCF#U?>Bi9g70>=*u#JyMe7xS#b0zaE%n#8o_EAuU+7GU{N!k5{sgvTp#Q|99jRl z=b2Re6|N#AbcMMjJg;e`yRS^oHWt$xb??a6DGgUQcBCP}pcw7qfcKBbMq@^RCIvG; zFxP*h2C(L}NRSTiLZY3i-IIzmr*N*^P%t7QOqz;Di@QDyAW;Ic3y##frkwg4a#oj#O!>&s%5mtYRI*Pn*|G7p%q9%)bh`x)=HiM zqet+L_=q)h_K-2Dfur9}Y`44;DPC$q*aP=1$pB>>FIO;cul3IKkTmQ5=c+uWmEBZ- zaM-J2oTr3#J{V|*6Utt6Xh;r;Z$L(W3iRAS*tr4Ailc0xir5(`<4onAC^T>DGCQ__ zr%&Qww9u45U4an9EUISoO1{z77q-uiy|l8;2UvYB#~_AgFb=NqkZBQX)l^ z5z4=!zTGqux+MW)SLn1XR8v>i)?YSV-aO!j+pNo)AAkn$#5k!gKw7{zVQ^S#X7ve6 zN|i=581;@uMS_WJc7Mw5`R2qCS}$Oz7tRAfEf0=A>_exsW!RQ2J)?n{#TzPYd9%A;9>40oyS-LHeMAVXyb#sJQK;Lj>5 ztyc?qxLZX&_KyLO{a{dImgh8l=e}s!!=n16T0eRAAp6agq^@^5-RLisG$mig!nQl% ze#80-RUf5;TipszzW=lycTdn$E9~G)jmGZ&_O#d=O4UUjWN?3ct`2y5rpa>=yuG*7 zgXu3%Y6W7jBmX(I!Z;&KmPt~hSd}lQF)-ix*LrVss-2%OM6U}wNDwkr81wmoge52E zz&}eoX>8?Ga53AN9Fkh5m7jX|lu(Sz!aGvAR5k2SKxO8>>20(rtm3f;jD2C;k)XJz z-wTZRNU_U#HWR%Ns$|HsYZnHm9WZk}Fu7F3P#CS%Js?#!f+?YO0w3AqHru~1Mh&sB z7D7y_ZjK|{S>3JIny{Ps;P@9z@0w3ixnzTiP(z?s86hQ1`)Dtn+ju}hrH+{l)aDiR zVZGoI8>O4s!H33fc?}NB@lp==7ZCG38>Va2)ilfy;)%~HBKG6HcVF8EM-PvF+lsTt zSoH#@D>JOu=p7I32>n2NSpDo{N_C|P15i5=E9Jlx>Diwj{rLeXZ=r+P-AM2Oof~G$ zOS{GbaqKN)y=MNpT2+p7Lw9GG%Rk=S`rtU6rHfP5mTuq7%WWcl&b9S}Km8IASVpzZ z+(ly5pvfunemS{n*iM-G^}Q~kB(38Rp;ojdXpz0k1c~7FS|%tXKk(>O)67l21xixW z4xYckb`FR@+Q~CmyDi=8k3grQBMY@zaEt<-iUHmJ91}+_vWx-@ex%ag3>l3T$TK7j zi~Xw{#D8U&?-A=Q{FjoKdeE_cf~&YMv2&Kk-;lHAauM8-YB(Rz!s8HBxaO=l=! z4a7VPPS#qATW?3*=kqwmXY)1lC20TR@*n>y0fuN~Vl1g>Dv9FLNw_eMBs)-0vpt>f zn%2;7PkXtK#7MtCB%?F0$9w?;$upjnZ%Il}z6Tq0%^^{)D-)5R5y*Gy88}U?KME^l z1)iNspqfcG>eB?C_kOF2YOaXW`>MU1Uu=_cr;q+$_U=VEQqYEGvD)C zRb&sD*ZStO)H8m4Irh4bXVJ)OqrPT7NsLrr`Pr!TBIdt?07eE2 zn;juHwJH#6^HN1XS3iIH)K-`EGml_PBx8-FBKd^66>6G|Q2xxX8w2;kK|B+0M%?^k zK4B@HL{9Ym`-nzO#BtI9MfW4uh~9;TEEC=!nU zbL!fTek7lNzvj7YxKu6c>simJ2R1&|?tr#I@|knQcP>cfM8=UKNlOqy7vNYrh3p&w zJv>mU!Tvq+6}uFUIYEYn2O6adBy6byj-L9yRMq2t?d%EJA2mkRYf_yAn`1<|tBQGoM+&W--Rh68CrMmFUgSxfST6|aB)QFuYMGn}R^Hx8H0I%td zU+kWX_0BhW#6V8Io>0-)3KQ#en;(mZv^*WJAMd&}Tr`GNp#6HJ5yLYgDyG$Sp|Z4Q z#0fUjAJEGkXNRXv+p&WWV;-yhnpf1?a!3f(d)x&2ZF z#}L8wu@+&uNV)8`H}HYkZsJcmqqo_~t4goS=H8#*Nzb^k@jve#l1jmD5=+I}iAcJ5 zh?6sNG1kYXCijMlzSPjT#_167%ZTdR{3P>7Ss$^^dp%uQe!VOEAJU{- ztGIS1>LmAu^hv_*fJ_lm4b}vS^EC$IyjbTIyP4wgj0kcWCbP5~e>E%97Y3fdiCF)dyZVP$*P>a`1?G6+PGH-!mOk$p@{DBV6pvpZBR`3f{7spqMoqca z8hY|pmGJ_r1Ewk5*pBlXM{-j^Up$k2ko~%`VC3)jMiQHBFk2atF7o(m$7U z=^FoP%hmyx3biSH}C#&Hrh`lH7E$LBI1g9xgqD48^D_X4~!U{rjJ$X!o$d zcysWfKJ^WvtB03XU!C5eSP~-j*O_yE1#6yMlXy(Obn>GVI>Vu2A~g3VUm9htFm!#; zD2K=t{X6HWmGGf>X(*R!`5B-6`!{2rwcMhjOT+Gm{HE6gyc}6>CnltX@=3Z`JT4~H z`zjUDBj0U-k7lQR8hyZ)6x#*EBF5djpf1G?u=YG>Qq3nsGI4gk&b2GZ7V?m^?8KdM z!JOyn1Ug>Gbt15{>xa7${X19$WUu1MwP!7lzC`z=FIQd7&J;Vol9C~B_Mw->nse%d_DLMHDvX|7}1nCs$(s zl&c^0l_`NTq++%?cI~7A)&HsaaZ;`8hs`!T{eZ0^s;t@#9+GGFsLkD%nd^U^1?XTg zJ6$Hbkd08G5l8GdEJ&qaaM5+hbizAapca90eT2o(aUtEVL%iDtLEIjf2c1K1g=E+y z80)&RRQ*NeZ;=l4OQ5B-g^kRl}o|L|aUmB*iN}aI|1DfUa(5Kgb^yF{E%#mIS zowZ(ZA{JQT^rEuS@6WFPuY9{nki7K~x3F~U0sTm6E~=jZI@-{4D+S6o-CQ@e8(X0& zPr|Y#Et;<>R?+@g*z--g$uUusmDbp9v|xU(%(Z*(&(Y<{;OHy#0*Ehbth?1K@@zjh z6Xh&qP}YENIy~yaIB)$PaegVPa#TaVGgY)LoB*=4jsCpgSg@O--He3WUs>LLIb~0I zHAkZoV-89IYV(4iJO28O>b*n`R{gXzHEz=nO}7$R_oC)VmFZ9dNWPSu@~Y7lt5*RM zS5`cu_0?{YLon07(|PGmBNz8Sp*GK)Q9LJ4_)}tED=|E?2U{4=gna_S=I$r~(`+*q zcyI8REuNpV#XDO&(WjCV+1#dVovk0SB24WCPJ0Q&1~poNEx)w(f;9%2(Kwcd*LPY< zxuCzCw(V;-QnmY=04(YSNQX_8XOaks9MvxX$A!E#!xeCh6Nh)NM-4A{0_=^xWKjL%B8D47e zNl3AUlVe^d2{uSZZi$t|MC-1)^FHjq?Ynq<^m0^vFJKV+q#)0*^w*$anNx5~^k~%@ z`z7&45r+KvU9PcOsyZmqJM1=)tVfv-V&6MIgLcnJ3WUo|KIP|{cNYbW5asySBNk05 zf1t2mzMQVS`^%KO0~S-2Z!_$c=&{S|T)*9N*%yIo_|%(Ir87&?xuvdG`u-U5!n4Hw zdosERCHfNgEwjt;n!tL~7V&uTV1oe}MQ$UYqH_bDdjy)Z74%4|O3-SqbLiv>-oYN#OI-{dWl61ih|#_aWNsJMU$%adxi^uMoNqVJ>lrJ!n;0 z!_Ng$wK{K!r6)=kf=YqFeQI?)YoGm*nD(%aus<&~&*Yj#czXlKm`Wh@Zp0gEDz?wZ zeCT#2gL!veRNKhIg^i(GuCwc0`0j$eC|LB8HOKAFtx`{n?fTe-DxdX%F=rG)?NsvF zlkhOH5)5hZ-6>4Vv$1~ph2RXzdrt_2^H)c+j+96E*sm7HNlJMc8;; z;*TDXha$_=cCwyg97oTdqwb+T8|{wmqwU zxMA2rzWs;n7D283k3WYFDVEdg_aT_q)Kn%9<(;+pX1WYZGQ_4=yG?f@aEO(zOt<`D zx~jNu0M$NL5g$AL_{VGN#KnE|@7qNAhX-Xb@f*{>O$9w>XIiR++y?^0$s*4@V4K4&vGnems5DQjqy0TpxdsIx5B z5FV4hbIH?DRJf^~m00X0&K=e(ce2cG7R!#=Gs9j?VD0j>Qzqq(Yj5C_eDgz8Mf>{yuZb%g}<<}CzTHQ zwP_$n@kIs{(+_z|p~Zulf81t}Zz}5FL$^(4N1V@$v|Y+M<2SFzv|rN?MvkQALY{#V zf2*e}&F)BPUrNEa)%VBZ$U`^@oOIRRs5S@!5skPL>L-xe+uL$qq+O+(=uRt+s&-?5 zt8d=^yJIBW>d6&b&+4G`)mO2VW4#m`)_Z4Vj?L-3G(bTAwh>;wGf^8!e$^cP>f}Ne z+T>}H(VstLU*1?2)1`S9?!7lX91=PGG5GQ^X?fvWG1iXZOQAoPoXlc_ECUwoa~-Fz zKUJ^AKZ!2C{)2(&xALxMzu)oY)mO+BFOaKc@AA&n6;B7blqmOe^iq&?s~mx|2R@TU zHF{9N%)MzgFW!yGNOBaELPBeT2XUYIqp}<{zha|*GOrrKPv6(`gj7C1OF3sEn*pb!n zsYER`WY?F3c7`uZq+4q|45e8yW)Mo6x8{hFE6rHuEBp0TGJVDE_1nlnT~c4FWrKUV z+A+pu4E^pl=-(}JR^q!CqoSUlrEA-zzk`EkJeq}ZQ5e4H0Tf9Ba!t4xWt@BjXuQ`4ZJA4`l@Vbv^Q2X3;~qARfE}?o0nb?HP$)fS)*w$S4McqBa}) zv1q=EoA4T$!Ec;DPV61u==ofK;u>VGS7=xlB_qQ+Uf&RUv1dYf{Y}2(0+`o;9{N&y zUg%Lo_?z^`m|Y%XJ|;y#5*A65IKtEl;`H{mzKWl;nVXZ(!&oUn#Jk!2<_NSZGN~b9ql414 zhPEzMJH?jvJpCKOjI)#y^=uK`F_e(o=)V5?WjY#3_stJgz+k!HOS54M;c~-OId2-X z_qdJnE?zJ5$A8Xbuw{zv5)%<Rl#liu|g31oV?v`hA{e8U5^N98^U9SB^xoLtA-@@0!3ge=<*4wMj;?poYN8&jIT+1oO}Fm0 z7v`!sTJ1+Ho;vl*?6K-o*7A3t1-mpTl}?>_w<@B0tauRlfm^Y%@e_6%%*IS__zQ6M z`Qq(n1I!43p!oLJEiqkH9-ziC47IJt3U3rEX&=VImfR~G-Dk(h1j+ZloGh2Q-y`GP z=8b8K**ZA3GdX=cBY7v1DaF_^FQaA~TGiAL3?xeR8-cvw`;zHOV&Xz7pfmmijW{Rs z2UpMJ&|D2y%d>$=d8Ka9_BpNo=0ewLC$<~cwqV?*)(qwHK9;77&m|q@){ZL8Kc61f)Y!q@|^#L6DAz4(XO|q@_Wc1?fe)mv?sgzn}Q= zY44pmbDb;B+-pwYP8M%gQE7bt@x|Hx=H8S2_4&P6s=Q0P%n9r}^7+NVCLGGC>JtGQ zs1iVUq=Ov)TRLdh)9MV-u2(8o#{o9MIpKQpb ztDHvB@H9e1ny;I<`8norf#Rn$IX~>rUktj$1y~L%8UjwKRMrk}WJvD^(VHg-A=V3o zSPbf2!*#a{O12vXG98qSAbM$SSX1*<(}>duFJ=j#Sb>If_eK@o(M;ACC3z0 zlt|5uu8%|;351|~{BNcU`+^|MwqPG$Q90LmAQocq5S*6VdjdAFzMYAbPb4^@<2+z7oEyIRM)F#>`qrQ_N%E;*;H@#IBLpU%w!LYqdv8-{HhjA`&MK2bFNn#y_n} zt!fa4*lA$D7?_ID`Z>8{xl~wqLpuDV*2A!~}vBroUsrK>uQ4$MWe&+!FP2Ae;EdX|(zU4=`(yvKaXJLHh)@ zd|j(7O=>8z)U|!mU_Wa9w^w)i&)poDUGG%9Iwn-bdmP$;e@dhdIw|YYuJ_#N*qp3} zL2To&e4laW;okWT%D!ZX2;<}R@5RrxS4wT6ACC|71ta&2iuTQQh+hl{L|1v8je}5es4el; z^cD~_pfG5uk`9pwILPzAReY3@{NL6LdKbfMWV;W2&h)1qeTkL2bYgO@BlnaA4?FNr zdtrGm2^{K`S9byKQ4 zOCbH7X?@fwPjHA#9x$rQf4#4@`+VZb|%uPh$h`)7k4c3g%^>AdivdYngD!)d;T+t z2}QUAMqZvq%MRa{zN*&qnHl%sxwN`@=huR1d)BQooQZ2j&tsA*YCqwv>zwV=L<(_5 z>RrxszKZ%)$)w#HI~e-Lw_T9m#VIt;gqo9YV#gW5k&+niR*lg-+^GD30W2KjRP7!y z@0db@TPkdn;>T57#Z17Q?YrdG#K&Zq^jN>(Mbi}s6=Shuy|tBbqp^K|#S~QaD^7Y! z=!_wDHYJWz>J@>>osX(==Lx$TAM`nZmfp2yIO4R@K}%m2FlNiKisa*}Qk~5ci$B~A z?d{jkWEE0w&MHGiSl;|NQ%h7^F5U5fIpp66^(5}Q^?Ssx(^+(*eR^vHX{&$=9tf7y zWbjN)ZX?NF65jv5$dpfAr?m!Uq>OfR7g(^gU8ud=Y7DQ}?mK+L>?GV5^Bx z2jknfZ-wt&Z}HF&!2!{YzdnEjY-aavVBGtz;~A$4_Bd>o{xB+sHz55j)5tsJOqJqb z)3Bq=HTE8lfh)0_1Vg=HPg?Rr68NBJYzrszR*ip&l{BQ7ZS=3cfUoqW+Q^pgXP*x2 zGb=w3F&QJ5&`SvLD!w=i%k{A+UyD@Qf`q6#_3}Y)`i*`S0uVgz2zgXDX{WXpi&C$6 zSLADgz=s0>7;!(n9Zt)XXWSOcwl{9m=U{*La(#?VJAU2h`6K&)&cdeh3ulO{>_ne1 zBPrF+8Siwqd>@ZgPyAVug8k?WZuk^C>}c-QlN)R zG4aK&4qY7tcf8N{cy{0xo-E8bfA3M--`u%hgQ+*JRiPprDR1}bSUg)znhNvNh1sV6 zzM5v1K-fU9e|QKtqM+}*gO$TLePdccX(s+#HL>EYL+7pU6MYso!E9!VQTe_ zW1jBOTCU0_>7L7UpWm~hx|`pfubwXIzHN#B{&;8pMAbCTL`$qQosKfa?<3~A$I`R7 z`0tzCe7I6db(SSJg860p&!uVIGyFXjV5Q>r+>+K(fAWO1)HKGhM3BsPsH)R+ zEwb4!pP`Ek(Q}jUE*_$7Woo)E2=H~qRPBFG+&nnIeA=h85Sm}U_j7z*Fk`p$b6SqXw?-J* zelAQoA~=L9g9AUOz9?Ds9Rn#jR1i32za3T-?wsKNS?4WpoSeP}b+*!Sb1<$aCn+ z&qgLxTsvCO5Vd{pIjY94tp_&}xu-Z5Ld~}Jek%%}Z@u(}S7jVg!=rB7B7O*b#g?JL zoiSv?A`q&1Sfag z02T&!l2B1#)->3#Ne6~Cht~kI*xA_Xk>GRFdTpIdmP~cIpP!d^&T%{Kv%+z^->SJ$ zh>loTIXHeaQ|cnDNzQR&o<)$@zK|jH`#zk)@lMp*Ncv}i&t7Z1gAfCgaIh*82nis= z;IJ!b`0JgXTzj&ucFWHb;#Kn-RJ-FvcSEKLmN_3q8vH}vX-UV`&4=*4+f(~3*tYkY z1p_1FMcM5|>tWdK8A-#LQ&0($LGR(WD_4kXl#^rO3PmIo@TLQLi*>cyoj0EC_&v%L zv-`~sk-!oLhC8U8s`>fL5=69a9#8=VhO=o_8DaSS9$I|mOq-1#;AnzQ!`dU5+HkRc z-y`f(zfO~7noJ0B-e`;({K(+i0=%`2>S{J5nn#0CjV4|+($ZT-!_KJkqy#Jf@MS3EH}|2I*VRGAIC$@}q~zr0$q z_t-++^tq&?#*xNSg!?{Bl!4K?`ZEJC5fmEX(f@HQyVz!wl;yUZB!f1TGD2;rb`phQ zv93a*O!-wdQPG9ETPqz#`_e$INK z@334oYH1N-Gq}fF(}EWmV&mY7p6ql%9ndbRZzDC`g$4$u)xYWgEp3!(__^RfXfo(3 z!Y7>jI6ek!b9DW{Ea@hgYlt~Ti;4w~>Hmi{^+Llwa{EI^AQlqj2a@giX|uGtdFk|M z`mgq*{YMVQc6A@*UO$>EdVj(@E=eSh8Iy8#Y#=2kC%5)@XsE3FXK{`tv+mn{hu~Mz zX@VJ(@c45Iast$4tOtcNXAFHmrF}u%1O|F0eBiDi^}f@mRpCfJeXngol^PI76N)*? z_;1Zllt7>w>r6?dr+Zxn3;mq%Y!`ixUGAmC=k4=*KpRV4ohfAgI-kRhIDv=|H<%iZ zx1LnVNuY3Qj(ZltU%yOsbjB_#;Dh^sUp91lQJT5Yw9%*U-_&->Dp-5=z+R*v8#7W;GJOTff z<)v^3COl|Bpwdi<@AL{74N%4os3eTdtMCNwosztFAz1UTW;&@&hc9A*@ow8tT>Y)v z%vxlqCi;zSNtUr%H=($Js%jg2`v!5WN*Blpr}eH|!mi}4DJeyj-oO5A4E!7U+GdPp zmo#Ny^m@ZE{xSzAA~yRv6X8ewx@Xaw#p`_ld@<3)ExU2x)&fVW?QmoWHV6iBtjLv* zCP(?Mrkh`V`jl*uMBFe~tO&ojJs*)%@VOp&$;8|x4zKbV{BvTRA;s;kN&Xg=!@C2g z)&Ot4E3_62=0R^%Mgiw5({fy_oD~^HPbI57v1+;b7mOIMdx;DlO#R4B@#sP}N@z74gmoP!hNJMPClqYs8WS-&rpStQW(T3$Xc zq2d8Xpj5G&7pe}2g;B1^_09n1y8wXz=Fc@>tFfK2JlL3-leSOF@c*ICH;1v2Y(3fi z2Z|85;o*m7adx5*POmp1Qdd7YHd{3|?(`83l1%EfHI${A*PpQWAQE+a<=pxrGM};e zR6V=!%%Az`J+MaD`_JlRZ>)caD$=(K2#Wne*Aj0VIc_fa|5*T5o}AV=WlMJqmSY@L zO{_2UFV)ZTzcny^CoEyC|KsBP_x`}NX6d}#%XjIG>6O`@?kiGwgrbxnqO5no>w6LC zo77U;_50Jd2~tlzx`%g*aGANOBhFlYyB+KAT6XR65B->zd~fzRp3n8R_Vf9?2ewi~ z{X!ngz*J?EXIg&JvlaUhIGccwo#6$Wq=M91asSFl9sGs#!BaAFvXEC#HCc<=64s&O z`j;xl%E!h!#Ld~w*LAVC5k6;sTj?12dUtNgvEHc*29ngZbeBb5=U$1r94^Ye-@lbQ zbQ};FI?a*X(uv!5PrLN@iK0yE5EMh^*oSh&dtRN$5Mz}Vd8mnLgoUIBLZZG#V*5dT zfjl=?1>W{`JIEVFE8IkSwmkBwNHJ@iyV=La-`E`eS%5WCGQ7)p{6%3Y)d=&r@U8m~FW@rwrdq(B*Jkn|ee6g)G-yH?_c>-##w6 zoU(ZS>G`?CWE3^2`qcc=V6Zdws^GBW2Z3k|kxDG<^4(eA2iU#&Hpjr@lC|Ix&l?#}b+%Vfep+$|K zb1wemC0ZadlIKh!slEL*u6U15gYLTMR4ZJ%XTEuCSKYh%LMFg}Ni<-0y@sR8(J`NHF|K5t!Z}8KmW{G3vO)fkLxdO#sO>cM5l}K{ ziZGeGo8rMk()&tZMc}P|zI5ExCW1c0M0sL1@JqMZOc^iW6Gckcnew=}!!4<+JKUI< zr0kgUJBXZ|Zt%g9HF^*e+uM1@ehDUv{Zx1zYjGeTa?2ay%1w1{TcS2E1>8 zXU2_gR0-S%7^^A({nzhfDCjDQTtR)m1PvypXYo4*g#&NDEUp8JvmXG~>X8=;Jz~et0W- ze}>bwzWzFJCAZ>MECwLwlx5+HFwGAz|c)4ZCBUG{a>vpZrzD6U5qD{3hKF=tf-|yAx zzlhHsFa})H(u_KPK7`3dE{L5f@(e)xe*H4BFynjagAYOPJlF{)O@j8Gpn#FBryzF% zzNrInnUhsKyC!5?@8}>JlKoafu%`_28%xoE*GSllaGGwUJ9MHJF9dY?YM0ht&+&nw zOyWb-S&fq$#F9-%C`TL)ce|1%H;J2xvb+cr|8pv17qjOOaF5ozd<9)IUbDeNsXg7@)4wv$MgJBEH5{Km}#ug|#EJ-?UPHKJsaNVc1KaULvK z@pD0q1+<1JWQ-Bx&JGgrt}bMhic`_Ly%zyzbUy zpItS2{$l)N5M5m)GT7TcI-1I>)7EN$g&0(EW=D%J9OT;p2T8++uvPR{H_P$b@?0-I zNvCc2`*>$u-mU9#&!fDjgi9CmdeQH+l@H>rSTpcUdcmMR2tV(il{Og6Av#toa?Q9$ zPTq?T72LGQ-7%c^;z;QyiKCu zaQBmUG%;DQ<)!q%>y1 zV_qKCuLPLA6;S+k)2iZbt(Jf5Je%rIfPn=YQsnf-ggn%ZiEBkGo(OZar6j6=oTVe9$Zgr$83szlPY!L-<}jrNUa z^sND4cp0VM$8EdOJsrlvw=D#w=yf1S@{!aFj7;u7qj8B3Y;Ayr3Fs0OO9U<&TctKs zVv<(4Qr(;!UBKp2`&ji?IV`kD_)3AH6uq-ElYDV;RY5oULT#kGD0w4ZS%N zXAergBpc>S^VptFV2n+Q=?yZQJJ9t;sLp(QDzoQ8Aot8SzwlfuTX-$+&D=^&v_8Xc zYk^Dfgz6tsbc$HqEtm$~UPQ=ChJ(a8<~Jbt1VeX&7j%~prMa^1{9f6Zm<$Iar#C#IJYfsXqlIel%Qb^>(XpFB zu}BdiFwf+;fHKzc0rq}CRXD*u?T~Y_iV!2e{J1*6!aHmJDmdY~)_dg6nicET4s~i`%}t*E zplEQ|^n(rvC%{anEA`KdEw18uI7FkU?Jo}Q`)6(c*%tIX`p0u4c(@rFmQdyL`Fwi6 zQ8{W!FdRA<)hNM3Qi8Y|0Ex6U>CLL1^z2{r4Lt!5bd-ebjYq%RntvR>7Y_yz7Gdup zI`iyj-;Zz80pf?$Q*Iy{zw@eH?^fP-VP+2f^$(?iR+h$J4JNL?_#IryBw&qUos&%7 zepxd-zD2Q?pQ`tWaSJe*hF|(&b2|cvxUH?jI4AH) z@hmYF;TwTO)elTdC6dAN*C!ZfDmFU}BtT30dv~AaZ<3p7D6pF7`Ng=siYKDgTEc-t zSnhcQ6~D37KdYbh@`0$ekr-N-)dWepw~ zZJ@(p6%0W)IDN?sB1aCVajOhPEv17ed>~6fyNAeUYdw&{7coGXRu&T%v*+Ao(cxf& zo9>g5=-5hH^~{y)hn5Wxl^uLSeEnrsKHa9faGL*eFBC3D^Qa$T2DCu?^6RW;*-y)6 z_7`WZIXyp}5N^NQN#E)HZXchZ(J|HUb@+S9Ki95vwMCxgkvF$|!WS;m zIR=E`RB={Lr*W4(ZXj*>7AY5~EzW@^iQ;rt^C|NM7g0Zi zxV&uJ`Py$;Dm~7EjX3JyG_daHr1QW6*7?2btyA$_k^JkQKG$)om_C(Im0t?YKB&@X zvI4C|HsNt4{!Mb|-;!w_+R| zf@wgqnjE(%ja{%2sjPylT659o9&Q`frC;Rai*ANxwVCl!(|B9w)#$_=??$#)Ct-j1 zanVOwgGE&$ckUAv&%K<=l1Gd-J5VG?whX*7$VbwiHJv+ZkxsgAmANzK;7UUzvAE5a zlfa%Nu#i_vxS_pZq4?*KE7L@gG&vKy_O4km>W;vMkJNxf7??&MUbdL?dHq&?D%=d? z(*L@CyEo2su~mhSAnM;~Zrv8;PFe-UH{jsU)Ll4xYTId@*9`AeyDXjv{o#QERx#`1 zEAfd;kY6xpG}63b+v?+AH9u`oS9fbf0)37tn(GFf- zt}grGn;-z3t{mc`8RClvz0Xi%%|)V?Ha6O}@7t8l?82n?n0#DM_cuwm6AwhN^u3jt zcM@!SlVL&;f?SaXqQB19z5*b6;-j8;xKQ>;e&7MrFkH&CJ|i!CpCC$6>>3p;m#Old zB@h`VlV>RgZ@&RU3Q3Pye*Gx!I2_8jojAjDR-043T2?J^=7`O)8-L<@{@2KA+j`#l zjtcfyUYn(x^(zcORa~!`X>V_EcR-)=_JG&Df~t*tVtbXTnwVx?M9q}7wAm!*VIS+7 zneHFgWDKN!Cz#SWJ^rr%4CB^&NFzDnAmPzQ9W!G7vxF_G7T3eNd|-=GV{%E0)MzUcBVYId5IU>KAbD; zUU4YRN&tK*Z0ad5S$*rY{GY^G{Q!-J*qx`<7<<|s5oyo`z$%8C^7*~fsBqj-r(G`_ zq+vgJcfn>*t%nrcxw91Z!Z%SgW(qM=D>oN@vd#iVMiiy9H4wbUWYhtadHZxybjVd3sj*L*-UeWbe?k|YpY6HvLmMt(%#^`}&9|6yH1=>%q+$FG*tg8P zqKf2>l(HVm4|nEg^nNLTyHe~a@7nxjWdBTPk%y1-kHXMGtlj8@#l=ibLvnR>QpzIx z$HpE0eZ9}^PHnTaFlZzC7oJ4LOLFEH01oDQfIpso84%K<95s$`xW@nYL}WJg%DoraU@UxB5JIo} zo~ERH9%?$Wc%YEMNkHj1t<#revvge)973FKDbmlOa{CRuz#Uxc%>F9=2QHICpX;8u z`x5w0<0ax|a*G769I&nn=e@EIF#A)^*^bx@jsDAZ;c_sxqCBgntS8#lwKmg9m8QX( z5hZ=)!zs$tkJgL0JOZ#A++n*DK^k{OjvE>oH3qWl-A$q%VEtiQtZP)eQ;Yeu0qC6A zJjb`#R=HpAWhML;MoUlM*{F*3d$y;FqSfQt&#pb;xq|3*#^L{Nz z>T*`t6A zS*R~*QzK4&;#cK*5Benf>w`$~p8XWBX-UxJ%8K0sOTua!JOF`RO25$kgFYv!So_bW zU|vD(@6DBcuW>9z>v2eMNP3inIyboQDd&{73g(l4{i0!G6az7*J90ib{cgz7Q4tYT zfpO~;3fD#@$M`ZjpFI~a1nuY`+>RzD>&^mtj~!0 z?Yy(ZM^?=|Cb+Og*X|wrt<%1^*MErVQQuaf1FdkG9`IP@ATi(7cZ9T261>s%Nd~ST zNK5ewFX%OQz39NTy-N$nk(zhlW>qIC(i}?)yTf)Vin%=Kbpn_n^9O(yv5u$OaAPJ} zxCMflzdejHf?hkDT0xRJHu^1L;m3MFXFL<76TPlHO~6ykHPEe$7vOJt*(T6f7C56? z>qi3jIfWey7ahGLJa@Dj6B(%rhz`J)l)RVeH`>#4;JYU{>}+E(-2B7iBp=qAbEQx= z_fsGQI^!T>Skoi&e1O>RCFMgd+S!k%y&por>&f$!4p6%GN_OgyZR)f~%P=RhIn zbskwwU$@+KtHLeb<@P?FZBy3__U_E882`(AiLR`fe;1{T1>+~t<{*BLxMWKNF=M;Y zn4M&4IVVTMV|2ANW$2zh&D!_N5CRmX$v2Kb-8Hl9FBYpxgcK%a^u3o{A+n2J+RjZl zD^4#|y>2TH+&Caa7V%FR7^KZuTR*v;vn$u72C*+Fy~ZIcs(o7`EIcv3{%mbIFpK0r zBirrc;bltC(QDLzW$1VcEfW(_?$7TS#)xI4R)U)lhh{dZ;4Y>+iqbfk5+tD$;AqTGbfWyND9bJy@Gp*a@_@fFv|pE}!=oD%c~qo3nVoJ>@a&F1<nGuTh2Ba>k z7J425#niY+`1)0FceoHzUi%EZ#P#{ESVI8|>kF)q?kmX917;_Tg~0Yp$HYBb4ax|x zfi3s>l|iYAq{iLLuCwMG_ri-NP~R+nfJRrc%Eao|UIewpXf%14kUSz09Pq$!YH%jD z4$q?<7yJpD6TQ(y-x*onc?#pjZPu4@Y|sf~%m%HefX; zs2CgNkf>uyfW-=Y3T@+>`O-;sbH6EiV7)7;XXHNxBi6t_NwtJJNrCc?7h&yNFPpS( zsZtxp3m)e_UfKGRZ*+QSLK`|3`Vabzy0f_C=Jxz>IH7)QIASA(_NfT*W8rk)Nt?h2 zG&Bw;u<69~3{^_oPEaWl6Y+aJvDS6p+IPyDUK_a4i&iZN9acVMhNhC6| z0ykasXFIP_XUoD!r&T57qkxJBqlZJ;PS77ia@O2kjC&o~S|rjBiwBjAm;Y$}reuj~ zL5ym}-ECT@EOQ07a0skSJP1}UwapG8$duEOop**XR7pE`;n3#3Ix{4PMbtj2fmqW# z$BJq*u6VBamwLE5^`))FUc(<1d7m!}NsXBwlCw0)>3BJbZe5m_@To}cCSbTr-RL;f z5(y0*rf^z1W)kRaleLh{eI){M6{CbFY5X@jd~p*L5iQp$g1BWIQir*>qfv7l-%BG;J;Z zbw@*Dddr{@%lglCCgUamXG4AQ)g3_T; zg#uCE{8++jvU!OrNbzOq2#tWA4NWrES@AY^_B+yM}_+_BRnxA8|Tm%}nCs~;_l zS%aBtZaS!CTO+!oE~N*w!^N)=2uQ`FO=SUHGVJ@s6Ip$TI*lOzlZS!di?VI&WBR=3 zpV)Dg+7gqyY`kqZKU(0?7j3^8y{iB1f^z8RXomNf>XngIW`|}9i>S~|YwG$RzQw?C zS7pa-Cx6?anUIN1P3UKDcibVb7V$munA*pqFN9GblCCf1LjaB85})5Wx?MuhES$SC zH{MkieQmEFIN^Nu?3=ly)p`_u^5&IBg29v*Mq^8@nlPIXP9r8Bi{jcYI(gs|B zfq07e&?aQz3!)DbS4kUH4w>;M9hhIF%)~U+1}Mt0yhav*-R4$8;EFvSRhPW4O#D0ZOFPZR+pc# zVEApYlm5|><6#Vj!m#9gEdk&&^XC&Zc6hwx3Yn1qJg;aI70tg_cqYdYY{1f`22=+c zE_sC0U%I63Q(+x&+Q+wseEkmt`q|P2BZJ=?GXVxzX`K!$f83fT4J*@pfwPiJwndJ< zQPI#N(ntPXt6skciO&+u)Qzu|Da}3R?x-I+65DeUiS9|^kZ{h;q5Tx{GR47_x@_6- z{7g%%)+sM9{u1r(^PG#^yNXUp#cR9i4$-IwFX;)klCr%Q+x-Or*&!>v_1o*@u6NlNq70qR7X#(36 zRajmpmzIjTBMjQ23PeZDiH4PDU+qB4RiYXNo-6pZeI?C#D+VPQ&!daIZ@F2-lbpvN zhI56LE~%=TIA+sQ?2$!IJ%0{iuQ!+O&8;``g5%QC+udgUr#L&X} z#7QK*V*P)j$7EE)!&i9NEPk&uMul0T_YB8S;ujg{Vj^6TE>Uko*Q zlAt?mG+be*m;(FtT-y9o>6l)NynKl3&Z6|VL@Yu~Y&;g1dHKn&!!(_FhB*Azea+`7 z!?T_O=Wyp`l}SJ{$;pt|rTtZ(a)b0)u<_9uq1=aG^;xOb}euGWKBtVW$9xu|qXAQd6J>)0&MCdXMs=`gVUu<#o{)D77^w z53P$o;JU#X6JLnZs8cEVVb*H_wQN_D4iQ}`h1PX8i`GlIYnYV;9X+Jbdu08$w{_o{< zLH$p&4qL-IgTpFCk+sY=nJcn$XB30A60(_6+xHxAD8WuH-qd|T96?HC?@5uZPu=_h zzZVI*AT5O15Gz9B5XNX&i&_v_$4n7vHsLY_(bmPRVW}dDi8_ejZ=LR$d%4t>7^GB($P(M&?@?ooa7yc1V$!jl07B{#_Q3kW{hgI zCpE%1bzDC=GdU;!hAyi67O=sfJOLkHx(ac+-B=e7UdkLLBJ4dR&R5Ij;FC7%hmFqh zMN3L-!va+S`=fovuH)RKT_>0tIakb<=Ew*CTWjrmoZ{T;-Y+|5L zeMJA2Vc=lDNgVWOQa{9$=aG-tG3(`qLl1onEnQ@do-e(L(+XMJ)P%q|-kNLuJ?Nf1 zn+W>zYHC^4l*03oUyOBF7O~9bZ)Z3iMuG-X7Pca()+mDmAUx%8id2O#*ar>S0ERp| z7u}F;%aooir~eAC(Ee&o#Y@^MEe4$zJOfA{6Gt%JSe9+>+&}_ROn%5g)a+Y4!y4Gv zq+tB&>3df1M}N_Wsi~4FJ1mqkm=)I>B_*>}8****OET+Fu)=sk32a-+bDX;D90hiA zKLQSM5WkbSx38KS4wmZnZmAvuJEFzmQS6@54~PvP=&0@-TRn$o9b3W82Be8+-a)%Ug0AjSsSHK4i29g)r1F z4Uyk}G9T*+;%+gT)JiJ(Im1D-Pn;ui=T<(jiR=v!*?*yB8#{(8_E*sZ*#sLwX25 zZsG#ItfBbo-r+bVN$-Tca3R)LHnpz?K*?eeG%VqT?I)o8CFiG%vPI3SHss5v$7oD%W)Q52<+cHwE2yo&}jt#ghc0 z2SJfGLw;;a3d9=np2Y(v56l( z76N!