From a202facfcd89c8cbba5d30284a57dd6a7591d466 Mon Sep 17 00:00:00 2001 From: queue-miscreant Date: Tue, 24 Jun 2025 06:23:26 -0500 Subject: [PATCH] revisions and images to chebyshev.2 --- posts/chebyshev/1/index.qmd | 2 +- posts/chebyshev/2/index.qmd | 865 +++++++++++++++++++++------ posts/chebyshev/2/path_graphs.png | Bin 0 -> 23724 bytes posts/chebyshev/2/quadrilaterals.png | Bin 0 -> 85276 bytes 4 files changed, 670 insertions(+), 197 deletions(-) create mode 100644 posts/chebyshev/2/path_graphs.png create mode 100644 posts/chebyshev/2/quadrilaterals.png diff --git a/posts/chebyshev/1/index.qmd b/posts/chebyshev/1/index.qmd index 9c9bd11..67ee909 100644 --- a/posts/chebyshev/1/index.qmd +++ b/posts/chebyshev/1/index.qmd @@ -1,7 +1,7 @@ --- title: "Generating Polynomials, Part 1: Regular Constructibility" description: | - + "What kinds of regular polygons are constructible with compass and straightedge?" format: html: html-math-method: katex diff --git a/posts/chebyshev/2/index.qmd b/posts/chebyshev/2/index.qmd index 23568f2..5bd569e 100644 --- a/posts/chebyshev/2/index.qmd +++ b/posts/chebyshev/2/index.qmd @@ -1,28 +1,56 @@ --- +title: "Generating Polynomials, Part 2: Ghostly Chains" +description: | + "Do polygons without distance still know about planar geometry?" format: html: html-math-method: katex +date: "2021-08-19" +date-modified: "2025-06-20" +categories: + - geometry + - algebra + - graph theory --- -Generating Polynomials, Part 2: Ghostly Chains -============================================== - -In the [previous post](), I tied the geometry regular polygons to a sequence of polynomials though some clever algebraic manipulation. But let's deign to ask a very basic question: what is a polygon? - -Fundamentally, it is just a collection of vertices and edges. Each vertex is connected to its two neighbors by two edges. Only examining these figures by their connectedness is precisely the kind of thing *graph theory* deals with. Graph can seem like a strange name, as it has no relation to the familiar graphs on a Cartesian plane one may be familiar with. Either way, it is a worthy subject of study, and will be the focus of this article. +In the [previous post](../1), I tied the geometry regular polygons to a sequence of polynomials + though some clever algebraic manipulation. +But let's deign to ask a very basic question: what is a polygon? Loops without Distance ---------------------- -For polygons in a Euclidean setting, the position of points matters, as well as which points connect to which. A rectangle is different from a trapezoid or a kite. However, topologically, all of these are quadrilateral graphs and cannot be distinguished; they are but a simple notion of 4 points in a loop. +Fundamentally, a polygon is just a collection of vertices and edges. +For polygons in a Euclidean setting, the position of points matters, + as well as the lines connecting them -- a rectangle is different from a trapezoid or a kite. +But at its simplest, this is just a tabulation of points and adjacencies. -![]() +![ + Topologically, all of these are indistinguishable since they all correspond to + the description "4 points in a loop". +](./quadrilaterals.png) -From a graph theory perspective, the vertices are sometimes called nodes. In these graphs, each edge has no direction associated to it, so the graph is called *undirected*. Additionally, these graphs are *planar* since the nodes can be arranged so that no nodes cross another, despite the appearance of the lower-right figure. +Only examining these figures by their connectedness is precisely the kind of thing + *graph theory* deals with. +"Graph" is a potentially