+L}}yi-*1BZx|y@%6H=p!<2*sD9xs9Gp6478ZmJ7dsgQ_7fW8CB7!I=P z^gGvsEl!8WWCH*Y-ceMyb_)2VMl}2BmWapGp=ww-7~LE!J|Q%^(H*8OP+9mRqC6t9 zX_o{_YQ0+sj{>~v#ES=%edsp}e8bv%Kwbx%2Rk$_v_`%zfAD~|aE+$8J=2%S7hgM_ zth24Aswf-m<29$etMINrCYLMi zD+Np<_o`;IIKSIJQeU2Lb}ZN_;;|x*MJ?NN$JrX)!i>F$KQDK?Hea&GC&Raz_?-Xw zAVUjIh)Y5uEvj4?GCPxAOX%C^(6FX0Y1{ioFx91|onOc8&)b|hQB(;>>WioJukG}^ zXVQdZnKgTXg?jh_Np)017aK~jJTnZ9lS6&D~h#c5K zjUyiD=icuR9CLa*dzC9<6_z?W#bJZ;q`e(hqw^^PnC=QbWQ9I-LPKB0HN!Y7F_ zoIu-n{qe}VrbE*T;kuQqK1nP_iIxl|x<}|r&iQA}rwkQ5lldwmF#^OCU5gDjd!$*F zA{+9Ra(&rYG3Drk4Y{wT-#XHwl6lw}8hg(da^+(JxqQhrK~=ppGXacqh(r;?VJ8FQ__vcE$kM7jtg957Y2T zye7Dri#LH*O6wP?dK#2OUYy3-Jt;-aRl5CL``+Bfe{Y9$H`8|ctST}q&Z&cM(QSz5 zzzL*&`kU;lz-fzL^(Jq&x$B>UwxzqR#2-V< z8OaWWCjr=n#Ab9uWZQ0u=(50&>QKgy3t=+au*q_%ZI z)b_cPwtr_d_|d&$+7;l?3(-C(U1fRMVc}jJ8MRvv2y+3soYuen~ zjbkn=GQ!?DoJl@K{e>M!cj*+hPs_Enqq{Z?U!6(uuW%)|OBRhSBjoHwK6@c_AP9=z zA#SjQklZSBn0JUl?__ZP;B=N5Db_qO?;fqaLsmSNcH|WG?b`vN6>roiHMBiZLK9#pa6tAk@{n0H0h zv;STT5o!F&N0PDQ`#;~tk9w^0uqs7JV4}$SwG{}0a0Z%yl?gF4wZa&>sf*Z=(8Wi3 zOIW}M5s+mb{XOnWsKhumIZzh|Rb8az%fvwKLv_ntd#nv!8sPpgBsr2y&$9VH!KD3} z_$u_I(XF17jzbEocN{N^y>-@Acw-+P2%kQE?tu<@nA!NBu-0#ni)ZnSGIwzC1X=et z5Ow*%(}iB`qngP;Rd!2rECNiHM-)35u|DeZdi4$jSfw?A(sGabX3{lIqZ>EpqScMN zYrcTW{t7aLY$`$me}RFefFWa#UklYSAk&L{OfB`+CSJ|)A&HpfIi$0y6SS(x@@Uyz zcEJaPys{AG!fZJFjpB$>L1bP4(pw!be-H#who~EWFvhs=Y>_Ga_O2s6{NEE^_H%#c zNDDA=z*Toei3Wa)l={}o)-?XKq!bAyEj9>gSY{Dsy2MA>fCg1D$#GsyS54?OcqiLz z5*crk_Vv?KQzu z;RGgdw5}t$C3s$LvSTD*NeQqU+WjYmWEmNEEaU81U}Q|5m7+8MeRWApl-TZ|>V6A+ z(nr}s=>+QXytUJYo-TW8qch8val~SooZt6JGpKt#PWIaig(Kd1YKwTQUlKweIjHX# z!d@c6DPrjtPUwrRaIwz}9usIsk7l0;$2@68^}Py9db|+A<4pYnCpQ|bm;9^-MtJD` zoU3r#t7E~>?CHKAUr^uN2S;-=6KM-vrpM>^j2hga>YbX&>Z9}0Fw~Kb>bipE9{lEo z!dF64v0DlJxzJCiPiYz6IP;b<2DDvxY>bNhwwVACBZ49VMur(X>i_i1(|_+~t-oT1 za9d?NW}hqU85p|$0UZ+u#gBGI>zoMQ@=4`h{p`}$%u)956>*r63X=WljG0M_(G9rF z^bGq;9h=*axPk0FzCrp;$D*>#Tu#uZ=2yb=8e;0fd`v{lW-1+IL`BF&8)Q{pHJ^5d zKDwdN~7{i^9N* z=z%qP{f4(Zldu0+vWLlF@mfZ@2MsGKr&HiA@jG3 zAeEEKpymhxOFKF%jGt740|7)krxZwAk$8rn$N31Z_#SyOz0g6lnsveeQU@u_Gjt8m z&EhKQFhZ5oDOC!4uJ}k3$vFRyskaQPy7~S_H{BuKozmT%Qqs~$cS(0`T0lf;L0Y<` zyG2P!=@O8X5Jc*k&HekI>%8KnU-!(c^{F*eO^?v0)p~;jWQ=|w)P+`G^Dz-Iy*6^x zeHzkmB809pRcJ7#-(mFcX%n-HkfX-NfVtyCM776*MDn@EkEUY8kvdYya^kd2I^}M4 zXu04!%e0=CFeaY%QBxWnHQ&nL5wkO0D$>cu@R5wy3_OAi-*tlwxwToH$rov~-f+@% z{5%LAOIJPCXKM~RG5twH#|H+l*hw2ZE@TJf2iVkpl2>1u3^!Igy{Yi*upN6{h@_N~ z_pU~mR6@m1Qy6w4WaelJ=Olh40>964u(g0Y^9lniQP%&s%e#@hQ;3^SsG23k4mD0) z(ehN%o{6t$k``7SDl&dKJQ~|y*#6u99MAHtK9`YsB2WU9flkSkKnV6f9Sys-w|Ftr zj-p4^AKn4SK(0x=u+AkM57rqReqOPN=JK@&IbV`SzIvh1P2T?YSd4~sR8~3XA z$-KG^EY}g4XA3G@7gByZxBC$$ks`|SbcuEhhdACyU~ZTQ&EAw$PmD+o+uycp%&^8{ zO-AEO8YWRgQxJivsoEcT&8o_RY6vHJrW#tv5m7mgJI{`wc_t?}c{`Yf@ zUN%~N+K9Lr6<$Gt#Bwbp#J(2qUULj-uR{K?WvV#M{{=6s{H@*Hz4tY3P8)t`^&MZd zZOm(-zM+sP zdF7y|Z+)pRZ+1RT|CBbJ7a099Pn9^P$|~(>+0>`Is;(TqpX8X+?YsKPVba}i$>MNi zxsaRm4tGRr#LxSx0t6`(tNd$8^VaS`={q4N%#2<65eV19tic$@=92!>+%RA-xJzT2 zU*7g7J?C2RyYNYG5bU@IHJ1B(sW2s|u~#o)BJAE1nCMdQXJ`L&88%QB;@U6ix!MtOg7kpxX!-)&}0dL8Jd()mKtmde}TUneC3LyKdyON~KRdO^7$|f%zedQqV!` z-iD|NIxgCYPpwdlJpPb~u4jVvU0k60Yn`#nRyrw_yykeFpQcmFZS11V8i?0489S?> z1dWC>!a@NZq#YT1gmJG35lgle`8`+i?njz9JH zEZ2Ha5|Tx3=BQ+-1-W$9z=ZP2>6a$P0426;4=>;~D_A@YpeT?lI6Wvgr{|}c`SeHq z&&J)sN&oR@Hnp9Vx0}408Fd(8ftxe=Vp>aDi8eP8uq`IciS&#S1=cb9kXTJf9Lk4u zhbjN7{_u}zc1^m)grx0WUe{dEOaIf8$l*cjRfzYRrX8oLuTAr{pT$dmo1nXqZS z%Erx25a=rz7dC5!%MiA6Oiq$}_=0>CA!F2*A&o-XUc2PxB!hE3BTwckDtW`mP#@+3 ze%bo3nqj3eDRIyI7Vs+V@5EJ^#?5ZV*l;k`Q#wa=S!tdWscRzmTA8V77^LgKO z0j5eFC$9=QhNnq)7~V5&_HPj~6%Mnqb7OLy1o*GKt@%~#a9efnX5di;@PDTo6MmD; zp{%8KycW4}&Ol;Q1-g!Z(#J0?p&6ot8AndTdq-r-wEtm6`~R>azP8GRsYDb=U;)dk zSo)LIq12WUyIT4g?HzImMs^599gxLzU8{88#S6lkx!Kx{Xav;)@*2p*aAkFC zW_)e8DRNPgQ3?0x+%)NZKZoJ&eoDlzE_X5aA$H7LiV%Pb=y9L)iXl7Z6{`kFq;0qU zhh9jSAFw>XISo@;587_buGD}EK|W^93(GZW<(N6oKna9H&V`L)j6qE`6Ewzs>MMaz zF#?Y!ExoC4C!xrUq6_vcQv%Yjo4iO4{#V```C*B&;hz3lkGLZFKU{%u*pRx{ zc_sq&9F%ZDkBhx98E{=f8XJ(xhH!I#k1Of5Ep%{4+L9Cc9;ZGL=FbZaUo4%mj z-e+^*T9>~K%&K$MXLU zp%b;#om4gdD>^nkueb)FBwOwxzkgLdpOTnznUQs-{p&vnekPL3H)12{P>_;IJQI3@ zmuWd;3o>Ch-@1o$f{#HAQp&1s!TsfY1Gfyqx@+z#^+`|XIJsk_|C^6{e%4e$PqId= z+2gZ*IrOhL*3fvF{-NmlqivK%tE)jgAOaqR;DJ~ z?=s|VpegKQdlEiN_7PMLvJ9%8vZc~>yyIuWSY%%tzSS{%CU07Q{!zcxaH`v@GpU~) z3~~3}#xTgG z(EqP+JRVQPmuL4JuldcQ-{HOblQO=&@|;H827_NcaA4&gSUx(lp@VOo2Eln?qeT%h zR`Ir1{r}zwc(-$=2psX-o8r*nh1(3R1gylt8n)2HFYC%tBg$ZsqYv2i^jtg>pE$(Q zPkoM-NHQt4GDgLakfIC9_gF@=(D1@Ik@lA=c!cNfz69Py{jgLR3b(3_Qh?Kj$iA%Z zrVM`3t@((B3Ln2U#LXszELfm4Uu=#@Hj2rHCS=%bc1rx~%qWZNWeo@J6hzlW>UCHc zjdy;>n>X-(R{nfCsTOi1;}@?xLL*=xW>Hgost_Z;_5S+{Tx-*t;C+gdfjDDkVefyG znPWtU%WWuHv{Q;zZf(>@a#!Fuh+B*p#&WSBKv47LRN^*@cJpSB`c?lHd1qV6VKg0;1maPJN8wvMdrLpwn#ESJUPG35 zbK0OuI*lh4SU)XB^~tr_@??7UXUYgfa}qrFTD{;oZ{9u%dQ{;jW~og9d9hQW(?3idUsF; z%U$UWoe9HPXu*tM{stuNdD^HRzi-}ZO#+htY=Lni)$<$*DsVIKQ~s5A51egt7ZJPx z^jsLTj8Ms9V`~?gl@Xaaz@y=&ZHgZY2UF=fiP@sz)cYT&=&%^9ZVkz@Kv<=A!{vvcoZs&@suiha79ZkEX zRAVzp)shGrWEkg)l57S)e$qCz%rjB)$Y$|7aE-wcz?5bz zVL1CX=^fs*sV~p02f4P&mh&{UPX$q7kWFLP5JXeFyNR}N*rVbxG38E^L?bHrYIYBf!eE@N(4!C?NHH6J?o4CS=+C zwsH^K#6`4_Kb84AsOra}5Mz4=SlIlVP9aIhy+E=cxKgS6(a5>}@V?c->%$!cM1=vL z0_}<(=UH(~3+_HO`x3F%bO_S7aT}{eulYIj0Yzqs3rQn-Xb;fzHynrc3T?lu0on7t zH~CB)6#+F>a;VsEH&hHvK1U8Y4!@dX31Ck@S5^iiOrd=(X%NTu8Vkp0tUVNmtmwT% zN+8TaAOK$HAAoRvVrH)X;4jz@wNWYulngd)mDi0k7EKS5G>k>KAUjP15|SA%g0rXM zeDn%xIRDiXnTk%`O}+$0Q$-UFK_i9fof7CpCz9q@9&_gbM({{A(n4X z`;WoRxsG-xxr4y>%7MSdR`HPx-|GPxw;v9}#m45p1#X$&s^EYajqRV4Lf~jk2L3{X zdA%uX|1BIS^_RbRF3iN?R_fsEL|w>Ib)XB&rjz{lhPO&Dvd3R~c^vWFz02S~9IXl~ zaR7iA2gG_#6O*SF=Iv)9TzdcN{j7OInO?K{27rg`hSb~5*2N<>sB9yW$?e(4X3 z7+CvJd~K$NZT8vXp4pohK)*Phyt&nq_9Fl(nm+5s*5tYrJbaf#l6IZaM}&cQ3snZ` z6**zbz4lk=-*o8T0KvA0j362W%(zhy%ae9JppzbdsMBN#!EnXXr!qF|H6ST`V=o4( zm!)YZcQG!Iq4eLycc^Q~V&`%NtQrt7(t70ofp=_o1a=M;Q34htNQ<$*JQCj+-w?b= z_64#`CjS`pFXc~E)m8YOVC0r>UC>ok=Jk3miL($;wag!b7uShp<6zY;Bx&vFffDGP zRIiw)vVe$T#u4nj0zK>d3jY`har98J;62HAAUosrr4?hv0cz|=kzx3*a;a*;jF|c; zMVj+TRc=G)H{T_^+d!lzSCyH@L}T_8Y%oE>$GSyagbU-FNv)*H8}~FM1cb@ZKJ<)H zBCx@drduNpR=nL?C=^`+9ceeM7Od|D!2#v-LMb)YkW+^1>BQX!5VnrqCT7!X+l3cw zHIQBgFDfezN_+w`khjf}j=%(wz6drc}8*7{Wkxh$T~QEe?Un)vN5 zirJGp=m7kGxO68jOZE3IyK!RU_Rn)L3}M35fRq_yCabANM}t%}S;sFJd+bSFmZS(G zZDo)3G>@rx;Oi}aG+9?Pu4s`v9Hj3p-;>TpO%Krt@0!vlRv4*6-tzYR^*U#SOlMTu zDl^`*`8JR}d=>iu(kfS&4))9@pLnaxb0Rsc1u-G6arCG0o_c=h7%fL=G3 zpZmgt28(CO=z)QL)x3fS))uo)EZ#BWr=?+HzmSj_?|HdeGR9CX( z!G-^i(1zRm1G4F!VwHG11=mpknr*5ffH#D#Xsw{;1FK6P5(XUrrr@XJO8uNsF$N~< z{HG7N5E66j4{fKc>GBft&LOM?4H$6BsHQO>&kC?Z?SzKpnHeY%ZjYYxH3KW7Ex1el z(1&At-x34lXI}lHMI2@Vt5`Qw3ZfgOaPW9|VYAjU4)-C5NYUjk99#!Um0MklS_eoyT4ug_Ea1W^C5_e1Mn5kJt{{vz`e^kr$T8!Y9fA= zP$cafEJ;l5q{1dmK}ZUM+g^p}fn*b(>fe;Ky3``EY{{?A!Niwz=ub+Npzgr=e0Syp zjM>_g+4I6eGg39TBCqgY5i-%66FFlHg-ZQhdqPZRHv_D;-zVw!AMnGHKY|fD5P~Yo z&@B|?7m8?``v!Vz7Z^t=s*a2`nG;IJ6T43?2gta_NcUR9w!|(|peSTKFkr^p6f%o6uY*=U2FmRq5+*;qi{o zMcCqV6~hvfGo@a?!#kPjioC4zDI|JA5^k<{@3_K1Go^@HkGx@i^}vSLhxdB%@Qi)6 zJOl%X`1=w5a0!F){l#28m95>HsgQp=(e4dD3%;A=j+0TuzmDYUv&I4`2IwTu%4`G} z`7$8@Gft9mun@x;DKM}AOvT>a%(+3xc?W1DUGX7W2K%z(J$Eqv%A?X$C|jV}Vk49; zD+S8e!XU#NNqw)FDe;9|Gw5NZWpSqX%JLZn>_2biX{E@)#E<-Nv>qyF|MFAY%k3Ay z=>{N%YALmeyb+ej*S%o|j1tU2U5_$hV84^>cHRG6*MPke={t*j?mqVsx9B7gJMH5n zOo9gB7|=qzw&{GB{WxVc2$LYL!7${7nJ5|v3g0+`_$WgWeTb3>KmNnA#OU8`FjKK= z_=0VziJC~`m!xj+a|zC7^Jo(nAs|3^7+lcRTQ-2c6`G2d837^`=&4PYZYz_cxRPDh zJYKHi4~k5wXktx=ip~a=TI8AJgDYK2V0Xv-o^c+i;WT+C>zl_F(oS|BY5KUiCCqLa zz&&+l&-X-;9VcFv>{1oszG=hA8jOF9FpNt=db3BpJ`8Y*-;L@h`vlo^Nv4*=f}WoN zICnw~{E@(}>U(Q7^2uh{X6vUZSHEpt8HQrW!N@JM2g?aAe@k-g8|}?Pa_SA+HT6M| zVYdC}bNJ;c8~~%<&nWZegFgzsOIPNQik~b}yP7Gh?w6EE8gHPM_FbU%=K{sE`O!(} z05c`9np!D^!paE7`t)>dB@3FIcSTZ@0hkRRI!10O!bX!u(Cnx}4~L^IFZ5@pMFNf} zx=W#pqWUy{hshc5cdPH9B7_owhRDWPL-Um3>!-x=L>Th|6e|b-(!gd)?rO%c@iMau z%w-+oud0ZH1N0Vlj39d$g#q#`jY1aXTR_DELknkkk3D(*0PuZJgbyGAoKH_fhfIo+ zrJSpgo(i}*hc(C`z{+)}|K(Qvyl;mPkx5*6#1?QDv2pPYwb6F4YGoETF-m8HG zgYApW>kkt(6`?Et1jg6I9wIr@oz%SbtV;y?;o-44)f5XhSEuhOGFUx9~! zC2E@vPvSeV@PDQ2AqoqqMLr%rM-2Kql2&h^ShoG674k7=l}+UpcKOEv-t$9Nt!^BC z%7@ovsrnDQ%Lm6}a}Mp|`5*Fmi*O5A_l2TFv#BX;OE#Q?5VxYq!lJBr>G8m@kkruM z+ZK@1A9JiL;9ryQe){5Jet8W#HF6)bs?_sfcOn_N)%KlVru(WS@@f?UQF$`_H_e_x zT#3w{CLe=~j4-Ffi+3YQn3S+Q(pi+Qf6q(UQ2m8Ddr3@vUn z9BO!GxCSP_>7^M^gQ{M^mS(E_XJ($l@Q;c0%xuGj0Pue z?`;~iAdscG6B&SaM-3#aN~(~DT`BlbWZ`;r4s!dBz1x2{Gv&RZN=<^9n{NcZRL=U& zY+W2pA&=`-g}pxR7+Dw7ZgQy`;u2B;8V82;57Nv;+2sM@xcS7n4UuOC&p^}Cvy_^%25h>`C7* zLvb8IW=WJ9g3kIP5ru7xdvTU>-qP=tXteH!LpI%e*>$n9Qp(L%4p1z6DW zgxuu3#*u$a=_j7QNVZrOaS+s)#;;FFZ#8seGXFWZ{I_TWA533n3uF&Q3w>LaSJ90h zu$B+~pwPIUz7!eL5;$d9veuqsb;3-Kuis!BQR%O$03c>p&ig0%==PZdPgr^)8GT zd=@=L1G8QFShR>tq9+CI`%WYv#~Vm)2x1TPbP_LKwaspA&RT&?snCmTMd7~M&I^UI z%%Jy5SL@(<&Y0EHK|(uNB=x!}k6xU`#FDo_sR8V*7h(^DyjHwpS*o5JIO+FcU2&3N zyT7pgYP4PA@5_Y>@yx;>c9KjXcO#Fj(z;+)%gKB-(Y)cFW7t_DKQVR`Jf6 zUgC#D*gYDEM9rD5-&Uf}DqmF#7VFW@Jc*zGX0G&x<4fhres`44SSdrvnd!zx-6w_>k)&PA4?; z)Y2P~zA7lsceae11{2}ANf$tq)wSx`nhx>i3N zh%^Zq6qlsUEUGSzoB{?dD<0#X+vk|3a?g)gM=yN+QDjL)bt@=;y`ShCnk`8lD{MXW zzT5px^=e(O&Ie_4^SjN^*|XI1RKJ?bPDb_O+wGtZ&EN2c`ZsdN3}@=anZ*m)-Nfaa zcjxBP>(=MbX1r%4HphEDx8K@8m*mC{+B=&km;DpfyWMD8?V0JmpF?PAys(ZlpLyj- zVNNW+K7@_JB|nbBo%!=2nC?|cAkkua(&(CmJSnK3_blFScCYw}-o{Lf(uZhBxnOoH zuA7U~4mI}NdhQ)6d!yWL*ia^T>vixv1@Ao__@#X9nio&!=9=H&ro5a}v{n4=`llWA zn(E5!M&-l_`1QMdhwlQ3i%Yx2KH`&GsBx;Yurtms7#k&{Wp!0!)p8yGzi)aD8^NB& z9E%)3H@9^4>bY5G!~_JGzUs^nR4KybouSqxyN{#^I*H&;z!cnx*%BN)+4b=rN{Ut= z#DB7p@>&FkChho3p3PF5u5@cnJpS}%tN}L9s`3lrlxnD>XfdCa1?hNs@itX2H5U17 zTnc4m=DmGq@2#?6khGVB1%X)Q`!D+6tBzv-QPBW;&xPNATvPDJY((#Y-fFmJTXV{L zgIX+$IMTPNRh+?cl=hAld=m$r28Ro6Hq`7y*@yO$3R(m~nm2F(%tX}tR&rLS`q##& z-cZSH4Z1bEMuStw(+cGT4L+x~$wrvQqoQpxC@EOYxTbm%}S zU6m!ZZiSvthn^g2c=m@xaFYm+Q&}D9!W*5wLToA;XwR>m>6Xb?7SHb1cOqFvS>C;i z-y4a?Na%+hNLmaX@RYCO30BbJ@3H~iE>=lSN@Jq?wTJU$jop(E{T-hAj@7eFPuZyB zkd`0{;TC(`{5S#S$yO!ZIzC{&r9kOXBMy3ti;V0x^Ri&8$+s4o-w&Gk#aDz{WTbCN z&E+id5%}KbJ-B_~u?)s`#5goVUaRYzjb9c)-+!aonkJ~HY=5zaMOJD(Y&fsc6trrc zjyT_0r)3C?P5w6AvfHDup+Cr5(t0&%;tj?>Z;sbpU!)GmS0p<&(l*|b3e#CaETl=I zeKluVxju^QTEiv}0$3i&FmtP2$)xuwD*x_spEOJOUXFUK=?ez2#d6Q)swW(URkqVJ zB}R3fzYVdY0>W_Nm9mmP<~Q_KBK?T?ef~9%UO-e2ly_z>K(wSPZb>7YWo%t6L*P$l zJ5Wl8S$Q%~4ATvvum3uq2Ly${H~MmB*wIXHp(Q<&hCzjLB-wcyXn0Ed3!WJh6pPt7G{8~A(x-N~eNmUBRyZQ1>&S3Hj^29MSPzN|SPc7e)^O!d#%($_ zt3t3WrJ?oIdHg}}$z6XXUDSTWb{<^y6&Nuv(Hl_>k`4;joj9v?2dm#<*c%( zYTnHsYwpQWX*>Gq2?*nm-ecgHT)1Gq_A0EaB0}z1x~M8gT0+nJsrd<|ML8D`c24}az2dns!OQCLts9c4 zawyR7H!TcBX(y3=RX^7jS8}uM$sGl1@agdC9Mnmhe@U$?PGAN704b#3RJI?bd#gK4 z7aD!i0qFatq($JYyc$ML^x*!iv#Wus)GaUV-B+QX)vSGsP;p3tT*3IVIGj+jz+Zg= zJ%!Dks@PEj3<$Ru7U+oW`@*&{0aPABfbUTRIf7NBrsMW`0NY+y4i!WQ!V2h$FB}ku z-G8n%GlD}G&9yGbe;za)afnw`TAiBpEgk$`_htX`xOpWk=kVz9Pr-FSK-ZAi)+m^L zu0?QL`#0uG;)JR8!^cYm?D&6nJ_OWI?~Mg)xOI&aj?aIV)5sm)e_g(&JG4mI`S=O^ z6kev1$SY&-$3Ynl{I7DI?t+@N^wT9vmWG{&5-gr3hq&F@5*f+yKx6KK?KA=8sgML# z#rvg;hr_;3j8BeLM#5iu4tjmu%#$4{LI~W#* z{DMRB|EZktOsFQNB*wj}3LCjOBh+bw)i8F=0FLD;w7Qqu3)7?>TDCf;w5A5SbKieo z^pZsMUya$o!X5c)xFCyRvheJNftzR_Otk1QmoGsNaP%77mLzMgoASYLyfwp+ysb6W&@e!Dj`x!A0 z9SC~NqsiFd6?zN%YX1{y7Sw?qVp=BO2Eci~fAN#rU#ylUUTu6wq%fFNu)AIx^CfAA z52V%lK(>3w8%#UH?u>x`MvNg3r_%1CSI3X@hTMSjq?6`{hwzuXe`w9?U)>3CTys^LBhve6LJ0 z{CY~JhZ|x6%&mx-GrN~qmW3xvpc%TJsDH-cat(Zqm7pNwDiR~hu}6AxODQHtdt_Yuc~{W-^(&vO}()9@>c%Xr&ERfgJPQ+|k9)c^su4gO50 z0fj!)%zNKsJiq;)u!+uAJ#0=e^X~;f5!z_9+*AI?E&3_KV&mdgYbj&w>FJ@ok3GLD0i1{A%xu)fGd zd`|@|+%v*QbwjspDem~&@Ol>6xuh@}LOz;)Z~R zLC-wR`No$et+1isd)w!ahSDxL-ljeoc~6<1n4Vx39WmHz@B8m${mUPE3WCO$(~DKA zN#}dnd&3{PY^%TCB^7uI(g`+0ATI$V$KC6EMK&Ew8T1^)Czv0hsCMFNXOnwL=CQ=C znpTR@KYm&K@77AjjT$qsdqf0l@cTD4>wl8Q#RbLCV%{Eao^bPbwk+}sJSBu_!Ole4 zfNz}{a_DzxT_OWzcr1(4E6D37Js@SOVDd;CufC48og~b6uxxnJy<2Jy%US*?_A4EE*q|$Aih7hCSg>lH69(AHW)A z>3QVw+CX=hG7Y9^TSAhXhbYJ#F3QU9I=`cInFXg!dm2rx-EQn$oe$45CG#zpKspzQ zuxW15F7J2R%*h_*|NVJsPDdv!YspKuh7a=Qd3yJlDZMGSE<*y5z7?y3l}`GAP^`N{ zKfdaxV$mF(y_;_%o03{)1>2R7fG`FeZ6f^-`?%5Jr*qkWX+bPV>cL%MT98NRr=N4| zlfSi0oIy?bTM`!yAt{!``p}Q6XDGBf zf2+Qd_wefyl7bd6l(k+izNv?+dEbSc;K<`dY{a<^v?6XqazkT`JO$^yO*^MuWieN8 zv#9mJ^ACe=EOKgQa4@ZC0|-?&KPGsDL|MeZ1r|u$j~asltR#4l%QZXFLc_TE0p~8_ zSbBn&M<=#gu0QLAr-M@|n244nt8nV6&37H)e&7bqSJS{~keOG9Mm^Nn1TIe#E1A-=c|ralVx^|%T@7wf0A_{6e+qK9>u zuSvBMiBlaEHgf%}Ar0?+#EW<{!|#}M1>MeT(ZLIE>Mfoffse5#bq>eftXU=`QNhTS z(fzWSti#zK>6xg6a36f#rTr~0oSu#d7a3~NBf%GSypKPb;|Z(hT98LjrT^N~k_0g4 zm}4Iq5;92mm)G9P>Xj!yzpf;Zy19{?-Q)4Ex>d(0gb={IpER7yZoEKE%#P?bhXXTW1DYLOQ9r;0avrU zu9NRE2)qvcc`MLb0O>edyW#l`BEg6%HeutCc5`+ngi zDgt1FgGXIUZ&OEJXthvpTymecg;tUaEgrP)Uj%A$fZ6jS1$SpW2wWXEOZoY-MT=dj z4ImH&kVkK(DmF8m(`!B_?AW7!Qb1bkO>I6!ibE?<7XrM6x@Fcz-~8amYDBUM965*U zE;wt5o|s&2ZjogbXQAj`zE>R(=SItprQ%qidYz|xYd!KH)^KciyKx34LBu$DGJ}4U zU4KzGrN9%|${ZfdE?vKD*+w@02~-v3wMz=!iWPC3;EpXp@P0wSLo{f4MzoJ2T0Nf^ z*2?Vg1_gCAH>Na6ZHzn(@V5;pWa_u79NVfl`c}?Wqh(!2SY*|l<3|m?uTZxo%O%F7 zIWw-lZ^n53Q;P66mQBG49Z(**T>YPv*Z=*iIjl$RIO?-@eHh?)mr1 z%kJU!^>~?!iE@Sfyn6yHT6?6&j{NN_pHO6O7XI&1bvckn2>-p!KH$cZ3d%VjCc^v@ zIk#|wa4Z7{C&mwqB}D{19bbITMibr|LWSOj?A*b{fksdSszOFmM*NEZ5-zX{Hp~eu zM)l8Q%L&2zYU-MpkO|s3!_^8il$TTy@ipLUdtOJzUWgCWa3MiXKC;kq`*otHnsUH( zeg{_>>i_SzLasLL+gqssj(`P;Cb$jNEfBkx2MxBPvW|P}*z)>tqg&NOo$fh7s6b_m zaXKdu`{8;tbZFq#vY$?hhuY08*x2$Z-NVQ7r)Hc1q>QADw(8Q4U1+b97VN2Z6?56z zSqrmfoTha}w!cgdJiYw)ea;}uv;9d?%Bve$rSf5&c6?qL8 zXu$9m-B-5GfYysr7WMVA!+_rs2MijpKpvOvc}}xdd4A~*LCMWxXN7tcC-;WPqPMaB{%FeUEjRiZMSsRe zC_?y1ko{1qNc(!~$cHCqrWr&s#pBR2KP~?zV2?+FyoCJS8A2N!^-!L1zt<926dQ&gA~z{imi@luI^>doW2@R5JzI4Ox6%j!P-HscVBK!44)s01+7}Xv8g{CYCcy$d)VoSo7gHe$3 z+E4*cXT;lX9lNXL9}>SDpHtx6QSWg_k3?ITy@(CC4Xg@WIE4u;?aJXPawP;GOSp^lq z7-N#o`EAPWj|UI}2EyZY=}*k^(*ikeqS!~_`I_1F@oz}-fFr^VqXC}Rl%s(=V@9zO zh}{eK7*M3B5e&ucU2JF3usRadKEO+($WS87kE-3KM-z?)v+6<>R0_s^V0}Qb2#XXS)y)dq6IuHE$W$J<+ zp0PZpyjU;iBi=nFF&SUdHHhMoP_S9HNo>)$$XN2W9~W6;MKntFiYrr~!f_B5P!|dx zmc`{L1(T1r0mC&QNzhfr&MA*+E9s6ncZ zAlV}08OjI64gJaaK#2c7HlpLzr+CL)nc$6o&qiBYOdp;-Tdb$-<%!!_BhB)pk`Q3t z$i-TQDG8s0{#!g*)bJm@uAf8CNioL|tSr3MgF?_Y1>ebPUB5qPxWH=4udX5ry9!?} zH>zzuv@u{07ZNZN^6D_Y<2=S*6>vf)xP5iQRmWtJ2slkR{TCu=Xy=tVJrCVf<)7DA z>#*|wXts$|>We)Ul1yAjiI(@)xcK<%*alQ~Rb><2@6FUu$3~ewQE0x^o-IeT>)aPu zCNCuRc^yz{dcXzjcj7i?|rQG+NiQ_kf2C8H;Atu1ud;)powqW?qN`;AC?G&@`xxS|edw0? zM6V09#vXi-1zLLVM$h@}u6aCQH4hD&QIH(M z{pZ+HoXfPzU`FaoEe_iw5TB>$_NQpeS5;#g{+ENtAkUC7PtR9qf82>i4_Qn2iTA#d zs?L9PBB+1zr9Bml1>P>a0aBd&_VdS$cA@|TBJv5VJ$(+Sh4da7uu4e9%%t7b`hX}z zl~BMUZ1e|AsV-I83|kizTznkReWfN=dU})4ZO)7Pl!+a=d-+loDk2Pht(->O+!0$P zVmx->KOqkLd5`FiK&4B;O^@zte6RUY8Zrq@!uQUza7;5E$s=&m{N1-k78eGLCCUal z344h@JTS#^3jY!K1>4D@0w@UXC_v7=Hav0EL52BaOv&Ix7R8NNm>jh^y51m$z5OF* zqxcpa7Vtua=9;0~oGys8N7c~K3vSW+;!V9u05bcxD6W1B?~KOYG8u|49|Oy$B8QhR z-)*}_tvCufxmbO$Kk4M)dH;a+d_>kH1PyY6)B4yGd*pXll$L?T{GTmRa8lg9Pr|h5 zh5*u?WZ*KVFUxm$6dPK=y(eh>a_x_=FKmO|Y+ig8F-(H90l0QY2S zh`Qs!=<#^~(AQ&XD9v7VDAH)^vBl532mvELQ0{6{Y~d-_JL-DmD7serW)T*2*_ZX_ z*or4+?_m=^w~)t!_+if#w4#vc9~-MtD1-y>oYgiuZT=y%a~83vf--(aqn2S%v$z1+VEk^#5gvuz)T$-TZuO^aEdV z%k+aYn`CU!@4@q~7$y`g?_Kd2c?p^La=J1<=7Rb&I8>5oM{px5i4&vX-Y?+p^&OF0kSO*CNRw z<97lR7JiL?^?SPUp@O?&Td}vQglM5~7JHza0w$}d2{I^tA-iVt zSf8)f_-g1Q=rrqpvBt&eukMYqtkwimyRNv*S;|`d)*m!Rtw(yMrYMhdKKjp2Ge^tW ztle7(TL5{kTt`7mvo-`}vyZ5o+B<*CYlRr_dFF(b@a?yy9sR6PzCxq73pBu)`3mbb z|MxvGaro|V7qDk;FG|g@mOsU@Ynn`AS!+{Rl<984k#*ODBR$uo*(sUz8kXhni^)Yb zmPNxWRubeSor%a-EB)}xrpkbTHdQzfGrUE-6dDd9R}FJ~tC4GFe>qHWD5N$|`ueRj zTSJ5(8SN<5UM9Ug?xiy(_blR!7-fVv;I>s@B=z((s*>23M;I*Bfsnw3%YP^ED=c?% z)rcSqi9Y^dYutg+^v35-ldeP#>xHvnVm#4-Ihf1Sk4DxhN6=jUW}Aja z0+7`p$jcY8X8up2WC!Tz#)hP<{tFp;h&?xQ3mwNp*9XHql@FFg?D zNJOC)FSlLk0}jUj+gG@c`^tbn9lsOc-dw5}7;Q$4Pg44xcBDxV@Pf5I)lXe!HRD+PQ63d$Q* zz?u_M5k(d(SGkLGGnAJdkPVe8QNJP%CI-lX$(N6A`WymE12$^-DqAU!6p=9O#{H?( zUS?nj1~AYf4jH=@)Z9~Gnnq3ve9{-w{&q#nkjwUv)?d{W!0&4=lwGos#4X-%Bv6*A z|GmSGs=NCl@Z$Mpb|bhk_x5PDJ8H}_HRCn7HlTerY5tqpa9h#fdFDzM`H604FNY zm}sOL0sMLVJSM+=r=voh7B?*?ZXiPC6Hx*#*GGw&scvxA!K834o zN&VPWNR_HXeA;N% z!u5{l)q;&NieHj;eWAD+o@1Mbf3_xRY1UVKTD!TSgY67yqOW0w8TpN2%t*aOq%a~5py zw6T63cOO;230SOue}9d^)2XW5{;RglP=&Pak~1E#17>1~V4^6u6k#rGX^tSZ!Yun5 z^g~9~QkxpUqU3rAg$H8R$>^lFm)R}e^d05uY)Le>k{|!~W(gE0%~-IIBZaLVmG_>W zV`9 zXb9#(X)(bjQ?!<+XmSY|60b0Xv;^I-D>9*MBcEHbGPXYfdO}zj*k)8hixVNy*QXXR zvTslLxX13xf2|5)nsizVs>9Lv1f$V?eYBsBPr+&vXyJhvNM0HpK2jY>(xwG`p14?+^+z%mnquclcC;3R zK0iYOtw!jRR+fGGoejsGW`>ss6XAsz8Mm;2{TwfTeVt%~G&udVP-(y(y4vpF8|r*q z|Mlm&mC`CU4And{&aNeLd(nZ_KIl5OYmm`k$Wg#FS*nUUL$@DYjs@exgjUd#)8eK}=0iamoy^^03#wgX_A9-X`FZ z4`W}w!M6_VrJg9q5=pPRA=pQoXSaCI^~~AYjewwFkKE-t5LnS{&-c}X{KvEz^AW-8 zB@y2^9(1jw@q(6HR}N3CgdnAiQ-w}pj{hn;hyIP;dM~>R#!a~(h0Rh#WOx)Ro{LWYe`5J-Mw>pS$aS@e z9%lG=k|7(qkZ)sZE#HoQf6AS^)G{=(`WbI-bSitgG!`JA!JM3h3I}GJx@P=Cd{k3c zORCqb+dwi{e>s?#u>@H7T7FwK`|`CHFG)i|ol#1=FvJ6&etquN-+%MKTT-4&Kp!3I zLdnC0{b@>eC6P#U!=G8tloTd9bweJHn=}yZGA??}Hc4w-s`4@^ygcbB*e81;)+g(4 zG;N!5dfpujf;zitQ+>MZXA0DU$8P88J~~73WtrwKtPALk#2YC9clsD9XrBl%-5o_Q z*<@8@xt6R8@Ce*DdCurpWjM}b_&sCB2qubuDYCK`3Q$kWzs;w=ehMJKw0mIfEBm=a zSi4T*2dg)R9#=(8{`8Bvyk30^!ha+)=#H>tw)~R;N^C|@a5!^jcsC9ef?3)I%GP!5 zDt+?EK7%829MZ|8HP^c6XDmDBJL~`R z0+_F@8rrcB{L0QPFEV)s4BLw-nY16~%F&m4)Zu_&z%lu*o{7xY!Q*m?8y8zq z_))=tb4~iRVpTJ|=t>Gl@GAr9#b;CuUlvDUV3=8ixC}_bB3k#e$1jH^BAk>aE`RpC z)`YqV69)@9TwYvh$(i<@iTyM(ISb27_+z-A-xjvhp|bqg&~DgQl2HH;I&`&_W>XtT z_>Z0AO-ON~9;Ab1{?Ln;{DxJJ(0%IUItK|5ZOX`NUYU*Lt)E@aJ>A|{Ys;#GVGS~X zHH-%Sy99=uPReAnB9pPg$DV8aI#(;pjhz&->d?Xb9J5s6F!=9K_~HAge(Ki1cwKlBd4<7gi-MX6OtmDTxBASv$ z^ocXW9(^t}3kbk87ZRSe1^RU#Gxb~Sj-6^zRTX5odKLxGjaSrAh#};}g1{ZCJnfpC z;XV0Rmd^}mA=^ARy#FJiS4Cmqk)jsbHR7~I3#f|DR`ap$(<)%qdMduA)?rVSLMZHM z;_KF&f`a%XDa~ix98mb`+Lm=e*Mnb>k>S3A%;}JnCaNQn3aEuQqVbeyAn1lG+$_7z z0NRu1uPd^H^@Ek+v?T^!$$Y?P_fqwpR|lQ*#XFdFp{Y+Hh73y57b1#`3-1*Je1P+h z&}zwDUQ8_Xl0!xe?;o11sCS#&|3EedC>APv?|?@Su;Y`!s^#25AV8U7%*gu|5pky) zcsg!Db$bL%k%yb11(qi<$44;E&=~EPBu!pu3 z;c&t8TP+Ac4a#tzLq*6?d1F~DW_YbJeRP{TyCULr!rN~qhYW{;XE{hGuCGcvk7YQc z>B0FyKp8X4*s0Os1^1N&aAGtwNvuHX5JBz%UF_X2V3i5pZ@=P;(gtC28-7` z)Yx>{?in++$2Pn`G-eg}wmtE-!nkHeF|`F10}=#|4g}e!xQxle?hMtTD(?v*zr9O3 zTaJ=FAH^}^PR!)WGjSmnwUj5n$BPSioL2}PMdRWv-SDla!ehJNoP4pje#OZccXz!w zt=7Kwf|A+>74G-26Tr2_(z<%irJD9^z%hadlg|)KkE)H)<_mp*FuL!_Bh8R2=4wx! zlgP{t?!f)FV!uUbL2fiKll_Sd6mfIJ1QT^3XhUd8Ro&k|H0s>*QHWB2s79fyr^pDa z%?-PZlBxjVguzMLdU$#$y010AoEcNbn}ddehYXj^-dr!X`lJogy zMSMZQ^G3_L(nt>(LA6M=cDVfVbv`Z1xy@8$<|ze$9o>`d{vAsL$K2SKny=y=8y>iT z0s#xreM`viduH}Pd7Mzy;CnI5>#D1t{~P;99mWxHALwg7EauxQzJ|G4?0tdD&GGSb zukFZt$P)3?>T~ zzwrcHCi@}m=$n_pl2dbMrbekvo1mrCyx{~m`cY6yQ!;C?g;&5G8opCaLHG70h~X*Q zJYH+x=RU)WRLy+Xaf7QKMiwRnZa1)t@Be4n!hywDysyc)l%_%#yc}_3{8%VY6sLEv zTguQvdP@S<*6jzf)(6F9>WmLJMsRo7P`+cOP;gG#^MSNU#7Eq3(a;eA$S^`s3IKU8 zsw4y@xV5DE0R^;ZR7?m>M_yPgcEOw){2ZqKAs{gM|6D z%z%9Q^#WprnR&%jDW^BLNZYMLzQ^RJ7Xa9PGd4A5WM;*DhKgZdMTdQ->i^Oord$Dq z>gz>!BzXEKy{teHKn-P`S~6DhP<|l^6A6V$jkf0p^umfNZwM?Qt}{f!$e=26cSfMC^(7;2j3(JI_{TiK+^BRxCXnM#OG zy3y(>&yn3-mnnE$%7XkH>sJ4U8H<<*2LG?>vD}fpKHaua(U0XME4#L=d-gYMP*H0N zJ})zyN>)bs-LU-E$~3pmlVGf3#oiY&D7~8y;Ebly?Z5oA=J^eXcau!5p9nJn(C~p- z+%n-P97#wvFb%vMfAeEW5yIwGnqRS(PLY(aAo|r^nSuW7&Q~aiaQ~w*URq28yNy4k zEF^sk)G{HNpFy3evaSMia2Nc6{*}Gd>%q*3C!X@@ES7lH;`Azj1+WIBdKrqei>1%V zG0{5fM?6Uc+DMK?5aTb=vx9V21av21p(0>k8p6u|my-7-Hg*qep046opei4xAcf6Y z18=a%WP0vfrQUN2js@?biBry+8KPm{Q9T_9lK5xMo|EGzjFdp30-5l4`<$P8==1PD zky2iMhv~N9Mw)W+0;!ZM$BL^&I}w#^(lczo%sM#l=THEr(T7ijIEZj^^Wp61x>7QD zpYX;XtOCdhx>dx?(s!<5!@ z@v0AUF9_cy5~EwGv1}!?sU;Ol_CTaOpntXc0Kfx{Q0eteUnD&r0`6#gX`^F9f<9&e z!WCvV6CnxRuwC452`?%3rUH3CI6_WrD-i{b#f9dt(}aPC{Ri`6;S5?7z;R;7>7v0c zWQ9AD+@Wu<&M%U45`z|zcQBCsr2XHSd05SYAE?XQ__5wv?Rb6i{RSqQd)fe7@jygY z{uMDe_o|Gv+70MSOZP4l8;7SXg84V5J*PXnwU&(-6!o&NW5rUTFAoR37=?`MPd$MS3ws#_p-3Czcseu-pwlz#DkZp4KYB zf4BJpHs$5N9BC^TmcDbWNSOF6pco!Bh)nwd(GT!G_=QhF$ZyIf5Kz7|W@O_*!AHDF z&%Zxg6h`(bvGHm$Jg%D8@3P1)A*T_9fDEZoBtnwm>b^4@gdD9p0lKux z(HoXZrv@|(+(`mxklsL17yxHomX4zbu=P{m)@K(A9Sntlc0ichYy<@c7Q2VSYdEuV z&hcQZloKrhXe~W|%`p8iIDTs6GFy^q^sm^B1Pn025F$pQ^7}fr(ryx-mSN&ycWn#M zm(cvRGKL@E9jJiv$KAUq{88(tdQx&)yAAU#L5xGp@i#^URaM1WYyM>loc@_u3#1L= zyAv%nU3|Qkp@s88aOuJfx0mn6$3pf&UzDTvBgF_0OGj6%q9^G$qpY>mkO84fQT>>x zPo?1q86Uq}Z`RIC2bI;?RaA2s36zgcNXwk9g3_)5!Nm^r(rpG@_$YzCqk+ZH<6V1z zQ@Y6vyNp+|TjSCNZTn?_S{gC0bvt+T;^^q*RI(!SXJ7@$zKLVu9@@L6r+e!zpl{EO zaEK9tBa#j(HPG1e*fB!y1C!T;xEyy-0&FIM4ZN(BjiO4QOaxacgEnN<(Z}G6^^=Vf zPjqcUEI7-2e0<`I*Iay(&XqLgoxG3iZzq{4R*qP<>kt)Mglji=NGlR})Ekv9QMhuf zxh&)&ammI#{QxWq?n!;8s#;cY>IS-W7QSI^k{yVThbw~sOE?aupcTJZ3JOE;bNRjA zFHFP7Od1746(1i_g_pUtC6;zv1z8F z<@oKbIZGTl8W_1sI$2+mz^STuGzZ=I9v4poi~C6+k~J#ccSgTgOvy^Qtlc+g(R4~o zZ6v6Zv{*{uW|`i3KQ`%mse8Zi@KyT;Q~$zeqwFD@Y#a7=a2zr31B{fTc}v!++diI z^L{e4TM09sRLa2W$Yb^xfg(c7{BIx)i2{)Jz1EFbWJTEs)S%;4YKI382M^DDMMW|1 zHr9>jFTEdD7MG4Y`siaV-3IE7kM!mPf#I9oV(IcHdH){+@*vYIKwRH`?!){} zRCRgBwUOEezWVPqJ4u=IJ7n_V@oE2-JF6ZX$-Pm6Lay1epp=>{roy^Q$q1BCV?$Eoy4& zqqO@z?~dOFg8$^g!$lpBgZv!} zOuOgqSxDLyEa!HwxG?T(O1gFSZkUc9uzo`RUE~Q;*dIaz%Q^Rhaz@Rj3$8@_!HauV zeFp3>M$OSOjx-a}5O%VGsKqkNfqs+b#RHSc2<_YJ4qZ&e{3UFbCygGPYhDN$N&2d zJ5F$9Z=yS9@g<%@#=OA1tdk1q)Hk+o+|8em$=ib{!j;MW2&oze&a~$5i6nkUvWXTv zM0d(lT5Uh!NH7;P|!TO*X<0E?KvUEH3{zc#B2zNA+LIjK(;0_q+vf`@9I8 z4=&!Ba^&aI+-#GQqVo_W6A%zEHRZTUbUkTLy8Jddh@BkI8a1x0rWvnE-&AIU=)07u|NO!)vTnv1wtfzhp8q15EgD^Kf%`JPuhPm}Ewa zsh&KqFh*%|99V6!A*l%NnJI)OXu4X*9bTduepvdoV*FWG%gfB=7son8d_)R5;`3L0 z&ECg1gxN@{KUDF;=>Ofz&&!)@yp{LZ57z53B81n_+%YpN$Z0C@KTpNb;7`iSqt9qA zi@vVbNNmvD#5ngW$rIY>AUj+>LIgIB~xkto;w#}E6yJNoW;mHc;JRnioCLTslP}3)xOp_qy@?n^l05gynwdr-TY;LBwEpR zx392DA^Lo=9$}4(hqU67>*$!0&5lKo{7*JJf-@70Vf!@(s22SEFX;^1BiVNWEy8vm~nwTH=oSiQ^*_-=Jo5RhD!)gUKX^Rl(DW zroSPxiQAM9qVVsHhL?6S+ZGY6oD?38#(u_RE`JD-q^9SLtc=wvXX{+Cb2}94TC(ek z!Ac95C0U$R8CQ_lIgYC;)EgkIs0sNq*?dL?k&Wi@ApMCoQ))gSxh1iprL3I!n-VQP6MI!I zZb>L`v<11mLS-Hu8*^CUzpxhmF-h??#BHM9JoC3Xc?AibgA(-(vzwdNZ96-e{Qo)>)~lGE zQ%G|rE*$dZ(TAV!p$t2bG+5L0;6o&|kP?EYb1RU}@*u$C|+c=areJ?wS(z_`j^ zoy_8@pWtf}H8FBjO^hr|%UGzPrrgWb-=G<7OKWd2xmQ%t9P_@Ylhm-_1d zti%hVx$`?fN8tF9@^&-LTg=jO_iHgO2oQ&DEqCM(*AEXnUyJR!YTd3iErR7xhNnJ4 zwB1Qa?wR^`oJ54m?N7fHNZiHyX{V0Cijy+8WXofvGo&_-`4KJeECDZP z;&_?Z28pa#Uy{e%M6YWm=uhf9ci~zXtuC}t6v6N zyUxV&LPtDlZl_C;cZ~zaGyNU2GtH+kCx`+=)N5^H128?)5(wH-`F86Y%68w!#xBAX%h?^SXSCFvnTe{;<8GtT(c_-07Or5q{LpHCZRud-2F zP|yXdxASD$K|21~bu9%;wp+V+Elai2#n2r44+-=*w0JykV<~ZOiDdWEf`8cY_HYrN z44Pe$8=&^Q)-Sf!jbuaPn3pg(veS?nj8@^%{+I&N88Y?b{mbZew)$0cOF@fZL?qTh z#kyV`Sjw;c5faKH@f$K;jQ%cqo66?PE9T^b^nr)KlI9p3+{-xcOYBI&(|=!^n~P_I zF5ciCNbWxbzr3??cCJ$Ts4Al^O{K~>&T&yWI{Z;y6M|cmBI|g`w{_}ba2&|os(RUy z-XQoJ61mmzQaeTasqY^jU0SeRc}-0z#Yvxz9_&ExiR4S-@se{pdP(hS+GQ=$<;)ey zFlnlh7!eI{LdxBH1QnXX^I`mqubv7Y92={@2^Jk)YYe|x`^Ha(*zrG@7G z5a&G@vL_BU+vc@LjUakrCmk{brfet}<| zZ=#Zt<&C9C4a#Yj?YeMR!pN!L2Gquj&5e*+iZ-I(*fc)~=9B=&cnyDjd1Ypc+{>j-r;rFG<|(}n6(u$aUA+LbxQQU{Mp*B8we{IzwF-nVNuGI z<|K{om0)k~izOh@#^lz%v42t2Nj;_+n6h+Xcg_7ECU0R-%T@F`4$=FTB)Us}g*{Tp zT93~b;tu}!aN~D#c_*MUshv?@7MA!^N~hQ}(q(9GhmM=8qyfZ_iEyMp?DW=y=IZC6>sroyqt6*0Ufh>CWS1T>-Vr077*%_ysVsQdD= z;%C%5uSD@Yq`@smR%#bE1AEbp73c9UQ_WW_%}H}a*W_`1{<1ab;$q}}mtrIPrkRpyt;z+dM5|)HJNs+Wb?#S6a%ln(St~{z8_fD*Tw-ET$2OyFE&<3eF<%mx zqZD1PZ6mqz_la{{(k|kKqW3;lFLGwAq`Wl3I7BG@^V&-JwhA)2#OtdbMzB90!2a|d zG>5fRpc_4XPq%y$(w$tTl^Uk`dvc-QA6mZ>Xs--cykK)s`VjBYELTd3d~9LFvSJpP0dF)ob{%s4*~5uOE`wZ2c6 zTP8iJHODh4vCG@%let1J?e*!{3`{xc7dIKeSelK8f3uK%b-blH+XG^5tJ3jXO|VYn zY&?L8Ms-x5ysezUdu=g@lDYg#opUZ$>F=v~$&)qqrNn*P=o(9sVn008nEB>f9?XZk zB=2|W7Hk!4R}Ex$Bt3L4o#!9P#a6GfY;LhD*87QuIWZSn0usic7>b!o%B9=SU$NRP z%?6YN7HH}M9BQnW-~EHtfv&h+MS;4P9XI1G~HHYiRBH*dXX=7g4c$cZ)DlVmTk80T^O}nz3*ltgTuo~ zmJLOj$yY<+jl)E>H8%6=;Vs|dBxCj-83V$g_V3Wm0= zRkKY0yIvkkTPu0kxCjakuG{xq&T=A6T+8^aEzd$o*y$*OJd$Qc^u{#2FljyW_4rZn zMbk~O(YuE+Z!)N%sC*4Sp~IwTyYafeh4F9sBh8jKQ!7<0>Z?*od}JT8dWC#*Cu;-c0-CGd72*NNuD^Of1^%kY^lvZI@ratXlI6;os+$rgQ)k83t*427-0#~b{5iqv(dM3~HPN-Sd!i^P$v zs^nj-TO8UvNPdH&C36={b)g3|Obx%69iwOjYl42YzT`+22x3E%VHEDTzvzw!&!hbX z(C<08;Lndkz-8S33_{uU?r=vJMFi0 z;crp4RkzBhZlU*f2Tx92WI0~)&in^NFunLVQ#=?fO@hw9B_|ZMfg8uv2418aeJ3|Xn!1lMZqg=m4SEW-T0VSh-V-4~p~h!=LTO0m}7;hiU4t(=;%p_xv)6x0Hf zt%ei95fN+qkO$%j!Gg3V^zr0{WBOZxc>-!&5wYmyEX_Q=N=^^Wis|^eEC9CTFz>+UQOGc(xm_`hQFzLTWxYE^d5y3vUxQJ_1;Y zxv#K@wu~{Zsw;UmLXx`xr4t6xs(k|=%)Ul1Ch#rFg2sZZ0{>PkbSUk^#9RaA^-WYN zyU)>ynl8VM8eK1jO;-M@AB@Mr&M2z;i8`x;h<`m@2*3Z=63Tpwmq<{@?38R5j5l{f zmE-7&2#>Dq4U`Nk4A>hyW zUdfoMnh%?7tQl5HtQ_DKu;+hOge>hW_5NHO8CM`Fp4PUe_P*W`6TjSE%*{1jFZ2kh z4ZA&5&k3jr%_8=Ws3{m2wG;^&89+wjX>ms=GU@<%BTRn@L6?e2@C>*3)tzHf%54KF z1*oA_YXVvVQEdbv@|qR?JrpreGgy)BVT}#fi>!}yt2KS?UQcYnAV=eewH)(d1!U8G z;k_SmW<2h+pzcI|@}18Kp4E)aXB>r5ZBVJqg`JjNWthXBpfDufM}a#!iZz0+?>dcY z>dVhDb8^MPV>WG_a-+b1Ee8xV2y7? z2n%JM4iE-8f&?5?s2`Gx84(n_9r-eEsv%*&Q==dYwxt-4EEtIxo%no$Z)I%qb4M$PO1F);wcKwb#h3ll+Z7xljW*dRTNP`0*8~e2150mQM$C7M z8}$J!?sWTuP53E^8FnK=)%|JKyLI3hJY$o>4fG2Ym;%1r+co)Yz78J|YGVw2`3 zleGtY+Xnh%3`!2W^V$jlbpyLuVrT61MHKf*vDXH6uZ3qecwj7KEf{ zacZ3yM(Fhl91}>-w(Eq^BBDQ*cHkH@_Ly!yA^(18)s7A zKzsvP_@$4+WY!MXdZ8;0Bu$7+*PVUCrP-&ZV7}E5TmcafaeGoKwFL2tx168h63ofl zYc%`!>}w?!E0-R#Y6VXs87KUKQ>!lOnjQVDSKj?Y(BL_UZeK+bsP6~4-d@;{PmNhQ zae%Z<_DJE?BG6`=($hnaf4kFWi-*uN&J|fvP%d<>HNt{8Y^{_Dr5`R0H&=;eV}$qYa{N zV3Zml{q3G9Kqc4y6ghH_`=tug$87%MU^7{ylI25v>RwOh_JIFoCb5;%-4ShN(gP!@ zk>x=Q1Alyj($Z`d|VRNGPp*B>07G|pT--)rO|4j(mA;xMW3c}Lbte%e+qmUz04z^ zA$}RHRG!d$OvjNVpk+bd(!P~aqW2U5mJz}XWjWR87RpHR(Vk>bs-l2d(0_i3!~T^_ zTxGg1|6V%YRDr3cPz@%lFVEW!Dp=GFNB1yL_B~&@J2J#0^>S<#(q(%b@UwxYG4lP_ zupojQida8Gx7hI9h%f_67ZP7-ISOU^J`N>ddE&)neT(R`A7ML?k|_D7Dbm29o&h#n22qq$I!7!RnqN`)hZ&D z@Hcf10y1yLI27t5&?~zT{mi!3pa|qr8OrV-7rGf+%RRQTV@{n#UqJGIf*KS44n&ZC z%`>#YsY~0U254AYl9!Je(c_onkV?QKo0b|sN|_8v?DSiU{LXKj==4Y8brO3>ro5+5 z{Asf7z^qnR-PwcBbVIZn8X3saa~&4J$8Wx&?C~ADR4Y|mP`=lVe7v%+VQffgY)e+r zMNe5xO~S7aZxi1uEjbosiT~OUFqd+%{C%kFUWSt<6xEoGnQnIcofiw-VIHIB2{G&b zz$B{&~hPZtbj30F&rFVPfk*H0Wd zKWfG^*k{XXfAG-3PFDzcKRhcr9f5v1lT-vNQn2M=WQktXc`uH6#J+IeFo){b%Dj^! z!|?ZGmBd<%NSb})Cn}^KnAe5-9}+kMPhU!}-q;c2fU8h@sl4e7sr~4Fj-@uVTgCDN zOaB+}Z}nzt6N}ie;AmJS#;dij@)j6YZCRBz=o8jl=Xsg9)Wjxdm_N7^Ktr@Z*;u~5 z5I*n{U&F~f5pc}P%mrV;5wkzG6h$Uyz&drKo2|mOkrwFX5Kd_SwGqvEK?>VRVHcXX z#Vh>#hzZ*P>=nJyEZr__5(B;RsG+4G{q<3ZWG|_=l|pPwAiJhlI0(Hk^ue#m@^7WJ zcycqh9;bL(YlK1PMpa*bS!hYhjxw=0rotA#2iG{j!kFdv8e>bxBoqIW!tZ=;q`@m9 zCg+I~SVoDl2X27?2ZzQyCl@n}>C6L)5_>itBb5oLig-A%dRc_WdXlTqT%>-EA5lao zh18Ed%N4ArY@AUUb2^SIqGU2ju3C}^j{U1;T;hdvU5H^(Qrn-9vcrn@Qi8(oQdEl0 zTzbgPY*J!#{s(xX2eCpeT9>11*)ajQY3n8_;Wrl<5KGqfLB+ScCo3yn& zb`ZZU6x%X#QKqq8ybBq4X{1*^l5M)JWDjM0zoYGv{|%mL*EPH|zmK~XNOr+byqLSV zT7*k0(2=c1Tsm@CcJ^s(#k)ZDhbPID46>r?;ZhWblwzF?yKF~S5jsJ}yJ^4*!3?c<^3gT;(siV z1QOf68gauh>#{?aW~`}Wh;tXK`0z(aKM)Cp|5{)#YCklmZxQQpZ)rnAYOVT9chaM6 z-{PMqQSvR*EiA=Fw?$)Z$x4g2VJK4!95_XYG)YeNElQRP%~zy1tMZ0}$6bZ!TvAkF zDeV9$Y^fCpIRur@+hkp%$>6n7^3jDS`xgv5YPu?@oUAD?QKrH~OXf#t#KP(e-|O5W z?qYx*57aIYIl8sWKO$kN3)6LsW9l4mJGQ?h9=fcO$Hk8`1e@4r?ZWb~pA#e{gI>ai z?pSSi?|bIjFvBoF?N`fAn_X+WsjVSB_#^|Gw{Oeld6o4hdmZdz?5LG9$VtiZl_2Dz zUDws0{TOy2VBH0Ilt$3|3D!&s-sb)%Ap!PsuDUj}JX~5PVmN`P%6g&6w#6vUW@ylW515)kZKcs1W@@9+WLwz;YPALL zA0Sqs#)wmcOp(Bo)Ls??uONX1gCVDaB%DSBIbf096eSaY!zAQL6(UMiC_n>s>1&Gx zsmvH9MgZXxL*y0QJ-D$nMt*H^0cL_WwU8CiO?XGo&H5WRBw-+AC!cO*cb}W(I+>f^ zFNk4aoGO;o^~IMVyT2UanYb})VWC6g$-zsz}Oj(@Y5y>yEmiX&b<74~k_gyH?z*>Jw{ zSo-~`*GzB7f9Xo}k=yr^X-mI8d+4>(HakxJc=sfAV{nI_}7V= z$up=j?8(kI@$^FjeF>e~^#jwj)_@I`C*|9YwE(ok&fJghy@9@&Aanp)dg=iEGl1iw zkpC9eD9fp`I~#_5s7HikN|dL(j+3Tl=u{c>S4UN3>sd)w*yq}xY)6=ClR+6dW<>rm zFW8+2d%ezPviR%ltpSSg!}_>sZL_>P5y$$4_&w40SnjB4Y0@8ho^9YI4d56t=-0+P zE8y1VkpR$|AUniT(JpwEshJGKSiiv@n`V!I#FYjkg;)?f5FTR(7V8tQx92U=@)n|- zja){{VZoFZ`vOy0hTR>u%Fv!{S>{nyUHoEkpc;AYjZGPzl^78e-oD!ZTX<;Iw%C@y z*aFR}T4+@f30lgGUH)4oDK(`DBngXXzwZPu}>Ret? zA(=yx^0#dL@#kilga|JT|kE zMwzpvy^j!Z4He~6!vXP$h3r_R3|OmMlA@;Be3^H=D<9IDySGiT^Ky!Um&03rA71!b z0K`Hqc#HoM*@!i1V6dMGGltLD{<2W{8~mW+C1uVqX0f z_49vZD~`Q#aP)v$Jx^}vN%mB$h06H$X?jVUSk(cRLrwpWp%Qif6A_b5`s`f3#uOmv z3fHishrjpk^)*7THFn|V!NJgd7meFi_#l|+9 z5aWE4Fl0ht_JAiTy(aX;<~HnW&DbNznC{UoC&;0}jtyo*|Dr*hH`jvLMico1C~PW^ zVZyhtpgH6i+SywE`!kNEX%b1qO{qNIX>z4}<`g6PyP6o_ zolHF=WOD_oLj%|Y4S!@I&e0{TGSmX49J7U2*Il1mHcnohL>9;vjF0F3HJdNIdBgz< z`fDZXcqELPz(Ti+Q~owZG)xd6M%Q&mRCQk#o7KyK!WJtg(Mpf)NRdem&0*gS#YO*% zYhQCqwvWLdwi$+_5sMfn9pF&F< zeLOR(+<&culdK3{uPbLb>OP|=ZxmH?frXVN7!WobkJ;|MG1n+g&T;HQiZ#=D5Mh0j zxs21J-H0Sxb5_j9X~x(j+&1lddM%l1LE`z;<;P0-_@N0abt6yGE_JP!7BkYa0bkhTg_RGqz-BU57aRq4;FK zgceQH{{#=_!f~UUuZ!AW=ld^uP(CW%PeJrxPRlI2a+_|)(z&0F%S5d5@%e~{7`oK;Bv(+J-YI0L=A=}u0rrD*=I9MT z7sHSIBN8a6#J4~}#XqYM0563N93PzwZsewjfclAByh9HdA}+4OQKq~7`=XRLlR<{s zT5QsZdayYztW|wUHRmni>aIKUn2N5o85eo`-jN$WZ^Pcjr3SIju(@&$jgPoRD%IOw zD=Qv5(Jgj@3wNC?8Q=00o6(QXBQOfr?Un;1lVc;{nd*G-7Gld5``hllq#KG}aiwtB;=6hhkri3lF+cGV+qwfR5(^kOziF3Yu}gJQES`paJzEXZ^gj zQ)7?;5`xxrb?SbnMH@E9V|@Vu7BK&wcHwCfIViJd{8Vh=;m^CzCd4!gp245fptV@b zgC>bcFEFg3O}C>}nbro|AzdHjddisMYpJgKCb8q(trS#XQgD*DsPIQ#41U?kp7^Td z_){(63>n|g^4!_{T>o}VtN2oZ5e?-r9n21^Ysw9jX~)AL<**}oq4dS6pbvgq(blMB zud^kbQGi84#Q}xEIu5v>nm@Rm`EY-}n<|;`xF>uO(QKkfLEbJ*mu+fMxPDu`nDJ%t zbogu7^NIvPm+-2kcE;d7y7bTEF{bs5faaoyg4pp0w;j>kLJuG{{0hdK$#)Uk1sU%Z z-@lv#d|Hk4<6#R0^hQY2!9NQd3;{(d5RM$qwWnUm!64ZfOYQAo$r0CNpha;z2g?2p zTB7X7hX|Dl0wEC@37yMoHgqOSU3pR2mwS7Al{Hl>Cs&4{xmYgWg4cypb;U0ibkO+B?!#A-hV~ zW%R!C1-z-LA_XhqGVa)?(sk)wk1GhFAoHF8HKdyKbC-Y1s-qp1kMLJ1M}y9tEmq?R6zG7um7Rti z|0^c$7_tYX!27cX5JlijOBj}VZ%SBJP`$}*K4Gv!z?YYv7}Wtnr5b-cHHbm6`!n6E zkd_G>r&18PeWDGuMcl<7gfBcz>IiCKztfF??`k@48e{6p#^sxA#cQxM^91^X^ zE`s)=jb(FpbCp>43hCxzpJvL${cue>4*o+(Sy|)oz%E@vzwQ-pL1xJNSS=3ULc|ND z`aLIMAEns6FQK<T9FJ1iAPR+-eLRkSi;8`QDjV#**$+FZn+MeFeoMzJ!=P$31g zK^^|j3lK`r_me=4yk%~d$UIR8V&q1p>w1iOyV@o6hb2r;hE~jwA6NzH;|dKg2Iub* zp`M&BFD>6q|G{^7a@1pwacTNFG6cHmV-gf1k1~mt7KcjgMXKZfHXstZv$|LnvAG&{ zXicl@j+#x@NbcJJq$sZcQh_j?I7Id(j8TSJj+n84SP{cwoY}EO5mVBX5SrxW&sN;@ zN&aoJ+65naGHB1_*9kip?vPCP3d4ogE-;js$f3>m ze#PJ55#nM?>nH-V7+gF&8U78|*t~)-o2){Hk3wDOM7J<4>Qhgh!KQ2F+r0spp@VH} zsRR^B)hr2w3|=j1x{aq6ARa&@`1c>f*Y24n7&v&hQI<7C!b&P@FZiyF7hY`3=yaHrVKB&W`H z=RdsTRC5T1t+?2X8OQ}ou#f>I<007VYz-tLeW!QeBt)%-0ZO-4Qi@KaF9f(NP{%j` zzY3iNuqbTGaoX9`f4wh9hz(1M(qLUliMsb|`bg&Nj?oH#(lZZjnCJ7Rt3`i5jMbM+ z3K?El+kl^}vF7DiW6#>ZrsAJJDl85JJ6AW*71>ymGh^66A)5s>u|H@55z2s)&vM*A z3YqZILBd66Z|DQMw^QX$9k4`IE?`>B6}*NA;X9-69}`$6)>R&G&~wvm?q#0(qJvKx z0N>l5@)NSY+c3O`0lR}ICHJwZ69I>NQ(;;#@O0%BMiHQ=ptfkc!tWK*4Nc9!*HNXwU%bk!3jx0MT%jr$}os=khj(LZxYL#vKTXsRc{AGgb6yX|s#@E!QO)n|+GD;fkQi3_opQJv4xiRU+he zH!UM%1-w2E#M0xkx~43koP?O=RuJR|YQWb6>B+8>`YRi_vo&=Q+gbbyQulkH@Du(o z-HXUe3#io;f!Fg;intJA>*w-}>gb_R2DH|O?t{7w0(cHtAWkyvo|4zXId){Ybbk4J z32k5i(lI&NF{>CE1_|(m_>6L(&r>stN+g{EaIEbiWSY@}+si>Wd&dRH*hlg6IHWtV z;t8A)lA@HNrz`(JoSZtb41nH*)A`I`lhR`|&sPQc@}=L?#j*kA0%Y4)ftuCuni=|w z{FOg+kQb|YwebWl8S1r3CnSiqCxhjKa_Zdvi87+($WeO+BxlgJE3gvtNj7`-n&wKaFvr&pTfAu_Mq1#EC75U@#PmQRG-MoP!jUdpnOQGj{hsk_O%;D8-4u$ z5p|YfRc_JRR*{fKkQ9*a?w0Nlq(nfvL%LCc1&Dxz#G<=FK)PGHq+`+D-Rqm|bI$es z*?+t?YrQbv5zljvF@a`1=rw4L8}-6o-cw1q=*)zTvr6KDSB!?E~B65cb61>Iaz<)ISmlo9%9V zKQ2_0`NMkbIc!0PK*?(H8n_u>agH>qZ&|!PB>jh6QGNT*vK8c3&MMh^2G~zyVkCgz z&5@c8){(ed|F1M(7%)dacf9e~%Uvw?$R)nP^_H!C)gOPd-b21-9;tqJ6W{!|rsbMW zlH@UHEMI-TySau_(g<8bE~~7LS}U%FkGCX2BnCT?Sb|?*`4SBtpiBuCmN_jCZb~>v zgc+@eL>LV$M1FFvSL=JCv20hEV|+*pRQtzYAVB>eWz&zct)OoJcDIZB1-Mq^(cTa> z;iy+u5hSt)&{ppxZ28a@ZOVAeiLhY>2h?%P=}H0K<2=pm9C7HE=QW=7A6c6(H(|?j zup1;dfkUkjBQA>zWV4k!rA|L{If)aNBr(hc2|A%mS3fF0QvW0M1ZonO*C7NZ9kd)QOctN6t~|yR_Rl z$&LRTrZu0k-)_@7fT;MlZ;*mK#^P%Tbr(=YVbckj#40nY$S+XvGS+ zOmQM4g_=>HYrK-2O?lQ>BRg<}L@G25fk6qV05c(2c1bZ|tVAM`it00vkd__$6{?N$ zloZ4~QUKDk96h*hzM}!hu&`|mYU^~Yy=f!iP8E9HT(T{=I^~xd$bl=bsQfFp0NXu3 zcFnYcldD`HSqVO06ADVQ;*y4P2%vFP(=Rb_I0R?(N0mH|bd7J4(HyS4Ymd5zkE?2Q zfV;TPs;_7(BTA0>9o3_O9z2iNtm&f!`7!eGbc=5P82MF2+3`@<9-E3{g=qxq}XWbK5twQ0yftjIfOte~0f_Yy3C4>2(qpsu_|v z!z?4~xZ^>{BXzYBLG!33Y*B6PuYgY;8K1?T%`8)zXV6_^xyAEJ+x~5Q^!%H++reT# zpz=eDKjR){Z(=9KDcgSFO+9-}J774}%!I-1B`Hfgotc?Zw#mRN< zW~A@X0LW>%qStv9V>%%?-5WnL9rwpO&BI?zfr+b4*p+~Y-QXl5ZU?2sC@~PaF=4!b z1NFGKaN&8cm%zvgWGOJH2WV)_z@am~|3O3-H@w2eL6%67he!hNg&Y{n8r3EUkF$j6 zE)6NbJCY|Bd!-zI35B#r!tced4ldz*4vptvg$o=@^bigDy72Pd7#TIp#AJ5ChNxyo z9xeL&@;?L5pqQ3B3iH+}z0tqP4d2>t#li-0%pS#vR)I{D5nDIw$U`IvArvs%QyViT z$D9zD+iS9CY35!BvR%GFHLh9U;&TiyA*=nfiepQTmiv1zM#iE9{tT2n$;E6kYiQ}J zf?Nhjxa=6*`aQrbEQhR;vv2=%ivCli zp2S+Ixf^4VYHI)2s&FR-BqLt-#vM_djP|^u_!I)?gdiKIVT`@4^N2@pv=TUVg@O>p3~;VikNw z4xfh2&$rh+>@_srAH*4{5a`OLGMMc+RQ+z3+#O8MSS^d&e!VddT5(UrMi+#qJY!ptBST)KA7}hdWZB zh+jAZ62!$OWJO!2SS9Dcd6axqSEL%_m@Eo}ugDY%fCTpj43&ZcY}n?d^}I+wp0A`&g@VrI>EC9<%;t@Lo`q zNdQ2D1(3@pOSjMKg(T*pV<`m%Vt^`a+J1=5@k?IY{nE}qMUh4ui6XpK18}%~Zq4%A z`ewD}0G2*_814-;q>v%fuZe0odkVbI4j#ZU*gmj;Sb`Q4nlUml;j7rQ3;Zu#Ped@T zEBRC5i6vA9fOjk2!`OV@!C6}5UTFuk0x#uJDBc2*CjB zxk;1fcK`wk*jJZ-A#}OdkYfXzzT%yz8fzs{aMR{SWFqgte}&NpUOQ0V(E}6&pi_@3 zn2yThcL{m5Wu0d`C8N|*c8TpH{qev!eHn@KHB)zY!UE65tOAIc$rxD*019vhh!Ev_E}xoFK~5S4@GKR_PNr0qv!Yb#8s$86>4UBq27EP+jZ#=MN@Pgk2{||> z?%FB0vi&Toycb_+e*NUh@@~irmiPF+3kK@{TG#-LTZ>c zNP|Ku^51(+nbEdEuxirZ%5krCR4V(NM?iO}@&ij}cc;(lrEcRV1EFjjb9IH~(lQ$F z)7vc;<%i>=KYrlv&sh0A2*nYai^FFsEN^0Nz-!=T3^T*hkh(N4*D1B>F37d2O=e}T zK+V?x_xMH$yWxLndG}uP!isT-jF&F~TOvVeNJ1intmnw<@5~LwdCql7rLyZc21RL_`N~$5j6u-Cr*k$_DDQX-iWBU4(ax(kiBIH;%t1ZO{$YMMUA~{7kdQ%pD2#Z^`;ixa!W*S`b@OkFG=DW&B*{Ws# z`o(ttwKMSQ0*h8Kye21fpvqxPO>2qVIZ%fEtkl1C1D%s25jzvyQ10e6TsJ5-j`7x0 z#I)2iAXi~Ke{rFzHp$cbG>n@rE=pA3dD8AK`Hz{8#7%j@>PobSw*EmIaouJ2UZZ~8 z%2aMgIxCPXXf*@K|6YIRu8Gcb5ViR~pin%EdH*61TSTF2hU&dpigk)zp@}QMJTVu7 ztX%EPs8{U#%BiU*W(+6o^Q6-q3w%iD9O3Ub-*|!-qeu$uOF2)U2O;x*Rd0SeC~;CN z5dTUA{H$Ou=4kMT?liVZa{ZtkD>=DwIl3@LUnn%^Y>aSt=ud)W@DhSNZsSErQSNq? zG~NQ{KD%eOd8mF&i;H{2#;aoawr)tKCEzv&SLoPfE9(Xh5~24!>1fqAR9r08^l14* zUI#)mo;t`BXM`+Ozt(JTQ5>9cAqR+fI79&<kw9fAuJ{S_J@fxtI6(PX z3fp&678}p(b~a}QiYW2Y7X9PPuUzeYvdA!#^JaHJjyg-#gKohg-y77$TqL-T+{c&q z@x`rVc*e%yq$REdE5Gr)v$Yf0gi>xXNt3zv}l)X6_oq_(M~v z=mo$2V?Y~a)6{&t@?U609H?+cti8y4=s1AjfX&z|2GaIlaO!)&QsZ!Q*sQ_ZHum^4qoKvUCO_6 zIgU1D<%q<3<{c$aG<5e>l9xwgUoU)J97F$7Q-`CfAz~FnkdUnMvFN1G*g)qVmdqj` zyF2@gTiK)w17x>84uP&D)?R@7W}mqXZqFYUlLOgWD?z11I=htULG?CN6Jb8Rm2Xo&96@#vp; zgaz5A$Hr&ORN=pU?pi1Nbg654HGWum6JM=Ug4B2Im#~Wb#Z^Y@%C1W@i>#R0R_-kP z#o=R4Ez@l#@@e&dAH!EErP~rc2p0qKQ=j8WVTy|fJoFvxYzeirgM%22M>A~GNmT?0 zLCN=GZ`Cn}eJ{|gcUWB|yq+%o2%)e$kr-j7 z2L}MXutMdXiw8;H$Y2B*vq+IaeSBmJ|HBVZMnzvf{k~QleEG42L>*F<%B*uj?+Ayb zeSIdYlj;M_JaKCm;!9?am+@SL%Ht?#XjHVckm+e1V-u6mh)`N?ZoIIrzD|y?M6nH8 zTj+$Li-?|2oLCuL1oE-fouqC~ET@#cA3nQ-o;f_f{#=?aAwdCURMQflscCajMNXp7 ze_(E2?jjD$vNS4F*FAk#kOa$j;No;{^w+XsrWmC!UjL?8ME~`!A$eUO={2|jy z-GdVDG3+0W9sgPLaM|%W#~V9-Pecp)A{ObV5YE5MBC5Z;hSJZXbk-V2kGU}{Jh(M= z^G5WbBh2_8cC3Hv6nA32wsR8%^*0_T7@)x!nLn?>+tZI+919$CeTxJA7glS8JIZ{5 zGfh-z-S6RgS{Xa}>sfPVLI2LukZvTW^)xfH_Vs1D74hXwD z{r74!;g#aYpv*C510A>!BQevx^fCt5Z&!AVase zunmumhlmii2S~1!lsP)Jc`N-BbbVPOBUHBQm zI-6%&&gV2Im&IL2ULP)7-%Fj7DVV}2ETKMkuGBer_Nr)y4)!E;Fk^5VegK~V?g_R_?6G)QoDnwwm1yWx^VX+1+9j^Z{UBja3@U{L!W*K6Iw8vi$skwyz zGGEwdgII-EUdC8Y?&IIKdJ(aNiN!_-^9?gbRjAE6Jjgzq0|gj{^u zGH`M)$vkQQ3{Nnx8nt*J4W!LYOi)4@otXL9cGkR%DY2q{XL3-_IOKbRx)?``8xzWQ zxO0))gl2g&$`6Z+A1+!yU(RnRy@UIiV5m@aeBva!GF2o6^_Y z0bu&VNS*PxhVxYQINpwJbj!+KXtSZ+(_s;?051(er@l;Oc$%LYGP3 zX6QMx=vDV2Tj{_nBE{LYAP`6ScK?97mPXdSk5?W%(0@Hc>!^smle?dSh9*(ph&WMT zXU98^ji#VT~H(0Zuww-c_l9B z2CxUtTNS%FG|w0Y$<28S|BPm8n3y>hW)3{_)=|3KXD|v(L+4&5&xQWAw86`%;f|`i zz#wM&uB=4!#Cn&>(|&@DzL@naGKgQI*1t{TY+s~MzeQW=JtY?F!_$IyRu3yyF$Wvr zDP_OUNAkAnYxG;vuF^7ZBdH4y*;{Ke!KB<`>BK*R%><|-D1xFNYwV|+V|7`vDS}_r zQFC^mP=}{T%lRlY40vH1mXtPse@tj}ibFRSJQJyOYpr*U_G9AUjqi@}UYk)#cqaNzm@~t4OYa__en*YgN~KY7 z*nwB585do-Z-VZwXfygAXVeD!xPul-%C=M|!qV8{Ow+)&_xuBiWI9JV?ES%qJFMq* z5<+|4swD1IHA;2JXwVi9sD5IHa}hjgr(Tis^xyMTh~Q9}Uw9mp5uU)rm?~Z)3NerB z$D-(*7-z=k%w?nT+j+lg5oXw=KG88l1(oxx;wF0`0CfSgo@e)p(8= zenUygATQ zzWMGJ^fr8Y?Ao>noi-^0Q3%1@&&f5J^~q2cI)d5O^fw7PB0gk2wcj(xApd_C>ESyW z{pxNxI!7#d7O~s05SH3L(S}jC=SIgj>={^oPkVjx=b>ivPGxcKh7*$EzI90uuc7eH z%ZWTE?Ql74CKuYJF#AthD*J+mFBv;iuR`$SnO@_wq@sPF#gCdQlaQKYUPZ~)A-B7B z(Z!j2qysjdFG^v(OAjReQgU)q!F~>aFij4v;V?U5PTx=Vuh^pYH#j8$5k>Iq_Re4e*R>kP5=1i0;&=2k}BQUwr&lQ zE7K_wkET?W-cbz!s!X}Ga=bxfX(GWs_I!TtKt%#kzQ^qFN2q`rWQT7D_O$L()=(S9 zR`$0<(~p^in>~w*?qm|u-J1i&=M*}5Pl}qTuTN~TL)roWeHJ;~2(@tMNt=DW{c@FhiC zeQNnUF9a8QJ~IamS<~J)-OCfpt8N~PRT7c+l_#6g6YV^zzc)FSr2ENjUmXgx+^>|B zzE7IW7x&U!QPn;_5Y`EaN%r=A!<<;L+E^%I`^*g2(c_~3bTd-NoN}+0hp*i7GfFVw z7GGFCztWEU{3g!JVDShUB&nS_K!s3IVAg|3V@mLCg1p=R)s2$#bmPERB)BBqOu2Zca~EJJ7kJmQ;s4vkRx1Br_bWM<8FCXv*C{lTu(%P~FQq zTH5IEj_DbsJy1;f4fud0r$CtzhhyLAZ?nW$lN%{?Kx?DTMg6G2z`91Zxy~}Iv1@;n zb{az&?QzykjzeN{z{|{=6cEI9XwsHXQf?VnZT_w+@4CO+BEO`JlgBV!F{SZ|g%mp2 z9Yx3;M-biOjRD!?VhTjTe$+TzYz8M@tsPw9Ei8PqW`Rgw5KG-1$y?%IhwRelRbZXo z3~5_lR9`uy8%r8{Ty^`?ikSVJIevojB6Mj~&rj)tQoa9SC6X#`nZ0MKiG_P2NFyG^ zyS=klm@GW;cP8MT#WO=EF|CG;teQXYXq)7sK@qxpP5PWPb^iByk1~K=f5X5=7 zkhR{94+8NtHy0F z^W-H&73uA^0lI$P))BAu32Qiiy=Xbk?#O*i zy=$sP{#`i`MY{!;eb%^PuY{+*-3icr2eWMSrvidCz1Ko!#%64||;@~Jc;G<1Ep zzOSlPi|bX~^_P{@NU3{@AY~%WK``0)d8VTA=$~JSo`aaIiN)U^zU6iNJKr8UdzmY?a&kGzn&ARdUfNZHu`5T5rA z>IA|h-+#d}2Q*f(e$6B~=&{Svm9z3>V!_}t3vUY8!oFbhSKwK-o#vRU-M>V3yj(fN zSwn3aTh2vA3*TrCQjI1{*+~1EnWb}k%~(yUyUx@cwyPeKCJ%%Y)+9S9yAz{)mId@t zTG5a)MNgmF(_A|JkMg?XL&jbk#uo7)x*>x2IKw${Wyqupa4-WjV ziHpfr)mM5CGkTZ;p9)fX0aG6b+k3v8*v!nr1cJ%?xNr3@4M*Q06qzqy6fhBrtsqrW z8NABlN|@Ua?an_NwS;c?f2v;}Fkgh-STq{c%-|rXo0f@p{^7OLs3*w5>jEl+b^^_m zu0)8vA|pEZuQY@7_HolkL3g~ISO;<%Ww6(m@|&ryV{mPP|M$%)IAo<>z11Dzl{MDJ zgD1>v?I)2AvsMhQLDQ(DxzjKPtj)^#CM?hFeEn{D94>2R_I2jCK4omxn_lqGdPVu# zu`}o%^&gu77bq|akQPq1%&=?=D~EqJts~%SxT-=pJ=|}ZUiS$;`Pj@dtPBqMXgJiN zyF2@6t3)ir!N>5i0=Yao`076G=Yml`@NEy9h|9j62nVh2EfEs%Q$VO4;F}Rgp{S?$ z@AzTl;DxUTtsUxyWq7{><)hRkk&H{rvUv}h9ENgLWBoCa6VvGvm~wE3_2x#wC8y^A zrE`aVFk9Rq3!yKS*5Ha^vwQs(x`X`@`dUT!sh$4>~7e^E{jV$Gbg^B@gt zsXxhKe7!bu56!qkn?7wWuEd!fROaq?DD{tIw;9L9AcZMO zv#zTKDmB$)D|$qcMtV&cId(sHg04i=cj6hD1U>i4p~3pp)$adh{?!3nYP~C8nVomk z=`|fFGJZlaT;Q!x=9vC?bya2hVHPc`ntv>)Aq!{#K?FVoF6<0{=y zw2IGGb1E`2x{f+L%)CNPoAWX{P7al;s1#mrl9&>{@`=iAA1`?9*gWNj>h-l5-oLZ} zul(Bjc%C*=IR^*&>yfl=4cesSX<^-&8QX>Cn0g4(P-?@M@$GEYLv&#oQt!UWk>ZB? z&Aa?`lxE-4NO|Q02e-XlUfU(pgT#BnGCRLi8FwlLaX(jz7WkH!$4xUVnlRqTt@Dd< z`K(-8b!tyauO<&)kt{ zWI@WIgI=8<$8$8=RZ{TU&0)SZm3l7S)iv+jubB@?B+@b@w|zUDn0Xs|LxC};>0xc?HE7UX9;scyP?M^RIQWlrCM1LR zrllKP+los%c-ef*A1QM7M7%WhbZKJuJUS++=esQV=0KgZhj42DgMZS(H>Ozy`1P`m zKC#h|8kx?Sua||(p{58ZsAgguHq~7j$PaFr>Q4rRo7JMaK%yLWcevvi#nEqA)^rDE z);7;B{*d1ZssfO8@O~xI(O>)US!v*BT2&lrqKx|Lr1{-!=M7?l0aEQ1E9<3|o0|My zkzh`Ab{AlDpzEAGi5PLLTt&poLB~v9?5-s7Qw+%K72Bnz;S9<2eC$h%VRJ)j6#=8==qvvQ_Gz#L znuK_|-k0u|rY3Xpln9j6SEIhP(t6)ZOZbMLpt2HvP>l%5aO5L=Z&rhyy0vyu=U(Z! zqYrMN$9-AD20GeSQ4@M*epw^4RQM$&T%8qv;nQAg!DF>M^qZcT?bW!>yR}`#badjr zFuB(ph)GP-k5$d*iM4l;*qQwreV4KId;h>1Of?9>pf#Q6yzR%RauAjH1whs^Tjly! z^Y6Cj+kV?T&!yg(3W>FG#RXq2jGEF0SwnlT?t}n=-0y^_tnmWLK;($z^=mQD@BR=aYPms9cW6C4RtwB_iscVA;Rgf-v`iywAAJlv}^^(|FWk(V36 zZan}=h>xw^L-tx>Hns~mC~8QANXoCe@W`frP=wckf;42{vFP@!Z%EWQ6qeMGE_aCW zG{a8h_+n6L-$jPUPjIF$Zsy9+a=&Dy5|{k+t<};Wp*p)+-+>e#6r9?7X6`r4($tbJMrZU508~wu}|=}4sBm0D_tV8$oO7dx=%H| zDsO=`o)c@_Urlt!-CEQ@1#lUVhJr`duN!uI(N})oKa91n{N={DAV~@OAjPe@dMjHY<(yvdY{T(R`r{47&a;} zd8cRiJF*5N2-Jw7J08xvVXv8lF|W*xEiIMExx;9<4tuuIIr%;zU+voXckMP+>ta>8 zx(Z*;m+4khJCcO0t;JVbz#eP_yH}4Z+*WDH{Ld)Vqho~V0qT0^3(Y;g(Q_F8_s>PS zC#Avht7h6=(AX$~AbsNX1({&ScBMtxHen9lXj)5#{dL9*dOl&up4#^8&%PJ#3D{AIq;hnTqRo*(Qo%>_I-jhWe$PqGnV zF?`96pJ4WBK|RDoK$+X1$HLh_h0Ignt2TethvI>hieyEeoW@F<9RHT_Jw*ZGmYsNE z*WDHzqDfD#p9uOoPHgJk!|R}nR;!Pw*uo=Slv&x@?!+WEaRXBtwUjf!Ng6d{$e|bh z9SS*lriP@j%}-@4M<#|m_>!={yZ%|nh=7lmki))#eAuYqt$ILU2=zfK{5eJ2*EyeE z1;zCig|Mk9M`|^Ak=+1t$dLBR|C3l?07gf}heKNaH(!R-Q>)@9pi4W!p;8CT@W z6{RvJCRE|!;ZvVYrz|Q3bc9V1O}xS{?P9(h4qHwI={Htwd(IsGNuh~I6?askOb1^) z!@GCpfnktm>hcL#sVErpsFUey`F>`-_MSBIXnIgy!>W&uXvuS5{U9={2W*#!d$#$KCye`|RJo=b1{!BkWr$Szy}!CH!UCwxyg({QWkx`_5B73yW+_i(#87%I zEO{~IKv%luQRqChWR;JoEa_m?y`Ur8eiW)xT=5393+I2qV474sSPqy`{3SCW$(Ku2 zPpDBA9C;vx#Ec_Ge5+sv-qlN%MSS?l-J7JC1_zJi#qF;myBiJ+Ir-rwG#>Ws)mLTB zIyE}XN>IU2!~13JAA~%axVX?B>#B;CwpVvOY!3km(+OpF_4%LB6lDTAIA;Qk z0>Q?k&iW6vR)JwZ2!#waH!41qFt^wU3^$+I=527rF#YXnc}VkL4~Cyez8)%Lz?-A6 z)gq*MK|{EMia7biq+CZ=6#n9d`ikrgQ|sIE<<1Xoul1eRzg5;UwsE|mMo)VVb(mzJ zXJqpk%0Z(uoh-o4RE&N^UsxrHkO;I&vRC$u3?=D1!hoIgG)#NxdkC+PK}}xlin=C; znE!5?fMM!(n$?ce^Upm$kP}6=t8G4X6QEQuR$Q&$7^-g;Qdvr2*HW+uguk)DHYkga z{fC#Ul-6Fc-hZ`U*+Rp^GO_nJrElAb(|UlORyi?n(3(n+mN=|S!o`+50Lk>{PO;g{ zH2YZAKDXvCY`i2X2?hVeUsQqY(#oz3MTXZ5D(*Z1F|YYa@mJKxLzNYJ>}$sJ49Ooq z;-n$&v<&`GCe?FRY!mi#1RMPL&R8pr5oY2xiZ%~nGRiDUdD5TY1`ZLU(+_0C06iFuo+-a>%^07vI^oTDO4iZeJ8#k%+&LoTnLfkOAfj9esfu&~k1c_*Dfm<(uNP=&w?&g%{5bC!(P!+fwgA$5$ zXEvGwZg+u9@rv}!oS?%?gdo3!^+C&vIs6?@|hL&h?mdFcvJR_ zR5U)Kk|bJ%CFl3Ok7w3uR6m=z7Vwdu)WM_&_SJZw~`5v`U$7jq$b- z)(HrkNsm=aS3~I@#Gmf*i5HSR5F;( zO?#HuiR%tG{1(tY5HVE{s}4x8et(B62jTi2v1Z#dPBQ2NcBp)4_N4-yCy7jr5yR`1?z_4=~)?>C^nYQiSBcvlCU#R>2v-zT?u%LULmAz zAi+IW5)ubKK8R3KQOV0Gy`kiM7AEb+hyb(j($OK5@0ACu*%DX2zhw8?weZr_ zCwkZR?uSat4MguNP^`W3FuF39rn?ZDZD`Zm7Ty|J;b+~dP*2l@W4AD9n=&8NTknLO z-YK4u^oNCz3z7jCvUfWWJ2U*F060K_CmP841HzaJ87`z@3-YsTi2UEYwZzM)K>BU% zW$|%3@@+KS)6NxlazS+;@_&|>wfQQS)AE{9c|dz6+#w zPF9%z)xd!&14}O_Llkyq-aCb5d#knSQY_12*2}Wo-?B1X#s~Vj=DRA)(4cF{4KB(m zJ93A}gXOYYxPq=-VrcIGSXk#w3md9!j(OYBqQ2>PU<7chAA8#in6^W20G8defr@07 zjvkO(=!AM<7b|86BIl!S5V$?>I$`Q?{RHUY{xMfu%^iTuTHLdIx;#=~cV|E0|88Qw zJ~9>wr_{08c@>^%co-#8p;o)Thd-J2;n08ow_vT!oqo1#UQ$Bg?F-D%PxFJY_St&! z#AiDSrveq{q`;ta?s!4r^`p4*ws*b(>Ab5$JS^xbS6mchC9F)|$3r+$#UC$kaGRW| zjBT@vlx=Lwo|_|4K;j#f#~!HE1Wk&|JPNAO7Ckrr#gK-vp$YVX3tFG|Q#|0U~3=wD{3dqV}sRc%bQXc7ht@x9ZTnl=ug-RtW zY+J0Ah(s(d(+`IF}=3kNZidNOOC+S~%Si!eLj;?YZ&BNPb#dBy!U!v(?J7bEDFFGJDj1InoM zqn~92XawNl{++8s&A|g`t1^|Zwe<|UPK*4+&9A%qq2erwjzVY_^TAcf z_%ARzmS*gRqxDnw$(?mbg@yNxqN!q(l_q@!^eKMmc!;$f7d&vNO0vv}`9X4Xy&kRA zXDOxL0`t;B2G^rd)*(o!S4f z0BfQOk%#{gMo%79=>#bT#J=>aBR6PKKez+7?+rcYV|@xdfPIFXE00YDw-nfn7Wc#_ zwXsitCPdc5N)F13T`|6v=1o})ES)u{4VNQn%U%?5zOeI_S0a(~+Es60dvBVuwvyNc zf`G)?b7c&kIG@frS3#b3pgYm%H9y?xj0=+Yyqi3K{vh;;<$D_aVl) z8QD^^KOKHR*T3Ai$<~!iZ2S_^V#P~U8a}ma)X{wD;X7;t>Ms9Lm$xf#Q$Ic&c1m3i zB>n;&?@9zgZ_&VMWLHqv@zp@j3pb>s1ZMUhiSFb$C0t#v0HpW{wiBOUa^R^f9f(b; z3S`&&GhJeZS<&&5(oZsrcP#B$xZp2*FR-sdmUew*cI)Sj!Nz9m{}mKcxG{-6>!`~S zH1O7MIEufmwET}p0J|OU0P^9)t@PrRGKQgK{?at{ONjDL)Zq8oF!k@r(P($BQ-&iL3x?bn)pa`M zTi)3@XY-k7QS(%`A~oj~z<+bREvcISK3@o*gjfwM|y0= z+c|tWp&>hqxhTzzAXIFM7oZO&#P~Ai3QGL;06j~3ChkWbFfRr?LFPE@6*nWV zi6yoLwSvQbY%7){2SZ8A^q9&RS2i8)ajz$W0M{8p6?nVp8=rAc2PGZmo(P|4{Buep z>@`;$v=(C8%ylbNyH{E!p#G5sFtmTcl4o+>47(9_{%U&~=`pZ3cr@Yzlw`W$h6b># zcU?>twv^-caKFg;mIf*vZZtmh=CAU;bEu>C3xm7f26?sh)19Up-y@Y*d*|SMzm#cug=o*sIE3b&-8vuM{()!t_GEG((llZt@Lxt&Gi!d#u9 z>+2rE>pp=s@=Cq^dC?0uSa_r*AAZ=csMAA9v=cku^e^2|R8iRRQ$RCsKyW3V{}^z- zWe{{8@lWlrrZKq_ro`nO`0>gyQ!=y8qFqFXr^vrJw+_O0*%I1-%%-fWu+#J16Gk&n z1hLkq)?E15&jef}gD7G8JKAq1xbm+>5L&0`6&M(Y$g>1DfAsc(v4OMh;FSEt^yC`?TI|G2>{BfP{*u!;GJc1s(jZ_YkzSDwS^6Qs@BRYQB?Qm>KO+Cx(*2=Sp?+zEFil=$P^wS zLzS%9%x3CHz{B2t&#fo;GA(X`qO8=?KDtswpEK?5#I+k)c1)l=`i82Sz@612vuB7K z5tcS6gbd5bt?L#uA7!5BIKX__j;o}EU;7%9K+>F*ik@>w%$%Fg$#Rv1uq4F^&MLdkTOUjZEO_NL?MECA>WI{@=2h2PxeU_Ei-?Rvuj^0RfGYd6SXB(nB$x+- zDGYQ-UQi`DJh5Y^4R6DTDSmyAs#s98)5Hv|7uRO6% zuZ_*n1TiZA>#Rr7S;fTE{I{DA&X(Hk1p`~#IPEdB2#Q+|e%==fDS&E%n7D!M;3D#s z7QstERUQ3HZ5WK6ur_h*wp388WXSJB#z4>c%iJHhVUA?+qusnRiL_D=Rq;St`M?ue z)OW{~w5xa$Ld5=3)-v$1<`W5@uLDArvgVL3Yl;}^RlQlJ6__vzWKzFKY&3{347)y! z+swBte*X5cq%gidL*5>@0srT~l&cDOn9D{k4lN}qBywXFas35v7ZJdG)O=j% zAll}qAW+2r_kLy8ZM@VaS!|n|Ut@x1qA2bt?*!KAm~Oya3rb6tW>n!}#V278Xs#IH zX5(7FEhq1Fm?xQiF(+;;Af)Ww*GIzx*<+p3iO6P?m1*i~9sR z9tIttVA03u{^N>UFRaAd$&b9Lf}T%(Ac|vCDCEEB{>_&ppKb6FLdy(} zdW`NJ43c?k)2!AfT)retB!Ym{E{Gxc^ee}8N}8c-PS3#9VS^0)=+H(G%qF1aEsU>* z<^IC>RXksLQUOs5T@Ib+you{4{umMg8cSapCAxapdOtrK+5B6hHr*I-mq9(1yCPMO zyRVd@ot`tHh0?PQi$zvFf0s;M1PhMxODVX`!pQa7G@YrYX<|a54Iz&uF`sHPNmx#a z?t5tyn&Gk=#GF^^TMcCRNhxceogD)MZ_QJP1p(L$0OaonRvbWw%S4W1!k~}}wkc$! zbC|Mrad)c_zTaW441@hT3oNU1n3=H;KgBJ$c)VgpE33{Qyt>OeWm z+Uwaf>03##Kg|eD`)2~j^qQ%NqNyV_mWnTSeA9l0yRrsG*@4$DNE{L~ z`}+fU9?m`ctUYUH)~r;&w*pziTR<-TBp(eeRA*Xz7QDEMrIB4-j4quRUx%#|zLW_6v9DyR`eZA^|Ey9TBxYAMOHKKYxmv_0pD}1s)9_VycaC-+ zpC9=50YjTvQ4wOSy;Q%?A@qjM9}WjUyU*OS08CkjCBuV}#~J}A9_h2F%j*ZhVmyWc zJi(#u#Wm5h0|EQYX(vYvVsvi{*Csm#yX_YpDtFIY)UDHd_(87(s9p;&+$VuSp+PJb zf)3#4*v&AVU>P9{mxI}(4}>C#z*cV7yO+>Uj{@T-bBbDu+ZBFt#0TR&eGw*P_n$g& zIct<}&B@L064|V%cX#Obmv||ioK&<`A)tc_aiUo%w2jO@&quf{@{Q>UBKl`}L`*63{$yy$)t%lp|XI^(rRal8twck1}1ucD^Esr@`3j))O>4C17j z_D?G5eyF6;^LOWu+Ya!-2Av7RwCp77Y>^Kp**5DK(4QBx1N z0#~1JW6h7{T`O_hT+Y8j3ng0Xd>M&qwk!6coZfCtJ8KD#1DiHQ7XB5B``A@m&Ba(w zLtd0djo@(oe$FPseh`qhz`P0N*d06=BZz0G<*y6u2{Vct2dC{@x=$igz_yYp&84cR zH--!$t!}STWt^}JR=Xn|@bkMiH3TP4-lrUFxm{mDE37_lqC$FgWm^=Llzz@&H3o>- zJi-G;<#B3fbO+Wx+2Eyy7QSfv{y{c`SQz>E;gN`pCwQ_rw`w~Z23~bz=N7tZ6w|Zv z8ake62eGiAA>A05xY%}9HR(fU)nNEGm@q}~uZS6~|I}qm&rR$ZHT51pb(Gd0pk!br zLU+7I(BgS?Rsla0*Ay$4Oy?2F_>sZKt`5GjRXJW%*O3_*LObWiOn}BC@#P_7PA!e_e6gnC>dQV4!S4T=>|vL%_MyS zpJ%4i+MNiJc$Iv&8lGu5@cNt2hcQiStZTdjaEk`L2sY=NE!*GXkQB>-$U-bj!WVh& z`q;B&rT)txzJ$W5U2ICyQ(M%C z#B{0hP%qP`|71))q1TQ*RN7H~qr9GkicnK9cmDO(mGsc%^ILq_8t7p+Vs|&0rJ62w zjZ+C_0n+=U@n)aA)5($e@>ay>=5Xerm#xj~}XH5Oy^q{^ zDBx&*a(=QdUDYDNGK%`uk|PGBp3%Wj-GGui<878@?u zddU+%nF!b7Bj1^pRg`qc>*E<2ugOz9nXWT1+EnAyspE?87S$T3RA6H`^5c`OtJJ&$ z&tw@=n;XuIjs~>+;Ar%(nzU~C)@uU%z^$j|WQxqe6bswQF+X4qLVJJ$bMeovNi zJ7T&u+px*6x9~uJ0lk2oG$UgbcZVH}59o@g_=+y3$0sq-)2_~3L4!lh)FppDsZc`^ z-x2c55bE>`iry6Z)0%=oP9&_K|6Y?u1MsvDsRM!+>?e%>3Z{DFkM?Ljt?RfL#k6#Zi{j8`^v%<5cY?lZJYS8+br(&3tebtm*_m_E_G4L zgh{woDocMwV}81+Zb9}ZML;K!^N z5Y8*Cn1^BSXK&r&#X?-wQ{BFftu-pkWND#jB2(pKr+lZcq$>Sd;^kp|hC%`rT3y0N zG0@2fWlZwL;MVj#yqZm)vbf~D(-$a0Crdm154331`Plm1W=^cmlLrBBuTG)~ndJ9x z_Foban*x4bC>dPTqom|Y+8>uiz*r!=_vk}iF0xT#t|d`z^v%=$f}69tdCJz^k+3MA z`5TEL(f?vNl1OY=c@5g?`_&JAp}YL{Ivkv@ce7hcPCrbqSJ&08nJb|;kHD#6Gcf)f zCH6ctE#}3m_hNh`5T{Gut!OIyEGuFg|Cz0A!HnwrUf(Hxt=2r#s7v3=vzB41^Y{DP z2zCx!Wt+!DfPw8Wc{EkZAW2a09dq+m@;a%?ua44az0QdLs8`Le_wIztWUz}2d(&$Y zI7~`)*QHkAU@kkCz4NW;}vM%yRyNJ@&Z%j~jXE(2moYd3u0dNOm!GxMno zu6E@@NYIM4!W?~A@Z60Zbr%njh15iR1>tNqenffzTswrv^#zLvH({l z@-885Yx@x6*mFZvJH$ZU@!@&Fm0#3}OKoBPsM9{9CmO`Umeo77^$C!p7tKU=z@m*i}-kg)eeF65l zAkn_BEU-xSRcQ*qd3Fh@`WzDQu;AV{$h)wlEQo3iadxcco*gx+$i#TLVvv*hk{?ZV zW^#sLgm2sgKPrxm-)fPLmNq$UlUiw8LH8oAQOSrOl28Lqoj}BZ!Cyvf#0b_YKt5C= za;vDS8-ehffFGZ0OMAwZjP-(hx;W0i_990|fCVjeIH}N{`<1hu)Op9~?06&Nb}43c zy$aT3KS$m)#^i_RaR`cl5|2kf2e=+fnABI`eM8~3byK0D0qBGvPq&5WA6acxNC-7_V1 z?H=&T5ns!zZ?e*YpVr@)-1P6r&d1&}h7FgEBH<>Y3CCAt&9R;*%OQy6bNjV7xySe^ z;BX!Dssu;3nyNb%8?baIqA(4-4XAt4O4;Kr-@<8PlHaWLH1TAq$Y<`PX3>Z5DFd0M zJ0jgp-0|&0P6B+&o*f-(k2G}U0*XTqvava_nGe@bK{eEii#J3sw=lp?g)bJ|#0#JE zvD1?fXyXl+ZEf={t~>>c)rlzLQN+uOe5?RsE#oK1G0t zqN@$(AojzojI{{a7v4`xURp$bbEn+$^3}CZWx%$@8`ButAO6y8^e-NE&&Z4-=Iab2 zOXiaYiD1b}@4?U6o!QW8GdB)$lAAA^HD)MrHyK6kahhCr_!2=9nX};q6UEg{H5YC= zOhVx*yO-dX$HYs0AN>KvTekq*;i$V|!^$3~A$++Y)9o+;b{gHfj~nP_o6{#}W#SDp z<3%l;1s8gUyRnEsg!7kjDnEE_Mf(eg^)EQ0i0$Oge#9pXv5l+g54KKBr3XI6<87fQ zK0O>+M=wC^9yvWV9pq6p(U}O>*V90Gi^#oVS5(Uny3BAG3%ZJ^+Mjtl@AzwI{kCR%PY<+B zb~*VtF@K@E?r@@X-H+d(O^tWa+qG$XNw|<}XHzmo;+I~NV@i59B{O23 zeICaJ5>nmTNpka%($YfxZGXRRx>PnMU!k{3yTr*wJvm_r9i!qP%3q*`KX=AOWF}o+ zfVLK>H#oQA0K`wYX10bD{ajp{&Oc}`vEJ1^+!<^wKSYL=bzjUpTs;j2@U)|opMd4@ z9o9rKjU^Se%PuG8k{q3+&Ad}xu7B4ms-8HAB;7zJiI1dcNu|YnpB3aM3-)Tzde$)8%;iE z>zdE`D8m>es%zZlpPO0^so2zd7w8u?{R!$o!^=NaM0T_ktUuN`SJ*{Mv7ZXmAoNzQ zi-87DtzPt({S+AGjO=>Ud~+J}9CbFD~%WB^1VRcqG(w5fjn-TE+h=k=nfA|sI))z%l zRodLc-H2Y?Oi<>1QraHrHeR&OASfD;$w^ZE-q1ao_4^@_xP-Cr43@jr9lSXxV|tCd zmS*!68pvY?*KgZ4n<+(Bd1xkTyy1wJ_J@=73wN#cX?TjR1sKb*ifGyF;lCGL3;G>Y zT}0fIX2dv7R$_VT<;4V*SJAbRAnqimY`xANZOLGw&!602Xr0D^H!Z>JTzYQEX3b=$ zPr({vOK`BQ>g&=eGS>SJD&xMC%CPU+dQF@fdVq5X#>>YRyZmsG@ zd&FWV)4-cU2&*{(LvQguXH|JoNyKopUzE0+cG958#a?pv8i%h~9ml+zIMUyGqU-U^ zC1n-g(OCyLNNhHWvR_Q z4ai_9irT)iaYY0l6IOBx^0gUDoi@>2qXO~KHQ4rk%?*>Xyjj3rg#K{4fu%qg;)nvv z(D}W^?jpmkxn*wheGd6rLaU`kcGWl!@F4w8;g1P_q?Pj8mq-Rm zm0R7@gF*o^xvo+cR!q7EHv-U=hq{=}$U-YuD6S zu?_;kH7p}+lQI(xY%J{dHDhubKKdCQ>x-(2+hZ#*pvfq=nL!eTi8th)u+zC|P&uPS zL_iybw{h>Y%F9WzKEFxs(#G}>V-5r~R zzFWGTKzTBxmpfbbdZvTI9kT zyLG~mLYM3NhOvmrtikRQFh;q5PRRh9CJ4^jLrJ)5P4IFD{XSH~1_QX@H z?VX)dr6kyl7F7d+B(+lH@7>7=FOcBJ`1R0v8dE*)+UCYwZkb}S+1)=s>c?S2jMCj^ zm+e*~4@#9BRx+zso__%&o`WY&4pI^~4GL)fJ!8M)$!5%8VChRNtWW@oYeKc+Nmh_4 zl6C=wcGVM&(&LZC@0=Sj&giN4v|Ed-!@${yxX z1CD_*Xq3;7`JtNI|?2_(AvU z%X)Pxtz9=UQin6EM8P2xshPf33mWox4qbWX{iK&dUlLQhN7bYkUA+>3De_6OkB^yb zVRx?ldFISEhauSl;`%3Ix%;0D-LA$rNgI%;sd~>ddh4^v)zJ-shg8%4407e+62Ibh_@zdj?uP?lMSOXvh}9^XfjUcAdfh1B$D$)NiNPECC79Y&$(Du(sh z*9t@f;q^6saeT{2|2ek3$G$~}Pqun2M(s4vUojIFx`(T6SsDsC8j3@C3<{`I8>qMe zTMvm}35Y21?W2P>gaDvhO?5FCPSSQ-2o*F%k=*V=nO}svf7T6I)TR%|BQMuqUdc zT3C>>JOrA)Ogn4a2y$o?jq$#m%>lel7f-)pr|1890UDKb+N@Kb0#l1!p3$OVQ{uRL zF6zgmPfo2mKkjKkxr7HF%Eo8E+ljk7to!rYpogo3-hmNePc$;c=o2UYVttnBfxz+4 zJ*k*qbF)ffJ0RrQwJvfmqYt=}R#eHP#@9Ej%Lr10p0S0bLjnNKJ9D`f6E5cg8gfAostHdl5WYala9amNG<`ON_?X5x|9)99s7E@)6tN4 zUwovZO*QTqh=l8LC!BRT`?7NGFBVpJ86N|3cszw)`x|!7*wq{1Fy%vcj%&^2$)LrBj=07Ks9^S8C+w#|ZuZAjAz$98J0ETVB+7%fV zRbOxNpb~A6S%CH5zgNekXw9MFR@^y0zf8QDiAote_JN#>w2`B0*WLGbb#by=O>@Ug z1;@KPR$6FJ+P>sq`soYw;QPZCd1V(YaCq7+$h|YO*nHZYD>y2d6sU_ZNfSFpGzUh- zyd|Ap&ey5^NxmSTUzd`;0+s}dwSv6BP(%5h=L{%|ulaC{LA%R@my*S0Yf6UAOKzrD z>oIq|KW!dA@k2AIzjeljTMEPPOK>j>O&8hf+*dfToOJC6+LMHbODO2|5`^BwN3e1D z_-Di9fABrk`&w`W;qC=uE`5ca!ln0g8>zw`%P37HX7O46DqR;O5~s_fu*cF{=&Z@v zyB2)n5R|zRqP6;-{Jn1+RFK>NXHXHrAqC{j`pAa(X3Bz@`OHt#bJ-npkcwOVGf5(d z#T_Ay)SSL?_ZM&729sbq_ue;T3cJ12`c57G8l1e@fqZTOA8MvI%+EmBIyrRbPRL4_KngE3q!U*`@e?dPn{6QYjJ|HPvP$?1l1ycz5;=^z(m z-G=+@x$dkr=W8c$(|w~N*c|!u&!+^IYlfgJ0yqQL^h4p=xZ<0P0Y}8z7}$|Iq5A?X zCVCniZ|_>W#>Xtc#T<|UqwQCTxzytw4%(V;H;f9-SM1o9!mXzX2ZsWU_+2GKtG1K{7NzLbl2HLSD0yy!rq?!cm_WvK5I*{@J);5BOJ=PpiJ+ z;BoYl#oa$&hIdJKl4hXaM&e|#PD4!%|- z74)aUyXVTvS^*H(nyfT9`cyc3+bpIY4D$#b4 zdr{<67zoy&virF<`iFu5LGK<#q-s9ss->ema;e=TlR6i>#a=3J2jw=G4|2+a<&eDv zZF5Jpf9j~vp}^BK3JE0`GR($lF8;CFOzgnJb8Sb<8X^OISvSpw>asRD()oA=U=iJ0(JN+^2W9Lk5A5txJR=kIx;TaZ?|{OV5I66JlmolD&IKA za~7{<)ig-rH)9)@9_%fdf!>W&ZkT(R@5$E97sD`idGf;tLT>aCr3TP-WZh4brP%9K z0y3sU5vH~nsst(AocR3J5rpe^b7+7P%53Jo1d!wt=`ahV&OHf8c=)?>vlt0e|IzU$ zn{Pgat>?;FcfS0RUqh`odxFgzJ)k2SB4cnfy%E4?>K<}^1$I>^UOKA;MQ~5WA8uS< za?KaD*Z~e#!WyU;u1(R6*^OU z#h`rjJI6P*j~xqsivg61aR1YA%5?^TiO(^72C2nt@L=n#-%J=@gh9} z5UGX3#G|IV>LNqKdiXRMk@_4Js52#*(NCU%r}qoAd92PX&p!A|Va+v{b_2!_7(Ne5czB&}{zGUbP;n=lb1>db~}fwUzx~7!%ZCLaAiIEg+uH{8o^U)Z(bj@+XDco!9ok zlA&10T_-E50@;Fu_|9vmaN(3lxbcM8_{jnAH{Xj$YGb?pNSrm)GiPM){>6gbfABtpz7o%UG8I1X=jDZ!Np6JRbt(;fOqkNEXeDD3?(|4b)%`vXMm zBPmSqgwakv3J291YrBk%jG{uy{&c8Oj-bku_xn?k?bF`Vb*H0vO*{EUclSN_@5Jip z*cmRf_^XoUiYNmQFRAxIxYXxF#L}vyl0RF2)P{Skq5v~)hWywCLUhO-c4gb8u5bLW zs>7HwQH60%D`v=gPhTgkIN%DogX7MXIgk|JgBWvtWf{lQQ!HWLYvy9TL`_clP?^o0 zz*b5w^`VV>X2FJFm)jBWr(%B~g=M7AKl1HTI0_d3cV-FUQLg|hy*!|$7q~-*sI_u{Invp<~ z4J?`jYaI+o;T}Dbl>UC1x0i_v?zEU#F1S=({wF(^=2QBonjN0M-p!_R{z&G$!-G%O zK^NqHcNi#b8s5UXt|`$`z9wWX_Tx5#Vx z{>WZ(!@~K|R*CU|=()(xD06lE*it*AT{i>T2O9ono&_m+L{8LB5NQFBY`FcQKc*Or zvHb?djP23{VS zxq-5!(29~c)vb-VxSLdmn%kXw(lt$ksCKctbE zqB3-nP8%*^S4GlpwKom&T<^))gL2`hX*)3^%TSI7c6W`v_~hqa%l~d|R_hyFsBDNY78J7m&oh4u5Obo}Me&Q!K>1CKZzZ%%3Bu?DJ@8 zNLW}cyWYD(yI*F|6)p&wXOJ1H>E?1W;9ztmrG~T4Nd$;Fm&UW619^XKHt)H$Kk}%g z$2{|CZHZJppl)rX^bzDeF&h^Q4cSLuM;r(xocQpQ`#Z1iVxj8_n~+^l9omQuJ>Ohs z>@jpo>K+g0VLlzI(Qp{>D1hXe$^XZmCjk0FelWkihsZNN`5#z(g5(M)TS_G0k!BE9 z+=;QJ?L2l#eO}l}gSq6zs^zsJ+IDh==b znf*Uar}Xj1M~zDGazZ#LQ_{!r00U-Co@DKCCI+&iNGf3P$mrigdFV35lP!i7R3n=b zWTJN9G{*3Mu9z6T4^jzRtvG9HIe2TOgVw@@Mk!9IDSY7Jc|~C6*wL01zbbb_*usCK zUU0EbHY2w$Fq*BF%^;(2B%SdAMWA@%HDqJG+;%MMO_z|Gx?^B?y|&V?wXWTON2={a zuI@3NZ0irvvgYl_FL`Z9Ne5|4G7N@qgiaxkLS5Z?Wmb#&v4m3#BzPO@{KQdyL+NY! z{YR&G$UebXaWfgEjS4Q&sjEKv%fE{MJ&4%92bs`e%w6pgT_O~2z)$6fKU_1ziHWy! z;cQg~s;{j6JqJF$4-VH41PX4%XhpB6ab^4dbhF!?zw=#`VuTmC@( zq3b-<0PL%HsGa%z{Z_~>-!lslEpfWjR&W1b#F8JSaI$4*T6YvV)#H<=doEDVKcwf4QL9W`v&F0P{Wj%d6!-}?X4kx5m_x09TB8U~9V(L8f-tbN~ ztv=Qskm4&y;hDqx(jX5hJHB+U>cWh#`;I%ial-dkQyI|UEr z*~=^e#xjK5uIs*_Jn-%n@2j5-tuiZFXp=$M*(gdfjyFbRQ;H`0Xv3Xlgokk>?EL4`u5eH8>z4z}; zB0%pXmO9rhJ*T%8{_O(fkL`ULH?X)`5o|u5l91}sB4x|`TRVAHI`>pP{_f{_opU=4biay^j2v_1 ze6p4_=J#qGQ9-)X4WU)~>iEMWO&Xnuv13J>QLR9d(2iq5gii#fG}5o;v#RA=WZ&Au zBTI`WOTZQwR0_N&KYNB1y6}#WR=ihTyE~8RD90=J6N>~ZtZfqQQrD2zTx52Ro+Cl} zG0hU5bog+1+_wz$m+cuL@3cD#+lF4olzhp8)AjpS>JJEdFdYa6$n*MTH&Z${mq(SO zW3duprE4NEP&%ga*ux>{Sqq~0#AJU=>0-yiq!n1r@_f4fn{GU0m?J!&Hw`r%>>j?3 zpYxFmX~f1M>s*Zq4@Ew5@6#XG>6~qg|+1A%`+$SiE`_g-VJ_S zwstqf$e1ASKuf`Es<0#n>{&duw9}*g&S4mc^zW;BPtY(lp_?(PrWc_CA|e8M3u5^^ zD58{humKvXK4%0SB^p`@LZt-}u!#&O+?yj@5Zk(ReaVi`t}2NaIlRl6u?1(cW!N1r z@{@@pKNe~%$1S_V5Y9+Tvnm|^S*;_zU%22o(g{3JKOCS@Y4<1aqoZw&{C+=!Mg-Iu(4H1yti#xKin_e+$aa?lV>@S?eN3yJkv z_4z0U=0YrM{LRlI-$tDN5A7xF{)QoqbC+NKEFFvif0 zNg_K`J|dLbKa##i`(Z`{)*23yH^&!!Wxsj2Q=tVc71rwuQur)NaVl89o%{0*XfF)d zO~%9}3a;2oFA}Ju4sJ1{=S+2JDV~2 zNz&xqCb)%c@cveb3<4Y{0n*xpEdK#kn;X||+03c;``7iKCO}XJd*iW+5Ta5f-KAJE z*Osoj=b6+#>QpnvVSWWy^2tNSsMg%*1U`1^pJh7PvKf=`mO4MMg#sWAU?i|Dp~KZr zzm8o^WxqcPCiuY>=aEC+lQjc)loKfB{8 z%G=HNaog`L8^r=B+;pY9(E!syt%ITMr{x2L>1@DQK=~;!NRr)U!>*&SvaGd2ihVuUC|VL{K*B>!jeC!{^~U9 zc|kCoM7lO&j6b!o08@!+rJljqGU1ma`&>A1R01@F@9e9pxV2J-$tCj5#*F*LGiLy? zVoDIdag@C|_KyQS!~u1DG?1_X)NxWy4OotUKLA8#3Q6G{g8jSh2`Vy<7q^;=^Ox+A zhh|IJ2+CQbg2HPwxo@wkxDCEoS=cTY!`r)P?Zu4vcT?f7eP5yIpe*zW8fW^wR%G;2 zXK+EzV@GmN3>oVg5s{rr-JLP&g0-uSz$!K&_XU=$Q|K~x-V<)mIgzm*kmLt;m~`qK z+dI_0GSJhfZ#e1aN_%5CeTx5TbkNYgxoyq5h(mgPh&I4Z6h#9P% z{okW-=`>38eU&HB`?nut<~=cA^0c0RQIuKz>8_FQ+09e$L<;s2o)4PX0fnH@9!nDU zq2a#D`rTp^2wXlB&Og@5s>js!;5{CWgC#ZZ#zYkDRo zG$4|8_|buB7jMKVMbce@lxTAn90A!Ro2sVVzx(wcfSDg`+PD}tpM zuvF>o4jCsmfRoN2M8V22IM9UX z%93WR`+b|*o_S~d#q-otrGn~HrddcJG6j%GkL^Zte`qBkA}}-=Zj?MbN!|CPGH2YoVMdj>MZth z_v&p`{-|!E%PJBhXo5Pr({kqWW2Jk<1^mY&lS;-wkLik*KlBXP{sy`VNM8=4pWEF# zT9(WhHaljvg*z?MVU>~^yv6%f9&gP$EK<{S>y!m^RKP}Z8D?R9ltz6ILKcBPCw?k1 z)%pbMeID=p^+V$r^`` z4y%O0#aiKIqKzXHV*mYn+J`4P3>Tt^DHUZg!xC_-I{pr`-lFAiDNyBcwVHh4c}Z>x zh<|?BFd3uK5Xk^uepeOUUrk+;9NJ8Buct}SX;AWoy4OX=;q+J3;LPpP)*c{!*%K2c zrh)_Am)nZo8ClN=g3#XqfCH?E_E&8G8#2&U0tBlXgf9$aiDm)&SoT)DWI*>@O;V_e zc?rqd2DCM=ytog*9toPW#OMbhA5T-Tb=Y76fVrMWo}YHVxTiedoG*71vh=^BU2&_R z7Li*$c7#kS*l2fFQzl0-y!fJmARzpJuVu{utqzGtl@hsr?ixJaVIt`&9`s9Fg&ZU-8~zug*yZN}il|6#$YX>=wwgMFKTZ zA8T`c#K}PPCKDoy(x1hK8vaW*eU^RDIciM__ZgdLV^$@>$f9C05EGw3b z8n6m@wHKDw(17{RhQq|Ek&ulFpXW?sh-IRn1xz8kLn4{sR#t^uc`i?pIg<4R*RS59 zH~PPv0h@kIU%T#v-M3q%Sh;&_4L}gYE@XFlPuT{L{|V0__ETQdZ*CQIo*l5n#Tz=f zUKPaa3Rr`WwMgBmGJn+Iyo>=9&8Q@x_(Pa;cY3&h=ht|<EN&|CV3j=wHC5c3hbg8J5ah<;zW zd^6?LllOiiwW^Bq6R3fEARQl4oBV6Fa&rh3)P}Md#bs3FTFz9=S{y>6zMLHLw`>*0 z4w^pJLe}V|qOBWmzg+urLVJD|B?}5#zNT<3;A8ytGe4=erddoI)9pN{mnIH)li%Hq zT7Z~~twMgEzpG#_jT~mr-llYpPGt}f29rYbJUhxe5_x8^Ydf(aHZqdLZtzO=PO%!C2DgOoX?@@88QNFw zeAU`6RD*frTA?J@|4Fb~{w#fS^t+a=iOh+~^q3YQO8<*loHWA9(r3@jGDdUFg6jEf z9bihN=^k$cJ}^*<=**&Yo;jn2^Xq+%(3pC{NcnbcYTRGu*mXhn{7V-2jp`cKaDeki z6NGj$JCWrn5di=bVHqJF@5nLmo+xlhlOvKHsj&lfiQX@MUbiGB^vO#x*J{U ze~*o~w5?+{fW~mm+q78fNe4+)Fq#uOVmSi(XSI=-(--bU2q9_8Q=8#NU~<{D8o19x z?m)}|$xIDVb770|s2P>@BZoxy8{a#`z+)V4Xip~}MjYs>Sj~4tY@9!}A%0fvQ zByIK((bDGwHB{ygvn{BpFnqH5y{0KuDexza6+_w`msWquQgy=x=*s1QE?Fgm$$q-; ztZmb#q|v5KSVf~_l{!IlxD1V=ClhTKkB`g zd%yLszS_|Nzo>3g{gn$kt{r+mgb1jaBlf&>;=Rv7Qv@=WPZrTQ<8`ZfA(*Rru)bBd z4Va}08CpP{?LS5f*iGOd^|DBs7-a+o=c6MKm~NML^;(|GVS0a%_<}XAM=(IXhGg-F zlm-=WYmF`MPNz=@l?VXOXoP&+QZW(sQ?gs@l976iYj9V65TxoM5P*ueGhvg~ZXA z*1y*6@#|_>_#{GA2xu_)9EC5xvo2)tHZNEn@x6wQb_ft&MiBD`0tnn@m>AsFSPj(1OWk>M zyhA7dQzN zqor4Vt4jB8-2kFbDUe!xg)g=s4GIiI^zK(9jhqccOmdT4CK!+&obe2rzl5)@AIn9ATpD*D)XM%ijuHDn5sGFsN|#{#ac-U|Y=Djd%*(TT)vb zjrJwj>P9Ac#mETT|8o1AS6)SVEC8rdE;ie_ zelmXf=t=Yo`IH84P0=&GhBz&re3jny^}*xnGnWBHR-~d~_LaiX9f{qI0*3qt^FLjP z{-+ziw~3@oq6`kp>Nl&iP%m|-rS+840}C4vfRiol!$7j2MT7l-?_JFU%7n(J=7%K< zt3p`){>%xLI{jV_x?=?3`Uh*_f!4CmX#=c7b?Z^@L!N!q@J>Jd<^%R+j5Gs5%aV!) zCwXjP*WwDI5~hkDeH={6GCneC0%BYMQI9YC#KO*zOMGhQ;fz5}{*W~ABN1BdV9u+k z=$-Pf7e{t<6BDN*s6O@(Gr}I^n%G?3-mJAiTMcc`w&p;EbinTwHYph-$lDrXMQC3p zN=WnoKV?WG)-I~4<)zA)@i?>^K?B~N)Lphg;ppr3_KS4=OZ`8)>48CJL)gl&T5<8sDh$T~c=05G7&Kr$ze@Bvl-FWRT zq83)RS%ldjhG!Yyv=MsMbr_e`4yjQ)fr%AUBx?5;_AA$>qsCy1M1E&Rp&)r+TETQv z6gQUGL^4B9pRs%Z^lS}e#!UHF$y-Xn6dL@;u=8tFr%!6BhnqS6zv+1W+IHQqGV)_M z4c?si1U&;pxOH&Nh?c6MBUt^r04oY`?+Fn$UfvZ7CxSKbd3)d`CF5*j#ms{#hAUlT zC(_oZ{UbidhuoXVxgCcJhjaG)C{0Gmaj#71T#vPvUQR{%+WoJ;NopS>bVb!H;sg5v z>fCOlA+oD&F<*|nB-|Q#8(g?ts!vC#8WL)1@X&oP5Wom^<(wJ{8kN_mlY~UKCU`|& z8-2)%VvWNo3Laf(tQkMjDftI7D zUDU3|KtU-B3`ntN`Z2{-VXoLGkdQ`PvK!Oqve7t zkC=$k>2;A{Ybh18%XY~%bP7Z9T=(o7?ExO#Lr;@cb6_IULu zafXk6c&KWW8w|2PbK07kA>O)K%U^o2P)3`&Aex~G>xB?-Wv*61W?4V*>7;IW>ry=b z$8xj6sy1{1uAc|<)qjrfxPiwPL3e9uX5gl&aSx-)9VV{4k*2Bqyr_>&%+win_(ONg zP1&K?xWWA=RXm^);_%|k{yhgUzZ4}iAcbD}1k+|#*Ti=CWUO3NX%Z`hG=llcf++if z%~Lu%AG8s-e(_vqasy3f3SUNwD9n#h`X9iAf{wK_R|U5{6IwB#fAo-0A`N!nMGOsQ z|8p8>dG4CA&^N1FnnT>qMbdYOn%BD?m^m}Mr9}H{Xj9qcHl*pxYsz;pT>31#Q5W}U zA>?-nQQjSbSfE6AEV#9zMveuZzA&$QD^omGoRHVeXqhi&1`2>1XL0E}mpe9hs(14O z%3H3tO&-fo1#2n}=?YFSI&`mNGzy${ismB+1fk<3J`jh~{ew!o&Vd>UQ7?o!FMA*R zrM89}eTvlOzT(i}YtgGy^%v3mgEn}kOdXTHX+Olu0s1%%J7ZLsbdl(NbGlmb6#Uf^ z9=cj6>vq<@ay8@VOscnF?9z2d&t+|Nmr1+C_{!dzL(+?T*)GAT8T0FVdK9r2-)F(9 zby`?j1FE<*j0}Hxwu0PV{kFNdI1u34uDo9ZVDTgZg)2>XuSolK+Re0Gau|~@Z(?t^ zw6sWeMV9e@Y7*~X{O&2Gq-VU23dC&hG^^xr?>FjD9fNY2Zj;Ql1l`^)3slNGqXlI- zt&T|T_Lrtu*Bm2B4f+a9QCwnZ_C(#7 zk@SLru59ZNu(+9u)nDLm{v-nfAFe`eNY(YPs_fw$ANy8{%q=j** zla|OjVr!_~__kg1`@WQCqJQ76T3N4jLj2yeUMB&s6RYE~GoHMcOj!Qa$joV_4dZ-B z7HV5>RqtJ0e=^@8Dlw|0$-1-1lvKf z_w*HXp4OcU=8nw>F}wzEo`Ez8y6%fk?ZQ@H&6<6be`aclFF%D-hoNV^$}%@Y18`%# zgKsD)xPI15`8Y272tywTO2?pvNX8+N=f4+jn z2AHkY$1+Rqe-?9K{;?)o=rr#Y&Z#Q-+hCv@0W~vzT&GEbR6mm+hfR|VE%FW%r~1nJ ztjYhTTI5NAN=5g935h894dU%N9Zi{kDr*^#$5*{zOe!2OntaO^+G9g)ZdR3u8DR-u zZ|D0c-Dr<0zBN75+*H4%$k~tz&9=O{mh-Jy7m10TAKwkp4a!2TNm~@tQ|_J72d#j= zCI-8paUJX?YNa&BCgeANd+D$=iu=l0fy-W0Drmj*EdXYe~)+WuUXE~ z-|k#f^eXlg%qw*Xix(o0Q`KxSfhghzEuSA?uFm|h1j~(uojpoD{3)T_r`K4V!!6`M zur{vRYZ3LAF7YU#&-;Ot7cg}^OEskt(vV#Vn=A1qhv9{1YPkD3E$fv1$IZpg{~J~{ z{|WFy>fR5HoAJq|wbO>dYRpuBbtgTO?KWi5370!#kXQ(!Jb~3V*$B5%6;;u)LN{3V2CnLqBhZ zF%$NQar2&Oh%-sow#ZtCqrS#^gtDSW9p1&K{4RjnsRE65WS=HP@xTz=NWef&23;Dw zC8iXk9IS3g;D=FlJgMKziEkdh$IJ$A;oqlBAAhp&GqD_<1L6Kl-~C+eN7BxAB0{qN zA5CAuR@K(Ft0JMaC>;VyNOyyhN|$s>cXx?&DM zNNRmch@(dBFN~i!{>etCa1CZvAOh)o=h1g%Y&%0pPI5M<7?iMgGzh()Q3SJ+8H-t! z+4dFt5R|G=c2jG}0D7}Djd1V-XfiqwWY&Z51W3p6jvE3Hi>G2w_qSK%HPsC*TJNZU zHw4&u5Z?NyZI}Q%@eDT*q&eLeVzj%0W7i%rrNRAeD^DX@R|i*%wZZ2?ZsJvhOd0pQ zN5$!A0Kikn4q2y0aiiG-cVZrme&|IOhRjS#yh zs+)KFd+h8;T7ONw9t)b3Odc4s6|2kyMyk!&&#S0f&OTXL-4b1fO~n{CC~L?uU8GcV zS`Q_F`Q4b7A@h3G5XEbE@#d3oX=FE8l%tO?f43a5xJx;}__)At5Hay#MOJm=`w2dW z8w?s~qeQ`q9=(rvn8Zc^aP95pzAV^q0N!oT{h+_G7q(qS+F)n|z*m^MA6QTeaftB- zPHsj77orRtqj@Ox? zM{*=fllw_$YVG?qs)@b>MGi}-2uq5AK4fg$Bj@$3gC!zOO>_9jP8s()ALfGFd%l2h z#MV)u(23r(%t|Y4g-wv^ufmQ)Funk2+Mow2ukHLQ3k+s3e@aBEl!`gj3ilJBDvn-y zX+ULIuhj;#P2$KyjkfQjzdVQr3_cV?gJ&QHH_cm z(+_YspXguwV@0ZHa5g@hkR-l)c7;*5a;Y`%YDwb)??Pk>)QQZj9=SkpzU!L)BMO)Q z2`}l-QCLn)J~Nu7=SsVxpnYa^+Z>p~T+NN#9>u=(;p&5NvOeLu*I6s>Rxm(B zZYIC@RPI;|JA1$R_L6v*M#57li6^_sWglAVK0}by{02WH^2hkyA8tbgV|;NaqQ61- zQCjgyBy9IzNxyT_@kL@5rw+cdN-rxcJzDrmq-@WN7qy+{*Gd+kB*Q{t;pL-{l>;Z{ zGLIl(6sFM%$C6sXtXA_~QL{6@@q6X1+R*&(Nm5$kx>?x2SgHvzB4@_8&U#|ft?e{f zgR_b91OG)(aYSL<@&XffP$z?o^0-ESpQJ-p?EF60e9yUM9#65PhiNl`N>a z{h*@^mX3=c*ZjlF|7hbX8Zi8ZnY5V(01$CE0v{TUxJTKU6qLKhENDzDOaPLC(OULk zmP=+#$i@+D+BipuD*X(9KLBEwX zoMY_VS`KAH2JqWfU!B94`I*?{gdwbr)Kgui?%K66^bu2Abll;RrC{Vts*QU(OJlm6Wa zx8AU)f7XAZXXpQi$%OcLRyZVTNmHEqOk((SdwON!Y{ zfoyFqgIZ3U1WIoxP=;mz|MvI+Kf|I0)E*rC zclLabEwXf=YK=pv-hQ&;mOqbB$&?j!J~exbgX5g$z0Upw3JEK~ z6PKn>(>Kid8s1G^VJ-ky4Ws$^zv1}bubp9I>&ZpLdgyES3Nbe?ttXxVV2mmBqfSx!f*FS zy%UFM;QO@bFDA><`>z+OdkMG`hNQPA0r%Fao^*ViZ&kQmvH8Fu!DGmfj)f_zr-v_mVXqosOKlm@(QiP_X+R$=U!SVCAdua7 zQQp-joNHoUxHj7D#OO|3u^kwscb!COV-I4beRpXGMCtVOyT6{7rJ*R1s1J3Wg}`n) zb9Mrsith8l2LV!U+I|frbv11e34M>%Ww7+*WYXAWJ=cW7)7rS>a6aQD!8w=iPCLMg?@itrJAvrnYu z!>4>VjzV&6<{?-0?k7#XfOX9H}!;GiOt`AukWw4*3OV{pXvNI zj@W^raa9IJ$Iq*3f2{neuQV2if{VP`H;$SI(#;)t;uUb-{E2(<62bVzOpS+MjU2Yf ztFiCBl=`H!nbGORCvQI1smu8iy z{BmUQ2Cs<)0f@^nYNV*U_A?6VY&U{cLr^2O%4{MqH^Tq>(ao+s(6Pp@5{jN#=@Iof zx=RXqWL32Z*BIe)2SD9LJ1)((EAxi73`YwCf}|uXz*hF9&&26015W@z3jKvux9T^m ztBC(OCJWt=?ZnPD8&g?0=@vAwx7hC89n9$n&US#aDqQYx$F{}L!)e}G`2OnI(7ZazlEC-V^idn#}U{Zf`!^C~wI z_%(f1U-YxwE`ZC;z5w=Y%4+s0b`AUiiQ)DXh7r26nO(NOJ_jyD<0tlmL9a{K%u67_ zi7rCQh+P%r<_`?w4$??Grflw}faCWada|72)XUcdmqEaRiB&ENgjI;ogl5M0iryaI z1aIft!nD|*@pA-KM5(*NDqIvbdBb5mkDgt9ZyYDOvi)HZFxZ%ySm<|M&D6=-yh37? zvPkH@XBvp(c%TlMaIgw13Zq?VNurRsvl*@pFmMK29z8@)Hj`2@wt`vB9OxVxD=yJBNw`-j2^rn~{_ zzNPuZqhhn0C)1R) zw1*SjmNTa)OZJ>5GLvp-Q?79x8;GXZT@tiC!jzStoIaTW4>hDX2rLitad*!cQ3SxK zk8YK7wXdrB_M>kXm??bWQ8agM|0IKc=U?)G;(|eK0*FTXmEiQf)`V6Z?9RBmTf@`U z&uAb_m56zzs9%r-h6Yz~|EQVXH`_|~fPnFa-OMBMw$yp^N7B`?8y%pLi2QJjS%Vawe9bwqF$PJd+ukAgVuta(aIMR0Kkus7@t+e zNlna_8hch=aOnT1Cbg8}u;=GF!^7#Pk7H{v+{p{7m35W-|5^Z+8Nb2xC zHBbi`78N#!)A)XlzJM>$lfS?B@iG0 zW5%8*aJt&;zyFH^OEU=kO#yC=V^R?Fx*|6Ah*~+R_z$MJXvd2DM#8bM@9ZSypb2kf zaj*P|z%q`lremmsMN8-8rwuj*GOF^Y;*+gYhEswgrw?KMgk6PSDrhA?3PYnK z4{r~(BqWBy)Oi&^49V9G#Xz^O6Ri8M8RT5`abRJ+B&=c4e-whGA!ZJZ(mCMnPYa%D zxm^M3>4+~nc+uG=i>VcXca(hk4xPVCnVml33@{`_=ymA1SoYg>iu7J03EHzuP2f5_ zMG0Tx>rCI%g%K`QM`m}M0x|6|kcFaIXn#{sO;fGl>Hx$u^$#q05Pl^L-E^#XF`1X> ztkoM#SUIUU8x`+AFxa?R$~0lWg%b6l@7#ytIkes%=UpbbWfm}2O_8+i|K!4Yi0dZ#YXJ~bLXscjuFEL(bSfbz1F#tt# z&TpFB%XT~*wddhpQk1aj7z43s;u8xQ*$=uQkRXYjsy{GCM`Q}tB3(%c6X15z??R-% z>YjL@>mnmBvgQ5kFEHYAaL$mV3R(a)K=Xe$Hc95D(^5F~Q62)MDyaTqENP3IzaEit zL2EGNFry5SDSw=FMON?&x8br=Wxt_rKcug4QBzdzUr_gyk?tIronYMk@kIx(<)+T6Ye;|4ta{j|fO?%G8HFNu+G^wcRgpj6>< zYRdOpU-Q;;oQR6~Jn~gs?`1rN#qD;gKcd(e?W^y*7(sYgUGaz1+=Y2Zq&&lslzjmN zx4V4kh$xiJ`xVR)MYrKhyc_7T885}nk zv^N4+>msQg-dMo{+fsqs&B%@7}Ru~K7LkKHdA&M>Is$Tar&GQW} znh1z>BP564J51U?i%tV!(A{;sro|~oF$&cny6wOBCTkJv$`P%FDw&ASjpp>B$%r?Q zhIxBh;C&!f7FAJge~aghK&=v1T%kO^a6Q@eT45@qVW+t{`yHKUaIHcWXkc%?b5Qd* zLQMesl8f=65a*FJxDGM7&; z$}Hv|!%>{c%od+In;4yTHL{JQAhLI7*Rh0+wxj97X&>pbNCebwp%=jr19lm8dj^tY zw+JG!=KYwViAo!mAn~Imc8C0pyppx~aE6l_#};aJ(t2j_VYZ2-&N8m`3@g_IT61{% z%V}0{<4f3^k^n%gK6{&cdF2ZK=KIXg&l8in6&1#dLW6O&gY(v;f*kf>i;(*A-CMQ7 zggquyO;FU`9~?y_y5dqK|3T-#lWStbp%q1$<*UEf56!S0^9ZG5wY|(j5htm|WPVcm z>LCIvHO|n0l~iyT3*>V#l|R(y?Pr7Z=Hkv3)I>*3ImjR>Z^KD!r!Ralm%`_$njmz? zrf+g0%~fm1FPt>q78Wy0SJSPRqBxA&qpqa!JgM$%>#FjOJveE(9r&r?v9Dno-OP6s2q{1kM{#RPkv|l zKfo{jNvh%xza=))-orD$w1ZuKh8f4=w5gO+c_h=sH3HYajnXAmR!!Y>Ix;=d zS^tn6z<#hpS6@y^`=K8C`Tfar8EB=oE5sDQek~6{WSe{S(#yv(CQW;A<>X`uZ7iOj z6(u8KuT@h<$~o9K&=;-hyGsF8?x)|>t!}M*D0;)uJ#jI7Sc%#39r#8A!{^J}%6V3W zW!yh<2Edx1$bu4$=Kn>{1rsbEjGGt17*JoZVbz8-qE=}v)FHIwbn$9o{#^{2l$$7< zBU0))VD;Cv-aMpVp1a|eYF4T+Nq8III}qX}vNEU(#KNz{sl#!IjE;h;i1vY3%AmUy zj|dwd#8W2EX0nP7Kan~*abjHmRQ~JbuXm@UP9SM-0#XXKhBx}#P!|`2zY(zb6#ikM z9r!4mD-kTcenUOtRLku>4MDgADSBXJWG>&pZq3Q-3nWAnrj1U(goQwV?kEi(pm3n27_rz~QhCTGY`_Nvs{ zRVpQ-W62|%;jjE8yVB|M)l9C5<&*!6h12PY2LmIgS(4wLpac+e)1Vc#=G1uIC1J$3 zMs1`<`^gHb6heCUIxivDAIJS34r;Y*`_hHeX%xiQPFX=}98M*BC2$6JLv^kP#Q;v@ z`%H!N2Prv=XhOt8eJVJ@X|>sIMDHN|KQf|V=izIR1Uw_9Ov~V1XrrB5{nSOt5}s&x z=1pz-j|FTIyvk`Md3S3&9ZoSM8|80cq-e+lRNk*8Gk`tSJP0a$KqV9robFZU=THIW zU5ngJZT<%@kXTB3;x7UR>K@ZyMKIen()!fLR;R8E7l$+q_Ru$kQ1%FXQ%j;n$80xU z1JSb{Ct|bY^Ehg(%CR>33*x*fhG1H!r+&KsQcS%3!}EIP5Y2zk(>I!52rw!?Q@IENGfjYiP0@~@AaU<3j$HL<&5^nrolmS??PFYV~lY5%sVXU&zD?Y4MI)pH(I zeR+I5tR1+2_5%N?c&Y<}S?X+!>M@++VdoAR1j`RCNK1TI)tOh^n9MD{y6Y>C>#9SlIA1&0X=tcQRH9%pq&{R+ zS8%e=AC0{W53KmZGQ@XQpl4+97BNtI?b6M~ZDk>PGCGbeXQ^*sLW_c&zXK4;fr(rl z?Re}vugD@7o-}V031;iIp{yJ;z+hni(X%C1&#ig2dy2(S%Fd7J$Jn`WS3iI_>Laxm zpOEE$C=B)hP4vBI55(jYs6IbcawgNqEIu(K_t1Cv8=~1JQS)~#BzlVJ*(GP)a7Xa~ zYy~uX*Z~HZ$N*O{Wgz2l))F{A#)@EPP}=ai5zruA6S7!wZ{-j$0cH~sXYNo5DtFc| z{&u)GLOkv{h){#V0(bhj1k%KQ5u&!lp3$6x0u8+Yzn2*-Vk~)2AHWnr`WTsF0=LWK zl6Ir=yb2zN)63nhCLtKJ2Gmq}IB*$V74MbO)$M?uDgu6x-5?m)qAz>)-VilmD$Viu zma95>fudv&Itx%aMp_m`Fgqv_bq(7ss5IR*Sys`0vKgfUbS>yD;0EwNxK<@auVM1j3SB|x?u=i`pWOj`f z@l)?13#U|2JCkV7;kzqbZAyAfT#smEn1$iU!e1m=8k952rZ@WcO@xy77%=iJKGb^K_C8gr03oq z%y4?@6iJ5oGG@J1rr)-GI7~yk+{9Ga{ma&$t|%A?S?|hYSg+(6>H&;R+10h$g(d4A zE(-HF@VTWweKuE-bUUAftYtJoZ0d6F7AcRzA>SfMH=cuhv^A)LtusNGfnSYtHpaRm zYlo zuDu8u=LfL607@lC(`(;4LdjN=nL*kEvu46Vmm9=nfY?Zs_}akAKMD&W{i}mlGE~&u zMw*PedBE*@#!lZeA!|0h$Ttyxy&6&47b!qmU+E&W!&J5+d|tM4a(**5LR}asI^D!h zYepus^t93HwpMK*XMnnOe?0K?O~j$EMu6+u9nOKA2)uGk8L1CVDf(l?--m_8DJ={AE|E=awO>(4^3HAC#EXN17JKt-1ppg&cl1Ud4e&G#tIZ~H|E0@$oMX;m- zC~z2s7+uLb?$zF8eQ@M?prCtCA$N?5lU{Iux#VL+$+w`pUzt|rjgIE|vuCG_QFXU$ zfk={|Aui7c0{5at`<-sh-^eu;f*pBicX zYcQ~my|Pb@Em&yzS6BWv3x(0X{l|J=QaO^5GgzUHtP6p;HT_4|u!EnMOkJt|eOGwXdo_NQw#jEZ#xsK2ctyN?n7i>p@FGcp`J~*gq&5awBbZ8N66WwcCXp10;9pHW*CGg1(2ckxfc8l@fJG< za+6Ki{|8EJ7MjeOvqvM;GtXMPl9O282-Vat{79| z&J}KP0%FE#Ve zXq%IZ?>Nhx*e(s=iL#}{=v`BKbDe2mnQ1va-F(w)n=(RXaH-oK!7@vc8ariY_9}w0 z`Q~n#73iokp(lAOkHVl-gN4=u7s!tB6Q>`U?u^&u`1#KA{PF~q4R7CjHg0l&II+Zm z^nJdt`{RNY+s#EwFoXwhVnzi)I8cDyRqxtk)9NYIf7}e@rKA(UE^?>b?K6}7lB5@( z_qaj3Kz}c_Z`Vs`bfA22%ru3PrCYK>meJsy_p|N`qLF)QnN@p#RXnCms;p7gu#s?g zQ3Jg@%p~95m!6Ebh@9rOBZU}k#;duiomZ$DF6qxYARCL`C3(fP)$DP#2jFLzd!Syv z#jn^74mLOmCBeYN18KCRokwbs6~4q{M36*nCtD);@9@|kUt6d?h@S6W>>xS$XUxZl zEEyMX7tyukG?w?yTPJ7EWV+019#@OVA%Op#IGU9hwEv-A&>jJ{`5`9Il-RjUi0x{j zi$mdpfduF)9v=~1FUKl=zs_X}^m@H_=Nh1%$h05umyBoyJTF=>KK39&xB&2H>xisA zVsRwv1vXhpJVr2-(TY>})?%&6*@SAI=_Sc|i^jh&MP?|s>R13jq0?Xa;EA4UTRJNO zjuuyFa#`qON483g1d@%>I{C)U4Q1+AMZU+|K3(bGUSl2|guyamMDRR)vWvnC))cV!w$W z83DOgXEKcZ0UzBrYr%|Ws70uaRXcP5jG~jouK$sabu%{JV)XTvvBG7a?Y@xrgf!K{ z3%R6ZYCq7alPK|PYCL+pLJkNFueS~z&)|V`uUjQ&d@>@j#N; zHv&8DRnPeMN(#ztXBJ+Yu0mWG#tHR@(!{t=NP7Mw;OTbrE%UcCgn-LE;rTGYP(#14 zaMQlW5PVq@m&uACsfl8t+(h;7T7w=m+k*VMUHhr;SxIvZ*+Kw>e|8(1WGP1meusg+ z!L{ZuP={P18g9|!sm0bEM4OSU574c=IstNe+HUid>RUc{$6dYQO_D0^Wg-be&UV6e zkU70FAqaTfMk!SAZ6K@d%dsGBrpy8{M?)Eh*UPPXOA#O;oJkk$PhS(Qw3CsVTB5Vn z012m>b!X#KkAL?AInL?Hed-%*Y?}fS(&JxB+W*@r1ale1a2X^$y#HsCAmxtgSo_f% z8W7mGYc+i_ZHVUnKp_=Y1%Tt^zMXSxbEwf|jFw3%JE|Rv>!}2=QNd2$SY1l$8L!8i zySNAfH3DZ3=mF94M39?VZ|f`GmR+kLl#tCt&6CI6~IIP$j^zVU{np$4%way9pu!*_n1@&&~N7 z6NV@`R+U9pJCYFKCdyU058w~Kcv_h;@@PAz01nI{S8AUFG(PkoK0Mh828O?ha$~XH zM(3Wy7ca5>cwGVdvWQ(VKh2f41_w^BU0sK2h$t4r%Za_H& z>0G`y?z7sBk2V3|_|&?^+LT3!Es!;+4oLQHZtXFEs7@ps4g(pLuMwD0KdaI00sF45 zEGzFkJ+HGK?!r5Ccz*_UHl5&THO;tpg}i+^Ga0V>HaHQ{VO4{!4-&LA!?R>RPAHLW!1NAx!z}Z{u1`@ z(ekAS689;q4|cEqg z-}3|6)W7D<*ZD^aJU})DgICFE0sK`{lwX~+QglP|cBYzWW%LEqh@b0DER@(aHET{# z6ZDo@9eY*?6*>K|(uzNQO&@Sj!YhGYl~4e*+wQgAdqSG5(Gt1J|pkyA-O%QXRgwMAX!&FB12Ej|9sSRQlSt zW`XM|AU*>U?IHtY$S9hg0Evq;1!T5oVJ#c(H}L14BtQFnvO$M0Ga*{e-&4T^UED%} zsua-kT(J%K6w`KvS|S)`M|unoV3xr6i1k2lcbAMjPGg5d?iH~`;PWcPYGgI7m+v(T zxHM6cuHMVpw7E@1V5~O;*@~U6PvXEK2hCSrt2skj-6pFhRl$2QNf3SFCwKX=Js@0{ zA!`wp^LL1?vFc`pioO9zj~2FrL$hZ#{hoPGME3uqctUxXgZ2-lW8GfxB@Xzso)YaY zD-|DU_~bNKTL`6rP(fxBJ)<8^eyT)}YOp%;FJB=X$dquzewkwpJAI%$U5wPm#KbfM ze@{vp>Vt@g0jt|NO$k#O`o&#YC@<6{{?fbmr8zC#cEU2h!sfssiXwJ+_p9PUKFWL$Zx~v!q!QhP#=O@Oog|tycQll7i7tbq zNRNjmw+FRnxYs%PO`TdMvhYS$GO<|KlDCeg9lbS}dv)_dDG(wA`?UV5DGLWnQtOOj z#5i1w_4*wusY|CmpxdiiZd~ql9|S5Hd|sq4jon*6GVD&61%kgOKtFlJLc#TeR$&Os z5oAxbY3hM3I=X&w*ZTg0Zuo@WdBX6M+AZS8;Sr|;@_+ux+8({#K`%B-Wv`ms|3}OwY;h54S5q@$M>b zzh_3hF9-W04Zza9trV(Sm*UZ7Tw<6y4AV`{%5^@rtQl>k{hef;iK_xTQ3~$UOZLS3 zB_zz?a@*q!F-Ny3sXgu;sFz6B<-L_l%)q$Tlx#Q zBEA7FBNp>ef?(O&Bm(_+4UiWO2K&m%$9wBFulG!3ZD3-!<|~|idR}Mb2zwTo4^IJm zJvi8>8op<_n;YOlZ7cKUAj9(4FZb6t>*_!=VCT?-<88Hb(OT0Qr=hv)jjn#Q+x|ZkIs}5?VjK8=$bLQyM%Ks{s%i~H8^Zx-cSKiwN%|{cq~DcPmAw{ zOF)pWwQ{X0kSMSEJdoJeW`9#5FVIEJ?`zp6$@hvF<;W!O0~FX<1b%G2Mp{xla^#w`;J6-hNsOFkb+sJl+}pZ zQQi7cfYP@X)Uu74ts0MuO10$WQ*l*A+z+?_70XI-T63gAgMb*cGHzyF*zm$=b}|bl z%)#LJV1dL^ZWtHwE|>_%(YkUq*Dvqo&+IwezkJE?8!_>0@X>6FC-e1Q|H`We>#b|P zRm^=QX7W3^PI0fO=vbNWtkN_CI$Jd&nLv7(<*HYw%3#aQz8=L!X+anIPk;>*QZvo?cBvK?@1bfD{Id9-;w~6UC=KeIS~6$uI4$D4bF_7N(1Md;!$JW;`vO3$h_F z)@ zIqFuX91L;kG(mykMkj+}qlDgBWUp&IZ(i<%TU4>fT|4y`Yp>lumVBnJh~c#U;2|cB z+z%9r7|B*(8X?BJ`x-Fcw;lz)f?C)j4$m=xO15e@7G((6l6Y?BZ(BGr&#e75^8J@t z^Uwo<=*+ei+TiiACSq|k%Wef_3lMQp&+f7V6zp;!QMwOKQJX&qbc-DKY+Fb2>!Kak zt|kr^7Se4*96bIxxU}dIXAQI$IqA6Z>L~r905ZIv8DFtixUblns?Wy;2sdQ7xUNrh z`u3>cfR~judx%z^LrYQSb@ve0ze8%Z;l|3U2(HM*!2^pmfI}D;*Dv#1;A3`Oe-t3) z71WyW!#Ki@P#J99^xob8!#)jqQD$yENXA_!_!hL+Sh+cq*;$!-HTt&=v0?egQyv|d zEl|Ttt(hqXyWSC@e`0i)w|>BfY2$at3xVPmhC_IDFHC+u^$xpMOL#Gn4S;8aQF1rQ zQ7OY|HpSEKnWwLwTi?$EU$uI4?64SI2p)cMRW@@(-9}CBISE|@ z+k~LK2-9gFiuSco?Oyoc^uDcaP0?rc_PyBS+>`!S^n~-X{1&DaV_y3|Tn*96f$S=M zpigpebBzgo1Hi9px(=iT5k=LY08zE%!kgFQNhUBX(62h;*A!h8s8{mFJ;{a{G#DdoY%{xAau zklPzHAoXPZu8jc8hj?BLPWP&Rn2Z=JYjo3gnERW=4!}jJpYDpm{Fnv zRAOcWwzgM#=va0Ebi|4k6Mb2-UkWJo2bB=xaeln)4=zdU0bHT-^RnGAb?gica#8qo zQqyqWnHqR zR@~VO%bbP6@2rX^U1bc$Fh)kwy<^Rq$*Y@1lEhVjeaPRm;rv3SO^$#0F?;H?nZwDP z3=eDjCAP>OxA>l7ih%g#)&!{dN|$(@BK;eXXvdebrFS$5meC2wY3=Kgy-C$nyV!!s zjY$LQiP~9HE2h&w7Mbp?+Zevd>{;nD+f;;X;i%e_>SgFz_v;Yjog+CWYGl0ky*^+r z7oBjr^&v9tqP()b>O>296GUL3%vF6vZf|u5S)P3kq(ufnu<5W(r~fB4FX!2pb2UaG zJaeuFKR9JHl_c;Wh85?ti>b`%GCFmUFYZC@*B+{S*@h-BN7I#)1Mn*D$HjN*Um(I1 z^lTik#mRk$+2K=XD$I5AlHzGUgkH|mR-k_rR_x{Uo7Wvgo|q{0+-VgnYi!7X`(gdI z6z^`Ssm;wxJEBmX+}cw=Bg+jgt_T?H{7cAo-P3fba2OMv_fGnVos zg(ltL7H3}hz4IUG2qFTQQb8rV1`=>9uD2>rzST6C5F1F%@$8x*C3(a^ZV9V=`AWn`o|`RIaPZ05 zW8-N}UY$kyx#Q6A_%|6wuUiF9!nSjxy`+qnEsDxP!E>4Za(BsPXYe2l@t-}F1% zNz$v5!(~64Nx=uy6t(W0s}Rr&zt!aKpUU8wuhCvG*O$_i6i-b9(5&FgWa2SCXK;7= z@+_=0;LN-|2Nsdj+a~aR-~brxVEh@bohWUmuG7n6F}U!z#9I+&UJ?>!CyQA4fDZve zL+{qfJo(`Ajl0}>=ky0?0tTrxehyhC$j|e%$8qq(X+x4s+R68;j+L9e^|;Dha!;1o`64%O~^MS8+BK7 ze6jA@xg+?jT4!s%tuCBG{jXFN{e9LofJ0Gyu@4f-Fh9HOt0;B+lVn)!>`jyP8PgoYOsw8@+WvLi@HXWl} zH>P63E|t-d?rgZc!dUubT(A+8h}*w-++K#}BM20c*L)5fv#mrkK9x)rz+MY(L21){tCRVer^H|Tf|mSW znXCriWQVH-4jIngpHnT*qiQ**-&}aN*OYpQB5=@6`*^P9nSn_UN0A?ZlFg;?!4K^AgKd zydhCR0O*ln-GGH(kCp#Ng*)C%@Rr_4EXU|}HTE@Jq{h_a-SatJf8 zrC`K>dmTv?NGs(*lDYqJkFh$^Uv@`|KYSo{>nhpVqo}cE@B5X;e8`v81u0M~-1$68 zmH9wKL)W&%M0x$v?S>Po2Z|^M)y$n~1?nJ_!l2C$Hlu594tlc{F_-Ew%QdUCg%2EVbnNeW@7h!@dpeF1q{3ncbNQRZ3no15k#X z#^y!X=`%?P3(D9&-yDnuwiGJ56Q0`ix&-BxNA0(NHJi6ac3*?2xQpaVICDqJN~vV_ z7#z?YlHndwmi3y%m0_Nk#S=?C(9vQ40Pa99X=|48U2}h049!IbRV_5&+@hve|n^a_mW+p0k1 zctynDu}ELH4mwG1YNEu*8!Ehs9b zSK*jg)EG$v=$}O{ix(nK`bJ#og;A}B?Yt1um+O}TF%D_C98Fg-?sFHG} z`IST{G2?S2cNdd?vvxM|97!f@u0mv>tiAqNd6>`&(j4h*K;X^U;$V>Wy2=Du=&z$dl}0XB??0i!Fs zqt4^2S7Z%7-Yg_!6ik;3sZ_v*ssMxtBa*KE)<$=+%vn`g?$#%8(XYd)yJaKees_nU z-xHZI<&8S(uawv;9lAwG1@Lz8Q0AQa4AKrEtm`MuK zK7-LMfvc5~5j4Kkrt5tp@e=q?Az_)(xl{6zWMOk%Jo3@tG^fKs4iFbG{2{g)Yn zpwxGTcO)c_afVhEssqvk+uoSyAPEj>EII3vNP63s>)+hq%DWpeC+nkMwD0N^ii*NE z0S41l^}xo*o*^)&5UYb837e2sZGj^ScfrU!VE#CyVb0D(CcrNv-R$ePy&f6~FClTs z@;Tn3bJmmNVGd5G%dfJmjS4-3@5_x4{>j#d!~BFZvCjCWK&I#W5q61-dz>1GqeDL9 z)pJ?Q>-9PVjP7+XYAp%GIi%wzU=Y2XJu%E=uEKfs5y!f25%j}&we9N_)G2!QxgVA{ zIJ+-y=u;S~{r4bqM`)tM9tnZOM+0b0ms5w@PuYHXzfyH^H;?b*655fEM5Oe3?{mIM z9$RQKk_y+rI%0NMyre@L9$a%0w(Lv_6rK@0 z`HlA%dky^pcle-5NLj<8MQS2yK11qecO5yH%G=+--cHBNxbRr>rE}uGEG+eamnj}# zE~E9=WQZ-tdgo~)v+kyFo(6GZ7Zvh|=O+&(IyHTnCdxoUr9bv_rSd;&8P*nMEISK-i^l<2rr<4du{B-`&UC ztK9)Oa+22UDlbDWfW-39AA-1)Ycrq~$s9wDXLBcZ9I`}fN^0;7ubFuuNl?Qt48JY{ z=)BG9SD0k#b;rpDv=U?o(*SELX`Y!=2+$R=DG$rqP}EqEMw28?h?ouobA|%oY9s=r zt#*biy#CFtn6gVnkpbS(r-h8%LPu6|z&` zhtjT@cz^o}ud_?Ia{rv|dsd7gvQpiGvb?tIlz9Soh92HSYlyEH$QzSD8hh~LYKOh% z4?Q0e*-DPLHWnkO3ur0;cx$FX&mkjlQX|=$K*(8M;;oH$*jO17QPcFLAm?UUpi>ZR z@3+JE&l8rOTL_5(q0!r;mENb3WsiWK?HkcAw<=|!MYvK6m_WUAV6^vK_XZ!r8B`n??N-7l^&n?%ySX_p5qVb@jpNIj=(p` zx~6b&JjMk3_kSK^rC?3i*>+F0)I^9Ul5vLz?SW@#rPOW;I?jP26^sQdg)Q6};z*=w zAuJz~Fws5XByyintl*<}cC788JKG3m0mI2$UzgjY=%(cZq{)gRcyo|R=S6p}hk5z7 z_pmi{>I~`%xtm{?9J4XS*Cv2ky5{B+?Olv5tI3=4bNj8ekvRu4^O+J;%ZE;N8T9%qT2r+=K!xhVm)+dax?V>VDiJKFa>vBLDxb538DOJJ zW;JRh?6xPsx}Gm^Q+3y2%ArrL@BZE{X~RU_$oK^L7Ak4V52?%x7bv{bwml0^AUNix zW#=Ih8+y-5j~DG#YO6N~KWwFn9fw2K+4MP|e!X}nzgGCvn{HPt;^~!^&-JoUpg6?D zvC{0!Inmi{s6c*~%=V#MMkA6-{- z11DJ!*33doPM;MLMD2$GP4^9aNsRZ1^oR71chz{kJT{3+XbT zq}+k732`U77VUG1VH_jGOEYU{c`^Bb+mSP+`f&N+UG1Yv1k@|ASWzeB@%M0tv&mWu z23E4Zqp;08k?$h+`j;{w3Js+YRg$0=n(bB6m8e1LYfK}@^lg$|QO;%f$vb=`hco)G zM0cM%HiLTCw#7o7qME3b1zqy^c9NBGA0OiQ=Su4_)OLXeI%X}}RtsOhu>7<>m9a=fdMr*L+GNS*$b<{&afaldKR zSkc6@#<0sI>VDy#&v4=g{k1Aut-g;Fr3-|HJ&pM%nXI3rNxBwfk$*Cy@H%|&gyR3A z6Ly>kYDj%6-K8l(E#jbsR(BxKy<^!q>hbSOkKDvJd`5h_uU063&|Ot&YZK)K6^*B_d)MG%!dUIcq=K(fQ8U1aa?PAnOuif>SwAz zOj|lZ?y#>10XR56D|Sub1S$$=s$sNAG|s$k6mf&|Ze@1sX0K2pc2d*jM1AgsxID`8 zYJM)ao|^0348ztchg%JfA5rBp`1;cy2u(6dS7ZthLk2~CssdJHnq(4$a|WUr1M5Ou zBX|G)Ol7KTVt&>n%)(Vd)a^#h&?5?8K2*?5%f#@ubpaxgkD&9LuHDY!-=W}3>u*C# zBSqYdZitiHm8?F(oDuNyx?Itr1V)XQTmtEs#d1e$UAq0-R&OEOQpr|@_uBt{eDF{r zB9V|m+w)g|r-FK3oWnBj`=iCtvPH8!+%DZe?~imWIIJZ{VY<25beiCwL-cXL8+$|DR>nVwN?LsU#`RkV`(&{uvJxzoJ^Q)#-6W_dLci;<=o({Cjyonh;r3)CogmfkgWvrl#k?R97S55=Yav_B0uf(nl zJ(_Wj^r8xX4;*-iR`JuNhBvBtUXu4!pl8OD5+F@F{*y_KEjN?Alaiuij!)mdn1prY zc1ywP^N3~`)ksON-Wi7s{V-H`@}Kfm7RoU35fv8`HxMGH@Zatcf(+Yv_&qyt#k*=#z0=0T zQKk^jgq8b$f}(`ohP$#~HQKbgqN2#c;|V zxs%@Srab?SkykFfZZa|+F*K7jYyWwOA~`}kgL}>uZ&Iwbg31z z0@+=Xt>|eN8lz{9;L0>ME!Z918@!j1BfQmg9hu=9)pER(?*Wrt;w;m#)9ujQt*X?7 z0AU`zcw=y|be+w|-%#Q6>o6bdc9FQ$ncjoYH6ove7~CE;hl&jogF(CM^MM(2Et?E* zRVz2r`g8K~w(?5*nHZ^^Z{`E%1Dv7VhwSldZM_XCEkpYkPV{#;!WkHii%YKn0>0MW z8QgVNeX38nZG_In3_JI+)TJx6_f69myhRZ`s4!;In6*L28}v+)a3`6s;LcLm=`%1t zvcsBc?nXKH`=nuU!u9a+*RMEkGj6C_QxK4P>yp|H^Nmjve1F!)X4Zq9t-6qQ9M~l! zO~@~P$FugkE)evN#vCQOV%c3N@ESV~JRssvy8h_)HjgB#N68?IVrKlgz5Vzln#3!K zL{Uf5)0eM5hS7f1cCJ+nl6M)qN)E~whogmh?S>)a_o~Vc>D6vDbv}DPVGrT2B2I36 z+<9Yx|9F$4t|VK-{0^RV2nu@T`G8#HTOk(ZYjH`clLI)BY-u0!w$^=x=fv#Ol{Y7^ zTqt>m$K{AvlmDXYJ`Wo6B?y*VO|Pyi?0-s{3V{+|U7<=U--q6;L*Plu+&bbyARM&w zkMu)*T1iz!;&Sn$ecv8S>t73l59~t9@f*^8>$=dQ-4TS1x1cL zzvp}(1fUb9`p(4elpFI5Bj$RY_cDF(3}?1oc?vfb7kr`3XB=SGQ`psa1%+gQ0kJkM z5TK5aJQFJTLG(CSGg7+l{tAF8dMbw{%Vub7EqC)!SS6uZ&z+Q7NF1{=SvMZmQR_Ch z3;l3<=EewjC7Ax8Hz{nXv*w&sRjxCSg1r5oO0WFUMxz8=d!Nq`wZ|XMwis~iE{EiJyf;>jl9iQJr&E&BP-5(Z znkFgt#}OYN>F!#t@@nifrJ>uZdaT*peKwCJ5Q(T)v6qpc;Y+Q1E6I-10CTSym^KsS zIpV7?MRF2qL|;9nV>#JsP`CWY`SmN2JRC&pj=>M-%(x-<3ZtR5BXOuX>~JckA`X$& zg@lvkMnE0dW>6TOj=iTiVpihCb&nbwc!=MAb7?<1?OGI#Io3V!?j8TqfdwSDcYQ5x z5MpFJL=74JcecNhe`M@=L-(rs7CcAOO?b3GbUzSz}~)g<74zEsjPdO^I5o)n+@5%#>@9h(7& z{LU7;rN4Q2H!lwu2)W~5Am$TLL=jV|3_6#vV}2*s7)!3yVbZc7`w05~w`TrAhZ( zDyYX>yK#~q<*)pvMRr61yoYRGVqpCA3=E!aGH$AYMa z*kd~(5px*w&=a#e+kB_Hth(#Mf79FgfRZDD+Io~xZNchdK$Gru>6j{KPW%fSjBjyN zoh#)1OUJs_Qs=j3pLQtPN%YL>L_@)d*y`n5&h>UGZS#ckhqItFn|2Ld1(bOF)?|DK zpmh%?ep*z4-WdZDs zsjjZ;=&u+1Ly(vAd%OiPtd{h*C6QX;59IaklaOh@t{FwjL1e41kG^*&TgQHb>oLsl z1Q`!X!@G!9%Kp?HWyu_`RFHd(ZSBw63+u_KNguD1@yxUlX07lD z>CJk+WlAb~J_SMBllmKnX@NIGOJPcT4a+%9LETiNj-8xe`gNh7EIEX4ulOTnS7d%-1X*4xr{{nMJO#Qi;wo}?Wy)5qOXJJ5WsK{H zJhzCbJ4wMm*yk|3Le*fID#Tg*%A2lReT8Wid=27xU&iI+Gp0Xp+NW0;12LcVa6@F; z(Pkgea~^f9RvHZ)aMBK)OlQIM&M?E_wOqUT=3Zp%Xa6(P**Lh|bZ>m#zH73RNuby0GHTCY( zwXJq{AX5D6W9|sY&62mDeav@kfl)T@s1B&x>gYpSifjwDQ@9*!{`j{{fn!cVy0qWt zv)~fn#tg&oWN|s+O2q zLe;^lQ48a^+&+R&9_AuhaD9m(2Wf9ISjz)*$RN$4D`Y__dIDA~{)%-5A*yHTA(6MJ z=z7K$RUZc!K3l2M_Sk7D81UO$&bPPu1H1z;$sohaG6HYhs3VCx>ezDfOG}{*dBL55 zFVSsbp}zfoAr1HEg?)n*SAX#k}PT(srv zRb)SH5+Yczr*M`K>>Lv!GolT8A@y6@!~4PhI;01dvJ<*ee>GC1Hr6w=s-npz>`tjs z#2JsL=;VR8XwKBIy{sR4DZg|W=GL#QK3E?WamqOX<}pE1+e||uAtzq>a+nq6=?l2C z9ou+gm$KiBE2E7WjeG32LnxRfmYS*%Uv))u2+TM*iA7w{HA7jw+iX0=-U14&?2*JJ z3rwg50aiapWZ)Rge%n%tO^7RPCG{!{8Tssu8+=5UsEP_s+SoWU8k*@!;?1v1!rlZC z@{aYblW?8_=2inMIdEc=K#g3(WK(#8feH4P4rC>=mP z(ZDarS<)rbkdOSdQT{q63A9tlOXTRfa?g`=cpECaylP`PJ|9mE|57=Wcagz@qY;Vh zGQ+@;7uv+{T_|T938Dx6e>16Lx__VcUSDfvX?WUD)#rkpYzD6EtEctLx#mvtZLQXd z&*$ZB%?BT;KJYNo`!2jG(_mT7Aod{I`#WFrMnA6qz(RBZ4^&-ll5|0h4XI6s{cKIL zk9Nv9jzS1n%jUGnR33iC5mLja`#(g0BK}xwrvLcfN{}a{C!f3$Wr;Z*M zP)NYgD$_m`6g)7zb>FcEA1UzKN-rj2F{35Cwi`zD>p7dH5P`s*r?PXkWI*t6R>ul5 z)0C6D&xiKi0BR~M(NOCMl$iC+0v6*+&Ws^-CFMUfh{9P}1?`GPq6Y$`!(Qb9$v z^Lv2w3vuNyM`4SaK!^=JWt~X<6?q_EypoA|5%kE1`+cTz#Z}$i=lDhRT9eNB9>?x? zobG8;D&MMYk@a?ey%v30u$mUaQ3!Fa1Y^A1=?i~H|Kw2TVev39q*rQ*_Z=~ciai(Gp?<%r<>#NpLer37i)rANIG46}KC8o9hYPCa z9e^18n8=C?`*djHR`o2Q(f?}tA-EV?yQ<7D1;Z_Hh-gr^kz{YNU3dcno`!3EvJd#w2C)2*xr=AhBV zaxJ|$n3UYuHc2Fr1yM-}=+yT}2uc{47#S4*E)N&6gBeGxLq9rHY8}eFdBBvHxg{30 zk%Ki;ebbKZu~&PHl*Sd`LTD2GBtx-_eFS%cVXqe6S4l%FTqYh4&3^J}uuzXz!a3BA zY0Ucr>nub~9X$n4ZbX+=<0Fp+9H{rUJ0+&x=#%Vl!hZ^rS*yQ;e3Fs*o^;wN3k+Yg zZeJ8em;N!oez6}ghQOB96KJhN7l^sVhMJbzT$taefvHi+D@Mq-Zi%g24Z(}}u^LB4 z$@v(LF&Mwrd3#k*TFlClh$*VmF(N0Hv|#NNQJosWXCu%&nEHP0rz}}(C>@-+@hGFe z_dwBio1ce1__|lR=W{jjBi;m~XLWPWob$lDuusV8cH_$MJ=crL`U>+Cf~fT56tTy`w`A{VT)73(>yYg-QkHFQ(5Scu z$KS4Ztb1CHNrP%U`F~NNWX*_lc3$qb*8 z+b!*Eqq@OPL)cR_xYr`IIsdCG55DE{TCk~k-}a2*Ojd@@M0S)<5r(1)?^z$C!xc zTIi1iL7n)DXk3yE=Mn9kG8}Mqsq_q-g0vOX)tG#vTGh7kEH z-_EQ!fq`gz%*k@%)8>#Dk7=yW@B#jib?`N*Jg|-mR2hd~^DIH<;eFR`jsXF%z$L}| zu-%JsE7JSw1=q!orkZ=`8wTN3*gtu=kjWvj9MW|Ff(0xdaSCMDA?Ld0Hr1cYTIq24 zSA(Rqh2u~F7yu!?j*nML6)yAt8latw&!l!ctntyRM{f(hvHznu4f~eAy#Yo9D)@!D zT?aa6L@jT3FJFs>GH5cXrITF=Qu49<5f_Ih9CgXzQFBwj(YbsbcHC{@{0 z1}`nx63yE_W7ECOw48G-wMQwuV&3}HZrBD}%YB~X6}{a~$da5ay^uUOo6_4baxXDv zSM3ZMiJwA0v9kTZ6!qZ(Dqu%c&gVv`39aXfa1?Q41nid|oI4hS8ZO>^uxeFgnv#k> z`nBPc_c;ulw>cX%;^8Rok}j>{#-Ck?`2CsrZWiy4%Lm9RkqW1Dfa@m1`r;rYvq6}5 zXt8GQ@K;P4+)8VRdN?Qs^954~ak_NL?c%}Z85tLn-LSuV0WxhVLfTwojF?~Jfp=wm zVuR5kC3n|8cLF|5+d?iXD>~yPy+R(V?U1+B^rv3SqA!!qO}9PmkG(xy?G1|Eo$N_T z9`jvNKo#^Ipk{OTuer?SuUip7&@^<;py4X6tzSJ71ujpU{s|y|wLao6X53r}=Wzh$ zPGDe+yu?fcYB)f~Np^U~k)RYVOT$xsydWGG7pBc-zNWmuV??f2h@0#0zvi&|TJP?l zXJSe{nFQlYJUMpg?ijuTI9JO09kZ@vYd@x?Mx%ix>`U-Pxx~%uJ$!&FI%vI`m4D-R z!7@Z98Hh%Fe|gj4Q+Lk7>7hH=k@*MP!)?kvECMAu5{NA|F$)X)BLwYgf3C*KA?%!t zx8zC3i})~{1FpXU!-?5BA*|pj zAc&G=3G$yQDj6%mS)-*R2rt0MTiz!3G26+2kbp6K&Htc$2RGP}eYtsPep7;R;;}H@ z)WXC|0R|5Rh@YA6&~{{&T)#<>`&6!1^`!g%Veo`Iw(*D(0AkFwSHvH4uYPre?rPX@ zD_7Fx{$(0iQ)hULlTvrhv>;lIT+zmOz!pQ4VFSfFmn2Gb#o3IM%ce-D&Nye@RnpLg zUYsmYHNn)EB}9;%ZkDutq-$FSg6olnm)Q`Yq{G3ppgUma&gyqL9V&G=W~49?rfRRO z>^VAM0m>ZJfN_NL&c8HTMIKqHa{Jk8ZwmV zRegZ7exI>__XV~il>2wSA#yHTXSRZ64j$w{nQD$(ya10^>|370cyxo9yQCJ>$1Bw( z@7*}`XV4ZguJl8_(Gs~W&^vDB+1S$RNTku3vZfZBT;BoR{~NI_Y(gwcBYKc_$zb9j1D~D<0;>Z2@L#IzU@VYx8V}ol~Pk8Q;+x(SWBJoj0bdK2yQVhc8F~2Lg z@J=Q)v>hOg(@A)`KvqRfo%OOAS$9o?a9Ir)?=0I0#t}v97cTBSCs}6wyby&=uR}g) za#CNVv{Q1lhILul@f6j00uT1CQI;8BH}{AOPq;0%l6l@ZFe=|!U9WrbM(dPXA_r2| zldza)y!C)ap7nYwxKZ-o8_uME{@5>cpLtJ>~q^8{{2K>uRiW!Wcw)QqoPW;{%BPkdA3_4ZAhzdA9F zU99=cj%l7&OIKmhz*_K7QCtij0FFJIuJBVz*~%I~`WP=lP!)uP7^UzvWyHF~*|XHL z7Hm=qs@z6!cZ6bN9Z>@xXc&-fwGrT|;&-_Hh8eEqiAal$u6r0knUvpm$)`C7-;A1{2 z|4Hh=#ERR|I$nuUs4kuoUh;)?)}=x^$vLA?oY#N(!O)~eM+;S}xP3kxfS-|t5ZG+S zD7O$A5ibq|e%cvt*Jv;-w8oBy@burNa@@g#wI%HUJg5~1jj~{YA))dz zJUlZ(e~rpnea0vQyP;2+_Vl;rb?4+?aS}+ce}VSQW;;0sLW>%$Tk2AK2}k48nUnPJ z;EXWyi~Cn6=WnPe+mK*-hhKTO<5jsHJ7UhOXt@YLVpq_w+&I<=TH0thsuoQYe+8w; z2U1SFuJI8)ZaMM5%+5lMm_!0JtEZZnPJq-YLxksHM26Gve^n4P2Q3mo_Dj0FC~usU z!G-LSIxgmz2zhiLQAbxt1EvYmzVr2T8Zi0x)V*+Y?b?oxt9;DCvkvnO=I~h%1629h1r}6KQhV}nK2tSDTlpSPQ$~xyI^|yImOLG@LUD9fdb;s_`58+`l zQYuoJ9$NdBD_6vjLH{CKf`ky}l=j!J#S`dI?scJ3h`ISpf@1AQTnX;UuU`8+-J%Hg zzsu!+mTj%BGd^|1jeR0zMHuXKrgjwr{N^iOHJ5?b%@1%9;>KrfnhPR_)*8PU$`|?d zd{SML_F0+bU4XaSj5P&iLnJF-(o>F*F)emEvX|+l;2)k#bJfb=UNgyctx$o_Ud;S zT9Rt%j4HHyYr{Ty4pL!{f3TTudH0VL;Y-#X$n{rOxQV1T!GWWBI&fL2X#iF%;7v3-7abLp<(>fyPPO7O+c63)|W=?WPmhMOs+PRR9$e`(>AnyVza zO{-@nT2SCp6DS8!18!z$A;XYRcRdM1o5f=rba>`&XBN`b+xt;PMR5HXf?QbXspKlV zN?76U6Mc04->tI)CK&%@ElF`qX#--|h1WigB7?X+&t*O%6Xs zB{#fMu5?ZI5Fs!BoQWE5IO0(7rKvbWdb$8f>gh4?g4MBF@m^#F|CGQtao)&^obHK2ou=@I^4GiTd4`IAQ{2eq_ z&;iwgXwPZd(ozk<75_}8|6S+gQ=Sv`RkyH!j@S7{nTABt1T~Fj$lg&+LmP1XYgS&i z>fWKy>rDD*Te?_qvMj+UZ!d_9rI;Pfaa3_nm(s5sJX0_zj(?6snRg2Zh{r)C$UmO2 zp#o=39))CI*0MZJTh!Es(9R9!EqH9Ez(5Ihms{+>k3BpX;lE2(+WL4-y#~@O0FbCJ zKF+y?p4dNgWDI8w#3meV-~odt5sV|1%=|~T+5NG=pdffbB>a=~I({%jE%~Q(rN%C& zqcHg>GAH=&))%&@07xR!Pt~a&yY~g@6SnniDIx=}+{Tpt?;TTAZ zIGq3dzL{gU(Ql$c85wFjbtNBu`5~{Q{1J8 zdg=B`p0~87njo1jfuRLjP=e!@cV17-*J?@#$_L1(3JBJKwa9~C*kLJ^hoH`6Uvy7) znLZy8Eef8?paQsUR{OQ_JQFPUp|CY0a5I3SeI5E;TvufRSDe^#8keu_D z9gz@)J3WW_0;LBIn<3{;Di=aAyJ64%oJt>I+?}SboD`+d8X2PB4=lr z`2d?PK{#{s@vqIAs*(}C*MC|SgNSeZ*nsaB$a_%CLf7*N13MGPZ?;dl%Z;uiZF*l z*LH9OygqozZ&>_yT7k*KIwBCSjVVcUB$Z;?v~p@= zMUHQsBMg6MKa^_}$&faGxsw$7+F>QByHo>d_{RvD{U@*|d#f-E>d)J2Pw>D<-89PW zvur3jSv1ml242&j$!UX0I=9$bQ$jE#8-E06in&-XzmjReVUoJg-P5?-b!hzxM^>Q6 zbxS+uQ2_bW@_(DOdf)N1)~x&Se5T|eLSJ*%cfO&$PoO}dr;zL$-8<$e(=LB5a~p~{ zGB3^OC}bmmfsT%+Q)JD5*%BAq?(D0jW#BW{V+BhJ9y(3aI7+j8w?Zu9!iU6 zx}%^4u_1A9EKFzuCsl&54^o2sjoS>5oDDfI)izn%<9jVnvs^QD6tsZ=z$8B2DyJoN z#XU@UR1}dw%Qq$H=bhS99pU__;J5_gj{Yv+W!&gVSS63;6#@pH(~ z!yp=UNxvCzdD!C6NX_!EZjcT#vDKykc21ZdK96&f65Kxn&k*7is%hCC_{j8UfVXrM zI`YkdH0cy;5v#G50I&MK&D=(~Y$09-Fjcs%5Xj5J{6CCFZQ_HGhu0n3TvTzG>HxQ5 zm0b)HJgf2bR{}H^|Nn7X92W=cUo*D2MC+Gc(|P{5@t0pt<)(>|^@wH@+cx@9$uiFc z64u?-+*C$BLXAobJW|q2Rycn2y6zu94W3lpn5jp-HNff&f0pyDpm0!mWqQYMJciF) zfSs?zsPFZ^EsQ`{vie3fM>>)D1p|;!;JOv2*~>jrE0QbvS7-N8JT{#VGnu^%y`Wh^2gD`oi(W*3M zfW&RRV2CbmE98M#&C-=%pN9#+ninUKfxIe@JmTgr%TqYuuZ+MJrvV}F=%sAs z2y~k^J@FAuvUov}iDeT#LxZU`Mp4cvjO>q5cr>yj`;1|91 z?ONW}2PHKGKEx?wg5dv!k;0%ku^Wi>TfX_#Ps9`65xL}&lzJu0%cA& z^4+>^dr$iXSZ5}UdA|Y`5gMq7#={P!9d-Z0fpoiYvG<#0jC8G~fJwOq0iWmVSUTP0 zMmggB-lcoGl3RLE!+@*T8PZefF!Kk`8gYosV85UkB(m<`J6`{RQ%*N`iE#wQ9YT1( zO^64i90kBI1|P|iPfy|1Fn#o6Qwq3iE^PY7Hc z49jOf6ANLRo7kk7fw%v_Ipli0TOSCW;?pK~hxDBPX(AhI?$6{Nq|}m(DhzhNY!WjS zGc{mZcs=C2o=(XuIP{cipH9XrZDjDb)$1~77r7H~rndx8r^HJwlq6oGqb8m5;x%%V z0iGEzjhmm{f9W>pol{bhTC&mhZMvRP$ysPgZ^kxT)J`R3ZcfvLcg0lUDwh=^8s%&oa+s3M!~cH;{sqJ zM3_CvGO;y{JH(BH4bTT_x3*5P&9=xTXIM{YNo2J7zX9{I**9AVIJE;tmx${7a3A5Bs}B*g&$Az-LigL8uVCLg^E=;f zTgDA{tSufpQ}E;ro_~a1yuESq1tS3vy{`7+3A_yJb4JlG0Bay-cOmN{Bra%lAk9r~ zlpXIG?sz>~vmMIauy;M)m*HG>f`sshk61X_7fF7_;X3h^dyqm){)q!~?3;lgFJ@5e z>|_2E0m&~h{|o48{R`rX-DV02@{2VZ1gyJ;V~u@sp_j~pjLFCtKG@n89}SAjt3n3` zBTl^*{>$4_CLwqL0YYryj&J|HUdXHDutB6Ab}2f}>E%lDXMDU>JYNXsWSLC8-rB== za=5qG`mXm9u+ZKK(hV-V{@$;%?(1D{d7&TIq!wO76Qn$9M#PK@K-2(8L`w-A=CU51ql${ zMkDlOdp(m>m;#aHz(>(b{)eSVK6v#R^r?O7U}B)Y5avruc$a~8MWGMHXws&XG z00Msq1HOq%d7c#C$9Gwc=##sM2yj%Be|(s%FXA2~e+gdSs@Gyyv8~2b;2mShu>Flq zlpr%V!v_xJIA;woq52-#<$-FSX)z~MF2KTk4GRTxNc-+^xj0a1`SaQK;S*hE;b*8j ztY1Qc1x<{e*dqL5(|pbLOaL!~vrZlyDoc{b#-Dy_)ycg=MmGQZOET=!&Im{XvVKxp zFJ<*ET3B&|ze;|hbJeT&JJ-0U&2~+_A;fX5b(l$e$|nZiIEfHFp3C7nWb?*haKrp1 z+a z{HDj#em(`DsgLka+*nVqA@|+Hv0~ZE(5W0tB54dJs!~CgGQ8DDgVDd@oq=76K*4~# zn z)d|mF5nnp2wpUN(+46_4x0sx>7X=(1pApO1A)yAoct|v&<S0r$ zMLSR$38^6~0N!1t(MqMW+cY`855a@ID2+ICH@~5M#xOt3HUFl|&dCzlW z0#=iT)Lx&2@UZ>1vR!!t*IYeWN_Fh^a z+uXt#eY8vtdTj1FtF8w|%S@bry6ZG~0*z{2wNac;UvRqkSCcg{caw3jwa@x+~W;A~-WL2>_xXSu!JR62@S-^czU8^nS5j^(^v$ zExKphH)iBpsI@NhT+$)5rt<1w>3!{Pg8j*@>yG&o;p*B-w!|yi{`yPa94J3DL=h#1 zeTF(!va5j#RjVP#=iS9Kq0uBJY1&>9OQk1Rxdu!a0%n>?#Q#5nunmw%3$%bcd877D zbBDQ9|EH+_Sht5ip+EX-Y>q;Sf7EaW2Y{;J-RT`AQQ0!fj&Hc^5?y!>N~U7qn<;+B zt)T9MuHsy42}M44kf>SYi<`$NU5nE_9{c6}q9c>P%YCc2ewm7$qGZr1bV^-OzkR-O zDQ|RMP$vgGC8T5*9ufFH;6_m2%-+%Q)d1ZuI7T(%hwfph7|l)Fw%xW%Fq_jY%Ns#3I0csbp!{KFjuDKul;n81K zXP}>x=c$hzG-$LQgv^3Tw&a804g}!rkNt@MoAMb4)++#;#vn-KMv@(W(KUXNw6EE) zzQ_%@MV#DW(Ui~}O;U@PBRQa(55Vx?F^YJ@FYHLtpK?KE zYk_B-VnSO?zcmPW14_D<2Ht+5lkMXidS)|imbTwNR7DT0Cz%}dXO@(pi}4^KBe!Fj z8+z^niu21yo#ly^CyGXq?LPsUKujL7D^I?9XFgSU=nL!Q#om+IVJy-mHvtZSJ47o4 z%R|237d1~L;N99w5%2Sr9k_mnm57jMIsN*ENl^zp-vGpt#N$AEeC$p3EXWAd@jex& z*l%#r`}+G&Z+t#VO2++6@17u3F4x)=^7O{RPx*s_@krTvyFo^mPy3$kWQSCE{)+8^ zAI(e!R#2S&p;BW9yk7~?$5}NyMXhWoVDUfej^L2PVm~BjUp&2IPpmW@!5Wk&t5^Rm zNH&V}&IonP^2+b^Vy@Ef%HOeRljn-Kw<3KK*~H9iKO;Drb8&N4K$iXdE|y!f>+%!B z&tADK!Yp(0EN8?Hce410p39~BrgeVoIT=VaM{*8KO4UIkPbLiZFB}c(*v%}-PE?-% zneFp<^ad^J-*e*~K7+5lbmH35QoB;EpD|*~4_sOA$)2fgZ+>gG=L(=^?mV>nv+80{ zJ1;8-NIHXhsn--4WH+e*YFP4NDam2>J3EpeA$CnpPF9dIter$HLi@92R&eX*43Arl74| zCteD8DAnTTbVD;Ar!6sz%X_VVS&;nSh*4-`1hgf%(pn_*(dfAp&->j#8tAC;W!y|E zdGX_QR0%LLIT4u3(1?&H1Sw69cl7q`-J@EA$6NvACIqr-UV0z7mTkm{hr-6j_KuqR zdt%}z3kzC;l@hmg;bV!?sU$vc>R~yLpP1hJupy9|UYMl)HR`IswVAC88peZkXGMzH z=vGFqrN(^>(JI&Ed}A0Z78Si)#!+>B84& zcH+Wk(fK706YlKpPA1e{cqd!=?fVR2q5QVY>F1{4*7eFcRWUn9ZeuU`cZ^jRC~HH1 zEf!QaId$k!WqjRK<1v@LX@@@Dq+u0{@ym6Qb3juRp(3aXmBDWo|IWR14 zos^*qC=O9C-}{U2fvOLZCZ;T6z^f1*9sLZB@PekStnB@zdh2G+mGFy9>*) z^W_?h7RkYe1Rl+L^b8EWgM(eZ-Lk!VSd18bY(t_*&hq!;o9&Cjz`jG7Y*l zQQ!=xS1xa&0PA;BG3ZGB9VYhpD~=$^Zgz(=N*jj0O%*>}?FwSr!cx)Yc#>-lFrPaE zCa&(cA_O1*t-qtDN>0>3ax4Ya0;7XcV>w>rKFkxxr)9%AJUrZEJI6gVJlg6aa%~96 zvJa%)qfTDn773Q&xYj#)=KW&?;@sFQLk|LfI<&5iC&2Q37j)={NqgosLfBCkCN}}| zg~I4@x=bUtlj=xt7f`t43oGK|q#wUD=Dp|uQ~2*LNj}`x&1%dW{1tawdab8@!(o-O z_dq{NV1uxK4vdSnoKsab+(`K4!Kp$jKWQn;!S}?>CnHL^U-vS3F`FZcyt~3Z1ji zTkbkCz;U$_)q0Hz`f;LC_>X6&+l;fSpNh3lA=|nHz<))Iva#lv!q^@`*<6N-U8$z& z75PB9@jiOX!+kAV6OR(t1#pp2(Fp9=HP}dubvm*XFs>EY9XCbdt4E|OWaoh$cL+_!hkdu>h zq)?p&3%hh#6Pt)g3VbS{{KR-;f()&Y*S#VF8NxV#POhRCn@;a|z=xTBINxUGKHKun zSi9)sT=V`RKYeo&ms>O!7jcYWg(-BliMZfNK-u-rS#Vyg$lv7tn(}o5k=nQVxA$ ztXZGd?`c1jcQs4Cg04j?NGU2iB(FuvK9;hGXi{Sk$-8Xpfyh(s`s3aYRAh|3qR*w^ z8V85&V^Na0j}(j4_-Gr1ypD^3eM3Q(SO_`@I!hgaJa#X)wcd^P6wO!F<0^+40&FEE|T0kyjI#f{7aMdo)NHlc-_`&h;aJ)`(|rAQ+%$+ z(LqLbOiJlt`M8X|8;XP@Z!Lrdv?8rj1tE2l9D&_bhd0tzqGKTnE7!u6A6^NSlsy+iJNIv$<+oXt(b4ci`gL$};= zk`{&Ln8oWevBp3s9}5f1?shIepH@^<^zT6LhI=7I(xU2~6p4Ip=<&y0uRw;o^7O=N~>FPap^GdAq?N_4Qmour0^L~7Pf(|%*5Ts!h{}^I2 z>j@cz_1iIEyCJ-9iXp#J>drw!rhk20ZzEt3(z)px@O3R2<=%7A`u-qDZtM>f`7 z%-Y(huFAIQT@3OB*O`0KyF6==KWlN?7hu0Z>vSzTU(h=>qUZ7@f@qfJ4yzCS>)zes z$C(s#zoCkUj1`W5ZS{FV-@VWNH39K<(nWCnwIs#F;Hs;uXAUp5y*NxOXC3&{bZA@J z_A{EJa|)Ztu|=!UfFZIZ@u)8kL@deqmQ!_dva_eFT9o~DQM}SYKd*!Iw3)g2dCFjG zea90YX)j)0(X;BTrd8floGRGQTKggB20UQnJ%WF_!YR~9HLxrU`WX3o?GqjZmVH*p z!or$v5E6+^s|9wr*I!3Nt{Hqv5Jng$^ar3DBWewD+M!+4jdERSoY5yjcG6;80W(ywZG}tprNv8XG-3Bli)5m4fAejhn2k=k;>(%r3)~Id zZy5=Y`5@&@Rf4FqV4$Dk7B88lzO02Wr>FOvtGXHtJR!LO%-K7Rq)(qcd4o$1X|#JH z&GU#2bv<3sZq@DyGBvJj>00?m4qlQMs85q0#-~4dv>%$rL*s`4ZxRtaFgrlD9?WQs zDY#{+lBq9fgYwcYg58CgboR6Cs;0tYK$0!FA)sJI4bC=b=bTH)ork!#W;d0yD{!J! zhJdn2#K58Tvj!u3R=JS$Cz-e8Y|lGb?JS8$5~eNH&<4rlaDy;yB`Ym8{@5QfsTqk1 z8fH0F{cV<@6Zg3v$svJs8u6@yE>!_}-PzQ+SJ%`8K zlW$9U-WoMxSWNcV0`l%&jPRX5R^|;ufDy9F!?Ee??R$MWW+mzkD z`P{DdDoQ%qSZ%6EI20hvavI8%F#^wPr4j+&ppLHn+@x_b50BT>kdyAV>>5R;7~8mfH9yJ`GrehwR% z@Yv${A(0dNI;n$=Xw%zP@GCswy256BQF#aKCS4I18T_BX12 z=CB*EC~3U?EgUI@YO>xPy)|FE5ZUgq<%;IKJ-FFtU2@Qo9|&|noArjjqx{6oz+4Up z`0_pX~rZ+{zQ2mtI=R?LnL7|Xc7cb^ycQ|}Gt>~{`-JE9q6qN~wTVXg%#X@AX zm!>k8v`Tp_66Tz)1G<*!Zh+gM^NYZ-!b5>EGpU?0wQdB-cI!Dq1Q;%gvYSCcmPND$m1PKv){K_SRolKYk1+ z5f?Z?XreU>QZPnp?U2{jCN3{8hc;)S28rU};woxu_b=Qy*B`52rA<1}kq7P|2eh|U z?T+)h{UgYw%7r#t$jeKwPqvE4dwI=G<75$7pd!GXZx4~fK0cQ`KbLRxwb5aW5j;i8 zagy*w8$|{#1eP?dr8PElPHK0=%26|BGf0G@Dx9h(?Xej7RwWd46k#6T7+4kA`h-zt z-7(4Hil@(iC(k2t(!JO8MQ%_CrOVm6?DfPICl{m(_<4ryL1ZmZ(kO^l-MJ~#j$?Kl zcOIVg0SmfTG(k2meVPZ!3KF$wf6E^bYk1B=X?0D2qq~g5j;~6(x$91r-KRNTF1Vb@ zb5fk^&f&T6VprD*eT);$zODb~y0*u4bBJa}V>-9~HdXkPp<0n0!yxV;CpS0N>(`^@ zkrxp^bbkK^3JbKfw3&H%!MhyL^MCpo)LV=pwn*e3jonqDVx3-sjxJ$H%)ALft(+^2R27%>L--$3&(Qura++33b6>O2?CU7uiy>uq>8<&JC4_7^a(nta;H2!aGnwJ^Ym0y= zlg@xUxz6hdQf{*vwR16saioKd1kbDB_ay{q!YtRq()NB@smLBy$r^p6a8HNOv_7_% z(g~{l4ZFvln3#Bq-Y;KVKlnB2u`n?)fq!vW>qJgYN#V19^t^wVY{e#KC?*cXd|+50 z9cl_X|4W!A<|4xh?5f3~24N$HpGQImE531$OIbNla5!&$&Nw2MQ^Y~Xu`!e!@6n*R z*kO8QRv7y$QKdp6+MqofUdQ!NRq(bm$7I{&%DqlBlzhm9z1*Q!)FnJxSHLZ8RG7nj zcw=@u!*nmcpz3BW->%^C&%`T>)2cG43C29iy!Ico2;$)0w}m}JRN>i}*gyV;cG|dY z+5W*ldyc6hw(*0^NW%u9;I!lR9i3f`M^BuoHs4CsL@REok?OH>@tGxc& zrPFk8R6+et!CWwy>2u6b=E&S!=fNmSXhlCtNLy3B|6Wh!aYN>oKCZo1cJcbNrtJ7;R`%~SLb&MPV=)wjP%;5H zaT*5ik5_cbE`7L*D@BZEuyc$x%OWu}glAFlmJz)TC;X^p(iy4eQL@9Q_j%^0f%hc7 zvORf`>om(=;eSKxg!!O5x)~42j&*N}`gMEuz4f3K^%ebY63wyjId~46@eD~BzI&S? zOoL2Cx|Kh3B%`x~=deq_`M@RVnw-`h42`9{JqiE;fu+Dc-((WSU2%_Abad_x;%mKB zyij$J{)jI7FUMC>WL4e%KGLid8;x}j?S8qs)o?04_kkoCQ#3Vpa=0`vzYHm(wz*Hi zegvC@WH4&EA-1!#^Z%pitHYvjgRPApNQ1PbNJ~q%v`BY%cXz2sm#`q+-Q6X*bgguE zclY;t?|1)apND;S;+&Z?GfGEFOX?$Z&AJAUtCwtbF2wJRSv1u-eBVuvHl%@vy@+|> zF}v|0S$bF*Z8_^lenC9VcP=rqo>qKBP4y{LZbYlmiJW?>9pT%Eey2II+0f*(%vtQM z&y=P-itbsTcnS+Uc9tO&zC{L2US&)fg@czChIcJFp{$~EMY1?FnBF!tJ{WlmW`e+1Hn6-{)qa8 znQ1a)GST$VFd37xlfqb@P@X+2j%~l8S}9wob={?vb(Y_MuLN9ith+W{YTGmZoHR&_ z8;2h+{{cozXxnzVWqS-Efs8C}FAoP8F>T0^K8HMR-k-h^Y}W%ht;J`>#x?%Hbn_xk zoBz_XbI8DFidyM{1Ts5d64ox}J4<#If3#olaY>;DauYG?2;CIyG(LFL7G9XK_`7+S zlY79GMDSt9MXB-J$FPc8KjatRj~xBtdRxusHOy2BTzVa6}=Fbv07cTg!LsGK?ykiSGp0!xiCb#sCau%n{pPxp_k zrCKx0d`AB#S!C8W5H7$j=3d5f=-5byR<)L7VN>3K!8~EoN6W zrW_kYaFR{K15AMaEsH2B>0x%t&13s{C#`DsD!7@2Lh>R%sZE)^$8qp& zu5<;>n6X!`?G{GIlZ*~oX!Iut8$FkX=@XqI7CxicgO&DUbAJYT^|lJp)7L)td}nNp z9D--9t_HCr_uApKAq?@@pM+Bwf#p|XxT-AnaduNK0USc1P>DF5lEg?a4d)M$&^(KS zp~qjBK~pXz6_r|t3l%r6hDP^!K`j`7&T2s(q2&Q(w!D@oHrrAb8gm`6&bCa6$1G{*FwgH&83p?%z*=6Y_f8EM(l&jg^$-@mG4=ZKufS!T)IilmrHz zgH`pc@(-mwv9Knn?2mJ=9ib1rV0h=e#hxn9}rYsTFV z0VE>07Ox#0&DPTH`SlP)2<6Oc4Q=a>uKsb^xo=L3Ut<5+b&6JN2zoc`6pV1Zn4X>m zGmsn3IXYofZpXtW7P2D*mM=ZUca%xI)wu(Wy#?ate$TH|yp0FaEV4 zgbM(oup@Q*H*WMT{+0bko3!Z|hJDrVN)H6;;PUg~;7;IuC<1y|47$TX5cQ5YLvlO6 zO5;39kw)5a=CRfG#Iun6bRv(yQX@8-mB8W+pA8XLn$#8pm;Q?KTwDHuC)KU0a%a-e zEM|IBeDPL=BUbo=zd7`;Y#27wNQA^hUTS(X5+qwCvUwBWR+p;zxq4F z4bnQpIC-y8#P6WLYeQewl)Y(XU}M5U0|FlLN&Z^EAZp|>vWG|dayc=6k2Om{LHX`J zGlH+}>Fq=2XNd`C(N2V;wx?+dYSXK|ThUP;RTIyKGiEv88wxqU2R6z}%Ks+y^AFb! zPqjJEc~o`ULTAZMjp{Faz21=h#klzNME}ts?V>tm) zbLzl7?vc`qx6DVJI%>5lfYYdY;5rv^FThWg5 zPwG6Fx_bh6l#C4c$D8?-?x@tI{Q!MK`2_04WFM&Kj%aEd1S-e}Wb$(F$1>N}zi1(UAN5?WO`}n7T2wng8 z?E3ooOZ8|7JpP3zV}j>9B`Cw*rNKM!!7{>Bwxn5&YCu9K0w)+B<*amSt(g{N#gyQ7 zS$0J=$#b7~U&P|3_n%gYu+>eyKI}i9XcAWZfcY*h1=g&RZ;H&5od}L?3&G^EiNR5# zgZ?f=sV@*K1_w=m@AN)yTss;rS|)`?WfXoaAhUMp57)lZOE^?$^(+g_v-G{4cvhT| zN2x*guS%d_s5nvmJ)}d+iS`;K7O-V(ibQ*`$W84OFd~3Ho#({McM_wy{hQ+#hIOQl zJ}~ge_yz(M6y=a9oe7QvtsT9{%U9IJSNTyX3@Z8lDOoh$HTO0g8#Y|Gue!x39M313 zL&9Sze}a#s1FZW+i()&1FY0#o9I;5~W75ZyH;=^gH$Mc>EU`&*ikoqR|folGB5-SvPfm()k<`d^-KQpb#oW+2ts5_B%}3PK4Hi74`^60 z>MNxh@IxLk@1Wka*bvb#h{@Zev&~OU4P7W~zr{9iI(^G?r2|9 zPr$j|FGA4J=86Ej&`nK741o_8B^MXkl^(0Np&ugtZ7Jfria(SPF;ZTmaSoOBZAZfx zR|pZ+JRo9Rh|oiQv4ZGMTP85l!V-p1Eq*cAcp;7jUme$r)mR`z3W8zAa0o3x3DSwJ zKu!n(A}!nkV`SUqvw1146)8e)k*G({PRdd4L*fJ65}6kJowyt%?IVoM)v{?Q(|R;(`*O zK(h^>z4S%Z8y7FCJt3h2zeuYHeBQ04JW~Ob2c~|M9x%?z0I(49He}-2`P&yMg731E zeGIcG7Vg@KK?td&=5{J9Jqh-xylM@?VZQ01}bEC)h{6T`VbG)<3?!;?y; zgenycFACjG`DFttp7|a)jsY?w^(PzSa{dS~ef1hDuo-pCA9%fi`Wgvr>~P%A6?{)? z(7<=QYnGJv76H!P<+_-!@)WTS&*nIW87?7-B`#g(jI}Jm8;-?*p}h36+*Hbj5{LER@4#5n)(Yk zKe5<+fWWBzUj?`Xq;4^pn}h6FUF}X?JEGZ}8{TDFb!pW7>T^B}5*;g}uuBGvg$K;> z7xo^zvUqG*U$iD{)QLmaxvB`+SKf#P<-rT(lk-@4myg=N^$((u6~nV}i6eTPPCwyJ zp7V<~|9EO-_75V_wEoRkgt1+1+ikiXKZJ_Q-D3&Kyaep#xf!q`LVk&uyvLzkhqL|= zxtmi$K~tS0o+SR^)ZcCR&hX;Y5nDl0etmAE&y4R_-koizB9M8$XQT>{@meA)s1?jO zgKMD(fI?CQ+S19fd@{=#liExCh|DrjWnN~F{E0)hGw3Yf{$FZQ4bB~@Gh4m{$P2b+ z(Xr~dg6^~Q{1@xwms%V&>9rL?kq{<1X2?zt808ufupyS16dRg{S z-%+Hcl9D@x2A*~pdy`urHYnmPA8)Qs`-wYB?svV2hpOFI)Y8tS&`v$_A55b4bjgE&b zZCuu#=DS2GZaX?t$l`_TcEg>Q9UqT@eM@5%_zcE9W|f9#NLgK3h2}+nHeFmwvXt24 zG|d=}w_8WkCiwqhWnx^0;+;E5XXOtLb@+~9SFQ^|b+?N|^fUdjL%X697bE^+{gK7CNz4n52wM^*X(LoeI%lww!iCR9U?fsvOiV&(nNT|_9&+;E4 zlG*ijtE9l9!iRHzv)k)TH^hR>$mD>OZla@xJG`F(mk)ed_Y1z9c1K>2d;#y!sB=Lo z3?yeyz5Jbo1deDg#)hDMGhI1rb!$N}Aj$C8YM@L>l@RFNwH1H)Kqjb=XP+05Hocq~ zqMKzw&`9lC<+`lp?l15noQHq8<>C#+g`!vlhH&ucyG!xj{BX0m6N?*v-%uj4f}}Z% zWKh7W!?n(x(ikl0R`{9Rbx%8&$-u%$Jh{I0rH71du2^>d!FG>;E-{6hIC*l3Zkr`Q zVnS6ZFuxFui+jH7@PqGxGYamm4;>GryYK}-#LCC>(!0Oi5a7K3w<Jjz*51QP`jp9UQS<^ST=Lx@Kj*{m2KB)WOK#}HJqrVtwWh-{)bF7%oa1szf;{_n^r%B2Vi6|?O+pwHDUB5tqA}gfTWn;s{yk(DV;y2 zD*qVe=Cmv}sjQf#Nb&uSofThNx-Zc`J1;>|;_Y6)7py4nE2s@7Bvxmref)7Lj5Y`r!#@Dpa2p_h$$9_2?gIVIw{OEU>gX8-2=ja{W$H}| zg)AJBeAT8+k*g0vQXnppVZ}_Jt}FS~hC!=iWYV1?iTkcsY@M=e%3sqehe5dKu7%zB zs{!ur-NK@;8bJ1 zcxOYbgEq@150F3p5m-_e{VKne`z1(1c9WcbkYKzkIcd9c(^PfG;@94 z!87&6Pqw%&lQ+S&qA`gvFgkR?E=bTSS5@+_X;e^s+os%cz+$z;^vo`VLh=0l!3!MS zSt3n6zxK02)}%p5`g#$3nlswipq4kltwrc@)C!$dTWUKvsWy<8qSoom4QmhRr-1xu zXFMkI4idDzBPS)kFOcfQ)_0yTKhpHZ;~Z`bac`Es1R?(^W18^PbDm4NA?!0v@T&%X z#;tITFV@DwenHfpe~z!uwo&EAW~OGIe!OB8AKH3ooW8OH<25Xzz~S?9e)JMF5*;<-khj>weG_743d&fJR-f&*@wHxHO4(rlhF#Cp_9I z7$s`=l-pUH-13i{l!ic3QPz&LyB0z4P#+b&K<@wl;z13+mZetTl#l;v$79DARq{_D zH|p2*#hThlqaG2q48~jbOLBQLg*h?D8%q<~`PTr}aK9yy>$qjLa_TjsS`qPPn!nG= zOBYl?nv_VDQnQSVJHObb`|%1k?7Rt=BWCiE2A)ew8!D`<&K4Brs&rf=^3t1(G*CZS zV;%R}%{}W)9kFM+AE~<3XVk2hrv4%GjL&aRStho15XkPrvS=t~u+%@9B4WX)6pxGY z+iKgCUQHglRo7cH5uS1Ae@gfg{)J+QXevqp9o0gT9FbL>OSvZbS65)Xen@R3yd4aZTSva-y-Pw18{D|U5u}o}#k|u7bZpf70mbj}q8xkD zEtSNAU9-{l&Sjx?gAsR=zSFR#?+lCVC;kii-^`i>MO?~F=;n6Cu!X6i0LX8n-$9Yv z6y>ACNjBy7H6P2@lgzF6xEKYF;XQr(DKVW-9#4Pa}1;&8?Se)0p%#}?} z50tIxY^ZET6U2S}8mmlsMVTrqp}B@oR3s;_syA`k)TJR+TpZFrTg^=1`Fr8-yYPh0 z4+VpZzE#tOXu!bhW+(t3+`Ykxfa{9-Ys2KbzUD+hJZ3C?OHYKt$(jYuV}XxT*|12-LG!h zZ<&m)$J6=tn?M-JIrvn4Nq{YXqX`vu^rj*`@+{7-4Q1LPr{zmic!zb*%`>h8LZ+%# z-?E^0U|j|tD)YN=?Zy?;-pCZ%<&J-!oRQ|}rHES1a=OORHYavw>QRYxP z^If|C_YCjiLlzC88T%f|yyJ1><^b=B78N5G+LnoCx4y9vT133)z%UAu5nArT^*8mx zUZQ#fK(Bccd{SV3TOq zoaIlqU*2#&>1#jAE@{kq^hTNqSG8?gX-{OoG;9>wA#clw0*61ljR;BBTU)Mqd^%p! z&=~iaoIZxNjmkLLe&DAfPR)X(2Z7q(XV28Mvm)=W`(ZD~*l=29p%(xG%1rr2$~p%D zZd|c1Bfx#y-;ejcmt>Tau>q^Ob(??gC%}P>VhR;n2hyYhsfZR>CqWO`e{r1Wr~nZw zV>0y`ciq#ul>UIjQ~u;GDt^f- z8_pKynU{hy&nsIzaV@UO*|R^M1(5Dtj7^J@^_h9Uo<;e20Su&wn{ilwf*YbIq)`Iu zTE~8RG2d=rr*VHKj4JPpG(FrNV1jJ7cM5wy9tS;MHJ?;C^4s>+ojb*3A4!rOJaY++ ztl43+P4*)cY~R=pmn8A;p%DQBdBgXx-HQZg_$$)oK*1SZm$`!yvxyT6ik>`h$|s9= zj!!o2={lRODH-r$CK4|)WK$hlbfy3d!xu1Go)~h72A3rnmLfHXn_p6k%V4d)Vf!2M zn`BF)UZju?QAJ}+RgXWj`yeAwh*L&uRS??!nO}M>utQ#MEVvG%ev23PH+x+xYYm}E z%Ys($d!7YNXk^`-Q@S zfGz5G3E*S_x3B{CK^+ZR+RQi$#Xvbc0_bk!C&uv?2?yd;j%tLxL;u&nz}Kte<T|(aFkCmSYHZ;DQB|`RoTXr70q<| z`f`^)kMDZg%L*QQ-+daj_744(=Sm?%ohP@(OXnx)XlPpQBk&Ti)u{u$u7B;Rwpx;i zk>}V_Dmo{Lq0Ksv`e;ZjIlmiFP7&o;5IjHaz&$PB%l()Vp!mo^AK31D?UHri@JO7- z_1ZQnY`OjR1u60DjBi-}pNqHEH_LW>((dlg;ORiiC0SV}cX+y2iBzCxYdyKpWy*E7 zH-pvwHfQkPPayqe--C|tv{9a>583W1@X~713!#=X1&gD@iMTPt#8jQoOk*V9<>-3u zQtG;|!hr{i8rw-!NL+T6z&{Dl{%fBL;D%Dbe3jrk@oOn@?4d;I2oG( zjcz^gZ$Wo=dQLu|nH$gT#C}gF5Echhb)3x^tkCl0*pULQxo1!Y+{GH*j*EH@9h_c* z4Q@JA@w<@^Zs{%q`oyYmTtZ%N><6ulmb5b*C}^DVl*b_l@9_-avTIl>sqTfy2&t2R z-|QJ4nko?mASc#X%Kk02&kU}(#~aB`?fsxTML{L)sd)|Gy7VV*ds$Y@hxT6TD#Icp zt1?@kko3SKtQgmKA3P5Yl0$aBLgT*3$1u5yr!VaDVV1O33!mTry=|K}{uB*?bcN#3 zHQXOHheSmk?@D03j-{U@HP&XtyIyo7EmkdE>kh%Xd3;i`o!&#X&ngShp+uEVY7Uk> zAC<79h=ADB4N#ZdM?V45GrBIWBqp4ZK2 zXlsy)v(R)Vn3ir1^kQm^-|fnmA_Zs@|GyzBIv1B*?5VUDb3vkT{x9>4hyR#H<8r-T z(v@djzlalUSrz;xo{{tNwYccjKcft^0l0SS0_Vt_Y*aL_tB)fgh= zj{0Inaa()q{(33W2Dn@QVmCFlKxR(cPtYWc`QXXXXI`L$9Z&$SH+35JGt2~VZoK|O zc;S$>hmXZN;;XK# z{^s{|p1uH1^0>Dy!H!Sh7#L)WtSlSs`wdGLcZPu)3Pj=UX~B-(7Ib;JDZxEwo~_8F z(R#I|pdO;BVYv@&1tS{J=Afm`cq_mDt%u>7J6_KB^#rBT{Ry3|@e6~ftak4yKZ>R4 zf`I(q7(HywzQdM?`n~{8_@#1r&@F`VXuGdlZPxX~hr`=|CU(+%HM01K@}uw_417Qz z%NEhh@J_7ua#5m)Wg959k#s%Za~p6e{6=sL zb9M8cZhEwdoyPsdZbfBKcck*olTX+8c0R~svzAkSvW(%hZD2fG!otGBV7AJ{QBI%_ zAhcfvK*h7kJ@$&9)Jp3rhv)rBTZJj%2vxbp zB=&H{Dam>)oQ%vO=6hJ`Dw%EHGS2cm_CCPT6YTHLR2a+07^9O4dGA5z5Bk>XE=ZS@GRyIQ?*p5=U?C`sSN*hbvvr8fW6kW-so@@@!&oil_+4%!vUd( z1GSdS_bk5ngq-bS8n&zf$tkhK_Gha>S~oWkIgR$!*Sg-DDo>|#`#+WAe%`oeeK5I^ z_xo5VFtQhw)t7TF+L1ZDDPPVy z_Nsbkrg^0Lx29<19ckY*NJ?Cib?uBr=hXKsr3x%RO29sgWX~vk8H4ry9J0Vi>1E}a zTGsOoa5--Eo2mq|q!|VcAKWgq-R!?lG{N#b{RzNA!2|&`ywaP9YplH?L{?Mb% zdP$InlKerA5!Yf8c10pwCitN-?@&-fR_KvR9`+^`WetIDNU(QSs;;r1Njsv z9@@CClZS>x$JAcu?8f4DDC5AFi?L3-0II?>`Yy_^ODz-1Y$Fdzx!ytKrCaY1^K> z4Sw958E2~So4r>|YF2ccIC1=u*==oUTU(|emVP)Zx5pS`Lv3GPUSDtE*ZtA465m#C zL7>|nG%aw4+#KebDI}o>D@%UK8JUOQVpr*5AQl5CO z<2~{_d*1)k0{oc2J)CSe=_r7UVFPszGI1CipDnuJ(=utb(SD@up_bP6O8fDxfEXpE z4_3-&7@O~7-|@}vV{t)QAtgSF>(``L1!VTB@a|rhs#gbdFu7>3;CROlRK3DyP>xzJ zbV(W>UV@V6v9d-{=IU9KyT|t6!^$P;$w-Hr`DLAN&)Xh90)9gRx~-*e{pPQ7`Sld0 zr~c?oJ*Vw8#gs2hZ=b(Kf%hcxAKfO$*tvD+{zDc569T#HgI8vhhN9ssj`{7!Pd);I zaVjc*C%F*@LVdTm@ydxi>*+^LbFaz{L!l&x_YbU{O-#ZAMT=| zp4=Z#6H9qrtL`@ad^i2KM`PnvPR7bfvI;AAYv#e1$8WKwA`ElHJq@yZ_@2)6%xy7l zvEy>2cqH=7UW7K7%GkD$S$#NyeBCdjsiyBmYdGu4wpqla{*h?)WSSNJ*eJY7amEZbb77Jj;&(bxdFjYROVt z(%$bq#^dA*sywvhfx~keeF}w=bXeA= zO|r1bh$zI8JYG9{dOnml+ZBLz_}{6sc?rKL*e1{VBUn?E8n4zqq_f;yjGq0E{4fS1 zhOH*;PBYUQVOm|48-Sou(V0B3?UuBz^X z;9qvN>SBFfppUWqs09v5?54}TwIk~9Sm;t#Re{7N^u>l?C4BP0gyqYcUKCi@9WP8~ zpPQMQV!kC4Gw~0}N640@2dS3eh{$ z6Og(Kc;dSMh`UCSq1c5`u+nrMCY|{gz`0Ms%^ti;uP(vYLf|j8V?J>g>jK{ zFCsjcw4?Og)?_4@TU31muM~uZo9W``wIH|W3h3+i$Ia{Q>W%KIOk$KT(1@6}>fSsD zwt+Ss1}Fz)2Xv~z!i=c z()3kyFo7KeIB~ZRPqkjOMf^e;45B`5QGrIj%IQCjkxS8rsj$Y!6}<10IgL>39G~{`Qn(^H){I2Wh8SzB>&-wG@U2SDqnA~XPvRv zIyT5&Z*wJD&ix@yufj_QQAR939hsGi7E{IlVeU7~*6Smy>5x7wPv#T8<*$FZLs3l) zIuJ((K$%qi73;1`xJ(FDdC_i-By5zzth@56)ejOA z(6+CV0Rpew_1{&Fb6-ELe`49mbqWLl0_V`5nBSd`ku4qaHS;-rzyT&&-#Dq=+iN~h7`u}WpGj6MyszW z27m3R;5I^0IJMXrRt-0$qq5>Ml}eCS0oaaAR7E94m->0`nh6Luq%1@%;>kKq{Sz&^ z@*LI=2org%KdP?J)~>%hc;C9jG*U8~_dEI2(I zT4g=9yL*=`Y0zWL%Ppy=NNLQLg&x(7iz8vI{SiD5ezsv{F9k;2FIjCxD%0xH<-2BJ zFgJJDyrH+yBfpBLF;DHbvSn_-o29658pbBOk-pL!$Em2G>(G1O z6QHFozz`ILOcbl43e?%Ow6uKB59jncO&9;3Cn2^0_0xK9#Cinh(!YU-mD2j9tjfyM z*v&`N>co-~dSAeA#wX-Q>(U=;w6+yg;&kTS6pjn1DcN)DI|cK(`DI}Kweak%vR^Np~Q=54rYeL9wP%Hl3_vcvK_B}I$(Ocm+)kKV(zns2FWISfHJ$v znz_}VeYbV=8-)K}|2O%bK=0|`u39-kw>)F#GjBBO*QMeklJTuuraA7C}|K!;xOJzD(^1?lA5(ugZuD@5N01BE9zo6Xp~w z`9;F)lM(Ygb9#wl+)n^&Qtm&kv)*8nk%l&73}bh9 zu4=QLchzwz;LT0ouh}zG@Uh19im-@ z6)CLYgsUvglU+@=F=nG+!#7wNQ0G}Lm16~V>}~};Ss5L~$lnBeT7(65WtnAdDez{* zGBz>|a;G}>ADlpzxPZm`!N;`*Nk zKY_C%T=9*MwgUX8wEtviXGLdCE#=d@?|^7*-&7k~bvnrWF7RqVUIup4;pX>8Q18yH z{<`&Q&dTF*QVkfY0SM;SGZo(#z)UqA9pZnlz>xSS&kJ+L)(b_(rkxKHFxdSHR`7RW zOrX~q-0a+SUIW7r@cs$Irk$Og!I6=@=GNt|>a~_Q*UNr>^-(sp8XlLWYKa0?o_0Y# zvhpf%JZi*NXeFya9R&lut=#MIMME>qUbZK*{%2-B*PCC@XJEOplhFH>uI=*`WOpF) z;?g3dE$0%~xO6B=F0!wggl$3*;oy2@$v@ri6$F4nXG> zO~M&olk+x*DtsmF`4NuP`r)QTaP+3qXr}SDt9nTo?c7j4GKuy(s zzPJ25&^M$k>`OWvF{!LVl--v1v+mCFVfgZ9f$^0uQ^z-S2K;XjzxpPZjxw4IPJL!A z<^=i#o2x5POG5$$$u7ykq%ZEqd^`}u*75Lu%)oJTVTGJ{VEQP|I5If@6st>f*SIca zO^nwWpdn&vJhBoA=k^OHKA^{ZH~-81axR|sKpX#kQ|t20={lIjhm*ZZap7@j)CSY} z$|^mEm0*8ENO-ttdHmi|hwSe?bVo2$()?KLl>~-%E12%z4J!g>Ju#QKi+f<5 zZzKd(a*3Hzt2F9$^UW0JC~OnGkXc#H4A~{){k*~6AZYuIDByk4Cu^yhS=lXs8+)Ixu*1jh-Na!k-&4r5(f$>&ca_b(MLjw)@_KzS ziGJ_JJL2*lO0!Rn3k#8g_ujTdk&c=K#SWa)>o%@qJ2d&@3PM`duhXmF4!iAHZpntI z$oT7j(`Wu%F&t3e|1xgO-kEgsGvl}ZaN3W!TF!ixl8K_-R7T;ET?Fr>oY$DM))iR> zYD_`mx1Y#@H8`!N{;O1RUbS_2c^t2v`U#ZhfTmfVQ8Jgh?=LB8-GKoMy8d9|q(e`D zquf`t$X9Fssz|#7@Vr*>jHVxvueY&n}T7IeXx{e#|c>sZFr%4(jB(+dJhOnH|M_v zA!>=!g*Mv2?wF3f6B(fO_OO)Xz>UYb@6o<==sp*T))sd9X{)^E?qU zgXMvQpiZ9Vi&U6@(wrfI4jPEp=Jq@VMYI`}xoAPfksR%BE>ZCK>GaN?Ur?of$G5_+ zTy>xj%}*&IkufhPiIAltqeAs^R|b1fp5~>VSMsl)F~JlaWWmVDuwi{ltKk|dcu;#D zR(_S=&Ib*QAdOCr2Lt8gRFIIrf3dfQ6Nl^V8WSb4?((QxrsqSm%ff&65-d;`D-yH! z)UZvhSQe43Sl&*2RM{~_ei4SFB+7Pmqnx!q5&T8E3!fx}fg_}^LD_H}HclAW>yil^ znL;)S;?lV9ZgfnD&4bj85_b1%?|tZ7VDRwmA` zS;J=^j#K8{H$SgkyR2J9zdM0@G*jU(dLf>g+3NXMztz@!yuNWB7V;aS+ zk!#suT-kr-2h5n9j9t{niog8GH?H>0^cs--HoBp52C;%}T>VIM9FT1?@4dP1V$7fK zf8Fl!Z92^dmEHZ$N*L1L?Q^{djq<(7CR2J(B`b%S|LWV+lq!k$iO|zYkl>1|TWQ|I z2dk1e$$DwSeh;YzixC+h@NUneY1e&DZ@ovU+7LMQdOkdYILTtUn!0iPc<~m2KIHR{ z7eWK!-)KIg#0>sNtAx2*W!ywRUq7(9-&B8q_p$vO?QUqSwEPF!Z`cq~O??b}j9}56 z9>$6pw$q`0?sT;4o_Anpgubbn>-DX&&EZJOuE29zDtG?R)AH4msP%MnCd%ZG z*|~!d`^^sd_vCGUYQJ22`ma(y#@QRI|8qs18h6sqUzTDu_`Iza;A@&@vnCFeVQIQki*I=8oYn?Owb3YCW_Y!XfFCv8d$a@UKE%@E!@_f z8-hKuDSTL{43)wu^AZW>L*`d|EeJ13T)6qI(nxerf18YxqL|le{`cTZga-9Qm(POy_E+P&c0-)vkRwRQxTJ{k0t?OnSu}_?q6w-TD4pwy=ys{!kVjtsGs8 zCXk6+*4jJpqFYw`2_tEd`)eT&zd1+qLI&WN=YRL=-A%9FJzc5!4W{MtUtF%^CH_^8 z*qvc>({tl&KmEP@eg{qWQ+aKm#Yu5j`&vgnY0kKf{v~~=R~Y@HcZh4Q&q4`t{Gb>W zWL5A9`rIcWaP}56q?;#F+genS3x}H9{p3A5{{_YyG@_M$>U1zmRPA+bTX!(i>3i>c zg>!A7N%h+2Tb`x&P7(SkQ`rL^p3mvuDtfedwDVf(w%(}grv%mKjh?C>NAF47?z$Fy z78fU=0Mn0%wCYmmC1fiPD%i%;aw2UYRb$g>d@aR{&^=G_j7nqRw^U;LQ1;%yElI6Qyx9TajZ0TjnZZC|Z}W zJmt~y3Z&5aFjnj?QW-2s+fG8sH3YHKK&+n-$bVghVQX8U9$@|7p>Ogr|26;9)3o2{ z>clF9WLi0bFwbt~pMl!&+G+*8Eo(E|PTwq!@{7~V50t6REF^I7OIhxFfRDI^ALYL$ zLPkb5{`9V_^-6Q;s;=JQuy(rax}pc3GC;{evsE`rIP=@0Ej3A$QT1#B-RNn);FHqU zfYVN1r0q__p{?)z-SU>s{Bl53Xqdh>O`gfb4#!Op-qZJEzI$Tuchr~NPP5wD><&2B zOU_Jca=H=ozN?;bpuZt*mIU8rkls-dWs9_O!ayNFJjZHa5%*r5hH1nI+nB~vK6$In#PlcmIfVx0}e?; zq{=xIk^Fg^2*sjD#=8vY*+lV1^_#*i(_Pgtls%ja15zKZKWu^eEl*y4x_Ix4Lig+q zoEjaP9=Uvkh@!dLHvX#&vB~MJUp>1~VB_Uz#!6l!gFS;zFMd;@Q-gbg9sfCl@7%seZ^mYzQ&&ba8SQ1VNF5s~6(EIE#edCI_e%)mttO#T648+z$)d*pW?_XO# z*DB>M5S1FI(+w+?;1ygF>`cufXWMVZ?X!zf?wq_m6$`mrr!az0yhg-q<2u!ksoXFX z{@y?_`g0~@@A6gd+N)Z{-?pWq`APYT+8Mh2<2K4;^QdE&O1550u;*4^?N$7aZi?{@ zil-ZV4nGV%3d#3LWZ1H$11#Xj?KzruYTrth^Mj-xKF>&`2IVA zkp}Oi#qt}jx4f7_X%Bo_N2Ax?wmtO4d+hZov3W+Ulc?duH3*LAOfU4jDZ6_CiSBnH z08gBl-L0tkOMqlj4$kPRf7S`yD2hTSMxQkK=Qe`1a86tKwM&@ZvCk`dBTnU>Z z)aK#uU0W18XON4YcTuvRNYYI$z2CfaL%9CBtPnNNw5veIXqX*q2@xvqvL7>R=&WpkP=4F#18W)UO(jmBP&aFj zH@?%odd^jx2M*6h*XJA2)Rpwe&A>5g9p)qFZ~n@pH_=22SxbZGvkSJ}dss()?t3lA z|JiKJz#N5z0m5*~@bFaHF4x)aa4bzsPqg7R>JxP=`1}Y#%6s7(pU&&L*a0nj#-CT3 zpEdxaRSv6c$v7V;O}nucgUF*mLe<%)m*TJ9?g+gttHGd^8F^IxiOXBq}b z*6v&)RD2wo1+=kLILQ>a?;t%_KO4dm^CYV^vVNuK>W)kl$C;}kDSr)P`^eoijO1DD zun_xflzM&PSB~z+Cib2~+}j%7jV6#4zk@jZt)%qYWsrgjZ5|RCqfV}B2x;4m2#NdM z%c|M~$*6gD-sXI_^K#oewHB9$QZ9}i)Ptjn!Rxd~5V&)yo$BnOkDSuWf3}w& zJ%rQ7Jkb@jyTNLqr3&zO^=Y@b%RX1lJ9#62@V~)LOY3$~yZOZ=2-Yo$@X6-ttmZR4 z$CeA8y5JTe<5Oe50$cIbjLTM>j-QBlVZ0`qZ5V4=W=T|C22q&;`UU9YGO4+_kMxYB z#+mjB!qs0Ib@HaIV7s+D==Uf?s~Xo{MS=85S%zvhGwi&s&5&<{a&z(Tu}F+QGzNrR zsD5apk!?nf>hho8>{@MTz{9~7F5%Z9o!GD4xt`ncCwX-B*S>n+n5$NZhqoJtjH2Zd z*hLa3(ET?^KT?w^byO@8jwUH^&)LAO$-(2*jE_*tDI0Li{z9E@B_(K%a_Y>XEVfE( z!JIPi&JYyX%9mY)W%o0}2lL}7^Xqwa>XskkJ_<{%kBi<{sp*t!5&H9=ZDO27wk5p$ zy06op1$%w`R*UcXl(m(4bC9p3b z!Vd4cCT}1+DHDnflw#Jp##tX>1e{^sTK=~DUt=3;l~BQcg|<9?VNRbyMLd9U-Sg!? zr5qzjclP>(moh@-7X4tB>Y&mPX{JIytQ6Nm?JPFzoXtwCDdLlOvkS1a^*X_HY9$qA zKMXf6S(@4qbwjKpbEF`_V5TH0e93iWQF+GB9>o9*VNU0?G@m59$2%>)vpw=`{lAF4 z!bS@&!#WEd!>Qem|4`qlv(omdf7Cyq;96r|R7k*j`tE5bQZVMXm!S&S`q@JJ+a%g* z<3OKMAT>K(bkN-?9cHV?dr7LeP*q!{LnfHlUO-4Jwae!5aY$OU8R8a!c==t*V zZhN)54iS#rFd0cu&~npJeS^>T;r^#IKlfGAn|r-y{z=)(9B8X7liNXyzudvofAcZ( z8;1Y>74_d@<^1fsYw2uzexB`jd0+~7e)ROQmsWr zhlfK@%*5%Y-(VUWCI^dsnmODT^apqDRQ*jfVh6&ML&N?`NnH@&X!cMR#hDPq5w)tK zW-sz-O7mOXpL=|g5jlTz+CA}~k&&p9QbQMFN(aJ{{SSLzwCK**6I^b3A&g7=!glD(>aD^<;X3a2|{&+B|Uc#95@gLF|-CbWwKHjV& zu9u|wT0%gZ5~>2QsvNOLDAV)VAa)WQ3hXnd3xK8nys?76me?gCp8*gayP5TL-8<^G z$9=o=uSao^qsUohLf#49o5lKPM$X{{3c7tnvZ(+Q4g6k=uCZ|$;x1+y>}_>zPte{Y zLmGY+U>Yr(FI22WO8MpTiCd>6-BPnPufRMBRi<{;p+V9!D_nxAubZRN!w~PS9}x&x z(A}P6#5HHnjldX;wJHM*To4fdUwdEK7IpW9Yas#>N=gdSf=D+=_mD$NcS^%hD%~R8 zk^_T)w8Vgt(lH>?(%s!>F^Bb`XJW$vAam`|eS;o!$F!>>fG`$_0k|>HOY>yj>h(!IDR)kJ_1BARzeViI_YPu3!(hHWb%X?_^C&3@$OO z$KYeOJ&RDpJCObr*eNH~*+t8%0K1JR;v60qX*w@fpj&A=yS_vd7`?YNe{aho$S*g1 ze4~Y_Uu;e&qL_zF_w`5KMEcJYl0ubeT8zQ1R2^jD_>p<<>aLsv6dpN=2|NFNvh9EA zXQ1yB`@wJh8s6;Dv*R?`Kl!LWz?LW4qO2>4>WqVprSW}E*W>J) zqE@U}3C%~@4?n9~TMLNOd?`FsWWWS{qt3w zZr!Ell;6~=EPZ{DLm(x246D+Eo+Ei+WfE{5b0zt zh4Rhb|Id`2W1| z+w_ksTVemYKs@6z38rMum-wuAC_5c3jusoVZ9W$8*{R#vi}MxzS;4ZIN&$s>buN4C z)_M3xzZd+57+|=aTJZJ545+~?i~jJ)yuwK|XV+%J+ni}kn;pLrEIu}=(KlR1XS;si z?7hCjSli7Yyj{`o-F$=9$K-_JyZinG)C)r0w$xd{LLkL|equD3tJbAfLJVMRM1VW- zAf#&PTqsHG||53k!UCu+tsa~dFv)f zn1%wUtB4dp@hR@k1upHqFsK&}HH0=uy__C6w`nWBv^=?Qm?ca-rxt+0bhS$znA(3fQ@%uDE1>k|k&`v>c~OHy z*c7egM^q)Fn7w^F=H>5__3cwkyyGeDJtWa!VW<5t3J}$wf zpzs)BerSN+I#}Mz3q}Ky_p8c}lKoi1_#4^g)S)KHkrtNEi$7o|rV7>Q3r36&ay1ZW z1mUgpaw%nI_$Q)g`F%2MJjXhRKf+Ozr2p>Qxpg_i+8i=D=huqGlTy&-f;F(0(Agwj zIo4J%F{lyc`Wo~Ey_$U|wH%H$tOwQ41VHs$v0P`7&3`ZHcJqKb4x)ogRgMN1X^kFZ z-UEU)vt-AfPJ2>Khdpe2Q1j?uNI1U?rjcl>R(E`8hjJz%*3{ zVdOk^$0KPJUq&WWkcYZ0zl%%hHhexiuAE&4@SWj~jBO}uNW*P93UIXgu)MO8wNl)C z&Ya-BWHrP!AGPZ^d*Ep9UZm{;pvl&zuBq4m;-|l9QGK98w3r$25qbrV#(X3> z8@cxi5k;T_Eg+O3j?brQTDcgjeoCOW#qR`TS!8?sweWK zP^oh68-J)bjoCeG`ll$xg4)kvO1DT=@8db`H|5Yg^^6$ElysswMUoo#`CHv6j)((q zEj5JB!%+_D<_P1*<&RC{)t0dHGzih!=YDJ-&%L{NchUMM;E7O|)5kCj4s|WO$UIeh zcMbayTfI@c&uWC?cXAW9{SSv@PCL|RpKA?dxI(rn>c0D(!$e$qEdQj;grSblP4Ww@ zhc}K$9zRU(uo8r-mrriR*VA3k6Z`*k_VsctEtz=aC4SjI=^rxbF%zxiyHKeU#7BI) zx!n~k2D-4YTXU!{9AZqmS^#02Y(1)okhs7tf8G4PbVD*%m7bpAbk)&6{=|RvDsPx+ zKT1f{XD{S(THRkJTZhm329g$+X5la&*C5(e9XHlZph^A8v|c0+pqOoZVU0Z3g?*wk zx=#Np4c1SzvTHVAVv4MhfRTzbcX$W6l< zpewbVkv{e&*mogt39*Lm9~MicCXgpMCqgP)zUZ{BpYTJU9bFO^InRgE-{x~sX<@Xy zbB_U>wVu9^yEjMc-k=a(B(C3)XxnqSh40^^e0;SSKep@M*Ng$4Ko!H1J})2OAT!PNx}-=kabfK zGNhTNolSdOzS@~OhqM@^B(k;T_g1hd0^cqeWPz+nxh4std$*12_05Pe7Ek(bLwuL z6S&x6BH_uJKj8qlniH#6I8pMML3KzC%t|gSg~w#03Gs+%Ym!|HH3Wp1CkZ`?;r%3W z+Y`CJ(fOf~j&zyhihKgW&Q&o8C6E=@e+X-(bXnrRUQxbg0KUYVlfd6vh@8*64BrpJ z1(`$)7C)4UyeZKYTx!xtlV49I5EQM#H*D+N5_DKW)%uXeNa%)zVo89;%O77W#W{+e z*l%AHUw9tgcps+Ml;_($5FvPTKq0#2CnVJG?SV|XMgPWOT$NCT{z6#<%1Wc~w=-A0 z8}PNxhVQvxT`+1?F0S`*p;Pp_G&TyV!$wLc9tm7M5T?Ria|d$rdyseV(wF z2Fh<fRST>h$?{@RtD_gM!zieZY;{<*hxY(GJWOST8?lL3Iw(6R-K93xY z$YBN<)tRQVt;-FMD_e_sPCmQnYO-&5CVkq8)%%@oRf-_Ioh~i^w##u)cb~w9-?{Hz zwMB|_v0}qm0q5!$y$+odU&LYI$Bzg`M$mLFY;m8HviDOMgd<~IjJ^q@xhH09>BV2{ zg@Xq}Twt&TfTy*J$qYqh!}h~N=$)54?QQ~Fq)2xP#={gi@-i1XAHZY68Jf(4Fxk%9{L|y+H-sz1y0GF7mh4-m1j?dbUixAp)bbAoGW8 z*pGZ(e+zy=G;j8qkC3>{==I+hRA-Ms7JtyoF|D4r{YcAj0LeSsv)$J)X5=a!I_iw5 zCFrRr9K#wRl_K3D?emM!H;&Fd-n-Ozwx8Ob zk*==kN+}elzQYp|k3jvz@X9Y_X;W-pp==mIw3>ibh45M*C7*WBFmAwT{b^k*Iu-%J zQV}xHFDLlW##i1;WKv|kdHo#XPvZDGSd^r-=4sBSJOmzb3~-H4MEyi@g>Ue%W_66- ztsa&=gL8<8^xwx7`k}--T_yd3VBYL$(G%i8>(tH3+8u0rZ`;3`*9VT*mN_%4%rWwh z_AH_>^N9-1V6du5dyeLBG3`^-i7yohCh5A5g!SDc3DvzKsv8!< zQYicUlJ%1#i~1J#>j5W@)|BB~9;p|951+h44|^~#`4NNTngGK;y=#$(BaDeAdt{wF z5Aa~A`y&uGo=ED(nFVibgNy!If%6@Qvi9M5zwR@g)OMCD-7pxxLZv~@*jJ9t8s#)K z;cdkhE_OjySOyVtm}6Akr)2(UE;|1aErV>NJze@#;51d+64nB?^d9HmrwfY1 z(`6h-zCETm@KHx>5ltV9)w`f~9dHhEY1E>JOvX$Sw~$4e#L(?^aJF?=fK|4y#C*&l zS1Ljv>X&EnsUHB_lbz*z^$|acDAw214UKw+5o92+#G%m7U9>$tJuAqq(wFWfKSKk* zUp6L^`))a+xU6bzG;F+5Gf1Nh;?!6>FIz+sBU~0Y_?eLc!EO!=43_dSHUN}_*D;

`41-ov$7bKxQXc4z}8!*(Ngw3Mivo|oT(!Pcnr>U{3N$v^-bVgRH zg122mWeLE8lBzEug~74UcdG`Rs=nKhB$v=5HRBA}z18Fi-(Wm&lKC8{mKIu25N5%X z>*ezuI8@h+A5<<^tNf|k*25%U(5lPnqU)_xXY?%5;C*V(ZVS3Cc8L`tx__7G&8o~D zmW(yIVN27t1P0cScKPahad3jY6YqgIw(b!0rzMH>56vjnUNYne1?0T>E&VUI21yz29sz3V#8~P zq*3xf{aT8?Ki_m01eqpFukE@OE1tBK#_1^D*4U$7xAvuq`A&5#v>3pr}sS7@gLyhn-!EkCn0NH#`?Q^x`&qI z*+{LSq*u~PJpY*>O3G{YVz$$?+2`>BS92QNc_qWcxrep(>)fwEz7!LkmG2)z@Ep~u zb(c>3Z%)pZd7Hf;hFS9P(@M6RXO7KlTh7E<`oAG8pLG+1j8|D$HeaNPiq{Cqltbwa z`-ZJFt*VNv(CzDCH(xJAMjd~LWgSfD=UrlSwBjq~StNJcF)U(~5I|ZVT&bqxoFK@H zZ`ay{`Bg{d_)< zWU7!`(nPUkQuEYAjht$dLvY{gqaHa$Y8JPL%p6c3H&@)GH~C#0Z(aUH7d5i5u!xeO zZ`%XG;j6-*Mn9%KX8Q*Gjw?Col^F`?Pg}BlK6s1x4WN-{;E{nm=3zan&C$IQhX9K* zxoVyH-OY%_a2FOR5u*oUrHT&-{HL%36ij9BRDSHuT_K}Hx;a^Y_s`Lf%IsM;? z@^cN?Dqh#dIA1>kWq-eFNn~m+>g$jrVC_%4C=_J|`>} zt3=al_b2+JwWpN5d`$C=uuj z%M|H+(d|KP@>m_E9v(lbc;)aLhRss7(ULm~KAeug4h%?1c;}_jBmK zWi3ha26L@TP4qEe0oP}e`u6=c#h80!R>yjhw@_?mE(XM-IOsgJxJjacom4-`6c$3; z_890x3wYy5XM<5o{H0*LauOm-XAXLW!E6Y)@}+ zi96K+71ZWka!v`M@=IpO^!#YY)T5A*^a%2BFVcIL-}f>m<{J0%)eQ_+J(Rb-f(3>o zijwx?3Tm1y7-r#U-sQmRDN`$4>Z%Pt?5kw!eqd=(XCU^|-sPz)`kwbk$$L)oO?>#- z>>RO91ssC1Z4BS6kD-Dh0C>bhd!+K~dqFXrfCzW6gkTkl$+aPsdi1o_!FEJpluNnc zir>()m{gbXBQLu&pRkgRiQorN*^Qxs^SoOsRuHGLeTx|$?JA=2qxS_0@Rg!&Wp1sOV))qO^x@?CPfC0)W^zB z1_SwW@h@UXgCP!Qco9A5+RT0Gc0^sHNm`h2!ig)M4C9lp4E-P%;fBEZJi~}TB-b&o zt{AgJGarHH8ifg;dqbYo(;zPcx?%x6i_YJ;Pa5^K1QsS%E7c5TX!c3oycAh)mx3(` zX_k3UYz?sGueWXcmb@cvB~zLYrNf}54~^>kBcpesz;)%$Qe8SiUGLe;G8zvEL`xy%t9qOWJEpM*<OzTgWqp zIgq+x(%i~$X#T8&(J{;@Lm(ffZ|pW`$+yb+HPOoHR3qRgQS^LN%oB)m?6@o1%)5JO zV=+BsZN#B~&H%{9e_j(v%^A%-R~V(!kdjg*=x8zBRNRTTB`?ngA*>zA7{s9G1v=$V z{gjysZ5`U#U!0)O2j)8Ubd_VMePdj-Ofj5LuHjN{iiN8TsM-@)*VtCUlY7tz=}Am#&mQ&gM5zf9JSoLl7CVxs*66~cF@V0>9j5YV^>Bd!<%+=EY5Jk zQDJ>#B!rLv)u~w8QcqGtpUAdTp82&tQ00^>40i)nh=Bpon4q8n8;~aZy{HM?Y8b9k z=)%7>a)v$YXk8#@A(w<|gqP5uW1^Gbf<3C!#s|+LU8&fB`ZDc^veHV?^GV5{5=(p; zL7+=F5%8+O8W`k6xAUiKDSqOFKZ^Kw1(B!vckeYlQZ1|q~wD*4)$xU>K1k3!X3ald?rqbx!=YasX=6&V)QPt-I-%J}x^t(tS=g+b>;gYa}p>laOXyY^Q#N#hy z=R>wR8qeDkPZQlJ6Yv<~Y~ugCwnIdD*!vUTtmNMW6j-gUZt6@(l&HU0jww0WZF|T| zerQ!~%QeYeAAl1D$!Om!?q%Cz(9)q9>qU`Pu`3;XT~p=r{pcD`S-s%mxmS1pRG8Z2 z10R#&$F4v0^l_Y#@Y;FT@3g}I;m{0MQcuK7ZY2(G>`2T+E!}0te4EtdU=jJESB>J_ zqB6DVaIKfaHkzw7HjlkCRE>}H)ezG-0S+NzOv+o;%78&GaGqN~b;}Ux!f5GI%7d5w zpa?ZOIdy{hcwVWJLrzltMBCcSrX3G9rz(>Z!vK|w5wq3~i55b?kro;S=9ZaAq{#K+ zopdtsL==XH8qEu9D*6uO*LV*8$wpjJFVlYzD$GZi%SJlBAg2H`^ve2pCG=fErsEGwh05DEVq#Dz zaHSoed4sYN=YCtq3s6eP{-Z%w>(G#JTc5W=1Y0Ky314slcz#lb0%R?D+nB1|J;6fhHR{khN&?;^tG zwRq>lb#sv9MMC0?YlFB+emonfxZBgR?!M|Fc!;Hg2sw`KM{4z_5JIKg>YduuPfec9 z<4?*)+qV-&-WI960z7@FH*sov2kRqm<+Khe4b>nZ;F03(;_@vwmILU_7@qTP=``We zYBr|O&4!VYfD|p!M!`(lKmkv{cYw8PM zFZlI#R0)HU1tpn3nSkT2Q_t5-}1ZD-SsfakfCcU zx?Lb2s@%GUq4r<|SQo+s8+dnSyKpb9g&BKB#HUhR>)K+VtO8d&eGUOjmrs_7PGZYg z%Jm0^R%-{bufDDgRhH;GYH|5Ms0@-~-t#K{A*05ZWhbIE6+mW$^=eMNqGEp8rRwGy zqQ32L8;b#m%9sT8=3}a>KNT#cJW)dvca~QN=7;?-#{)Dffcq!!itw5!A)VI5M$QU5 z#3E4iP*$wU>AYD`dO(!7(^+5d(Ti_}(gd^_-zGBSQ^C$gy zu4s?ES|#scTsFNbpSqT*${(G&to7-Y8XqLuMuXDCnDt0Rm5o&JH2s!M?9%4l z@Rvx9kRxW2bEXr2HRGc{@irwb-!!vb%tZN($`CpANIoAip%0I)WidTif?j^6O(tOg z91vQbrux}C<@A|`o|MyrLz=Kd2PHeYC$e7;3Iq9six@+(*C_O6eu6^i`*Jm-G}Zy< zJXgtrjWW*GLF;Nnm7v=Mk|<=qwf4>(3K2O;F%6)n?I34of%}QI50o2=j!8)hM0Dp4 zlnyDYUy@Qbq`hYVH`i%NL*sU(Q^FlgSVY=KPG2={gN==ZF%+fJe*UMYf#2UZ&OA48 z#N*)nVT;s|@zr4MG2`2e8=#;TY>t6B#X2y_l&NNqGY9+p^N1gY}x&y~HuZYv>H=!T+&=Yg#EdcIiz6Df`2+ zKRm3Utql-YsnQA6tMo^MNhvH!!B3z)IQ}v1_|w@Iz-+b(4>o?*_-*$i0fgToE+m;d>@s6pinA`ZVCKD@v5L!zwa=y`0h8BIQIrfewA#4s`230p;F?m zS4jElZ*PjLB8O~#SX&h8F!-72YDW?^a6I${dEF9;3+-i@U0rr=ybj`U{P3u`aC#@H zrw>d_+c@=h(M+79obE2I^E)3+4Y^xCaSXKYvL6;uva`DNC4RH&IT|~BBoDnS zz3WQc$W#qokso=x77Ckx!;6Hg~EB6fbk}pQv|!>qTwv zC_1|FNVVI0EI4`Ydfj^Gp=sA*WTDDQOoJP;4wodYxvoF1XFc>IJ{&r{K@Hg7e|*1E z2R``~^)@yC7b;f-fw-;I+PQQ2<5{xEJr@x(F(KRQCE7F)b%&$FJ7XsC-&Br|9j7@z z^Rn1}R^Pg9rOHT9kc$EY)ZgCPV0euNeOqv~aCL^{^PkT4&!kj;@$R!|66e1=f9Ter zRMCUZ6i>u7;zE!rg_$6QIJ#G@86;g+ZnLJ^JT1|kMN0vQf7}ur9MWx^x?h=yAWv{; zzja~!i$??Tl7yj9Rf<>9NP$PvYMb@zzjLX0N$G47%yp}20^9>Eyi%t2sS!bF6A9$f zm3QG7UgTQ(Z*>;C2SZ4%UR9B~x?qiX27BE}!|nrVdE7Z%28=ciKv!jyX5^QntqU_^ ztUI3#?D;WBvJX6oA7Eips^5*zAEpnBh}pfnJy}hGWDDRW*1>R~s%xMqFL=WO>~GJI z^sq@A7dC8~Xv-nMp;-bxTcDzA>bpsO z&kTdc(mP^~p@D22o}TGlZA1l~9#40r%8N*OMuYn-WT4zBe*ff|I?z+%-UpHoZ#Gvu z3#`9vNc4iLl*nrNw^NR@_WL6TFPTQAgB;*u&66#wC(*Ce+&bbBrKTgruIo^N2$^4Z zyTh19RUT*oVxO=QS7pjb+p+50*jDS>@%-^a^W!O|O`R!;+_77aLPH1#w}E%ZV8R$Ug$C7R| ztXLeW2e*9OU!Ub77jtgs@cEi=ZI{n9%$j3QDR5ehW`=Rd=(8+e(Dbr)!ot)4fH<^L z6^b3QaBAD~l7^}D`}*_`t8@Qc)f~_rqLlDi6)7OZIs?12@8Vhwt3G5U%1Lbr@Sa)^&xk zg1TPaywEs+;YD0kt3{?7F!s^c)%SFHIG6Fe9i$PM)>^7&2H9aUQx>icGZRjAQ^C-{ z&wn(qm3%=-JWu972nHcF0ud;VA)fuy;9T4C$H=nfvCSBAq`N z6wAZkS`ONp9@fhc7YUfkyYaP=Xj=0ks`zC;FvuV^xXBO*W0&uPmv{B|9)CFHD^d~+ zqh%=fzWkF;sXucE@KZiRik8W|a0qd;zkFdLebo>_Ry*Z6j-J!jJ~w>TN09U&tEZDY zZfy79N>oOj%T-||W!&;RY<^u~S*m7s=Ucjv$tPYQ$IW_4Ytcdl6rek2{7L_rbX87=Hwb2vAf7N^1XA0y%xh^cw*NvW#D179$A zgCd4al2+tr!q^l}WWf#4Tf`DehIEi|F$9@z&hPym<`m}6A2M#8!JS`U!O7zC{w`3> zN_hrB8MI`yZrhS)$B^|7*>s#trX;VMT`D%gpM-HK`gomNeT9IGCr@M8uLldUPB?@(+04vK znknP^EVoy&*v@qlgK`*UZYUqa;^naxBM#!pKn8{esBO?Nz~B`5264+jg7(IT+Lj72 z0^EWaj**hjyR=O>yMB?d8^(w7igO4_3kd|H<_xM$3IC_KJz)jbRudaz8kB~iR+mS2 zVgM~vK4PSpUpIlg)jiI}_=B2Lrj2o?ACg19D6?aa33|VWYcS+K;0&d53t)vXiQe#q z+)0PnH9gN%iF`vV#m5~aO!5<7?rErbC>`&d>sj=+1F|f^5VgwlCu}m{Z4QgGr&#G)eT|hBOwI^bnRahG=_%svn+#awa*@3tag0L&dw^Ah1J(`5Wcf=pK`}_ zfTL$kD*vIdpyBH9bp4#t^)gJFgAcIO`=VRtS{z)y{7M63@BWJo@W2GP7-c-sf@H+T zeNaL_{}xlUQI$prDm1@Xo5YK&dcUZB83X(io}mljUNNe#Lz~^49k%DbhkhTV>)tF3 ziVzW^abW}0uM{j7oc`0IIyJ+4V^abOmK?DumHkPU0{l5!p)TEmimxF-0nFbA^d<}FRHT$HN1H-Y4qpWM+}kX z7)AQlZ8DDo!|SY@{on{V{G9u>VuqS=ra17tSY_(oTGTbZsjE=TSN-z4Xo%ER6C{gO zwj`&ihqE7dt@7b_u?9|wfqfr(^U=)iUXp?)`F|-o@z98rQrx0ZXFv=FcL~pxBmSt`B{Cr3U&QKYsni zx$cQs<$Eh^9K!D2V6{ZrSJ@rkDo7Eb-?Z6-rP^~$<`TqN7?tjoW72jf4sqZ`X1nLw z+O!%kev(ifF}6sK*k0qmNS_gX6e5bgy0(^Ly}7eOWm9l|)rZ<4*ATtBo~hMvS8kfB zlj`nbgZd3w@uzQNd8p90?p$wpz}%-RZG=#TrKK(dt#+I}v1^0L;q1D{J3X$mQx{D< zmWh8iV&(~$26j$1er5?3CK$Lj%)orm zK=2rS(biVeep&`$E0oXKB*5*F3HA19Xo>yO68nutc;%RCt1sa?f_-hu{s^a7{aOFx zy7Uz0cPmAF4Jx@;Fc*}b=ZX!kP0AJmWH;~4PeA(VsqgP;g^9Xt2&^k)^Y{l!;| zv2f4$@E&?b!CGz25C!nU(JI(!mET7pPfgFuj3L$=$>6+=!~3QPI@=opekYCD|%4sa9N&sLNfO z8C!;epI5@&ervInHOrN}6{!vp7{%`#`#!O*nl_H`Ns*H3<*$(O(XY(p!?r=^ zasF;t3T<2~lXs#_sqqseyM90Onr>45Nz^E1oy3n19~V&Yy}M> zHa2=wxfRM9_rv8C6fQpDkdT6fSu;S=2U%;UXv)UOPLjQouG5IDzwdOCd{e@&D<=0C8n`y8I4O!R8tfaJ(E#$<5iMAzXh2w{YOd`cFC~ zz<}8<3zuIOF8ZhX5Q8x3s5Ixf1r^5UWwi!Pi2`o58PLIv3&4ipW7!px#Kc6AsLDzE^P#srhpkjB^SJD{J9`J?bxN-@-xPQeizJCQ z>Mzjuf8TW~o`oAW^3)CJZORQ#)w#rd#wU@jl9$z?qoYd|@^a4VTv}OL3wGjFN&UAW zuivNRBnh!1%~HRT>AmRQPIb$1fJm+VG#132ZrxyW9Zo884TntqcKHrsa z=FhmF{`mHf-yd3(YagO+v`csTn>n}HJ*J#OGQF0cjoa1SReVT`-p-^pGn}tb?Q^zY ze64!5T$OgTpJ-@pca|(B|M2z=-oSeL`-iaxuEcMgR~n0(9Lf-g;fZS7gt$0P*|qoA z?Cnp-e-e|JO;1mQpCNwZ4Avt|NPu06Y8BZnhGs|qThf~e zYe&a1thCxyt>zhkC&fmz2yI31)ccD|);~X@!48LHmi9c&I8uTIUf~gMsG!Rd_VxAM ze!%+rIzgBuZHAt6W>yw>7Un2&e&Kh@0KHQM)m(o#Y1Hm-@0q z4HXhuRK2{;@E9Q2)_Un3ChT5FgA(m>aY6S@6-I*k`2{8VIM5%Z#4^iQlXuz`^*q1L zYp3xb+V66KYU5Yz3oYNx-nH407ot~T7Lcr0#oX6%SGP}j=gsByzQ6a;;JS?4>aUP` zUF70BK8?3;OQOhlonMbUKRENzZT3TEdT;ZeU0oN8`0X!toiDNZ7d_*&cr0E&l33Gj zZD|Q7V%5#N?H#hsP9G3gx_;|6dX_^n1PD)(b6Ui&j`RD@ zm#d1t3jN!t=V9PfMMTcR{HlENk10Hxl}(da^$OsbuR5o9TKt-CBo?dmr9R zEzm>K3+*Rsth?ix?kB%G()s;Wr_!QO;&DxB>8sn#o2;={=OW!g{ZWTQ)+z@?P>o&( zX0?;(jMV*tUi*28EIK(0oiQiY`rxT?{5>^lXE-Fh>gw*tgzNC{=Q(plH6;@QJ0fR*LC9sH% z)n9yLef{=-p#}U5?ARHvlmV?(EIzCMWF(EU0f#H#x~d|+fD1lc&;Mc_T5Ej!$#?GT zg|(Z&Hk7>&e`g)jay8}VN|5o`g>ED|9V+|!B6;j5@=71zqD0>PeQ)4@<#u#3h&lY-qL8pMi1nQ94%@iCk%3agwu#PF|ldp;*5oF&E>1Y1&-obb0E;&CP8+ zQm85?8#psEHg;ldh?+@1JEpf6jF|D0&3sEYoVQT9e7#n9hySR)_O{MR0vk*lT4BTXQ zBqh!nTM642Y+?``LnI|I`bm?=jJm*1u5)$63)sBDGuDo>R_}B4DOWVa?v2u`Lg@mLe+x3y6D}mnPoE-6+(~JfH-=CBJ zXM!|%6jBe8B+eIuh@UnEkK1Xwxw$=6&*q)Im^nF|k6=UOQh5*0_+4y~vYSXgRe!5@ z-duA|%H@0Rs+7vbG`FXtqk}*oE+xW&{`-!$EWz&yty(lx61vLGAkve$kG2|(t5f$&)f+}8A68Ai#FS_ zaop}V=%E8o;k3kg!=b-^DX8MI+$(40BPA6?#G?J9iRs^F(GDfEn^u{1eGW8m#HA9^ zR~Ef;)t$W-*2cubs%h z-`{0xmgsW7?|R1s00A`R*9Uz-HIEcJe`KD{235n{cSrUpWRQ!Nva2uUF~-TGqGp!6^!O?Jp7<7Ap*c=J7|1amqGJ z-3b_uT_J5#o(oa+TQ!reyMM*Fxw!QA${lL;Kr_E)1D`#qrIi(2wU!ZcVA#sDao9(2 zC`IfHs?t*uh!-E*w&v0=ZGjQRDnSHRXYD!g}=5SG_}3CzJe{MSl&L3o2x4$ zISzo~9*fGN!a`Y>mHtuS0lBqe^Zv3?>T&5-ZwbR^I9x9-TVF~t)Rd42Xqo#4gTc%y z$KzvTv#n7DYu6V$TIS|-S7WoP=>|09I2%_dvt#9^odh@`+}6Xiz-%h{>h?$e9Qysc zU_j(T5gQwunUPUNM<-=}e}BFygX%wdN*Y)}eYlVAy1ys~4$uaSu1E#wtkU^W41{8! z6R_LrAa!+Ztu631QaQ}Sg(wG9WEA)b;Q#*m&K;vqH6arJIlOm%EUEkl6TtM`ZU0YR p@7y8z|33tK_5U~IpTLk@ik=yj2pk@v(cb=BP6{GfDsJ@g{{R>aCs6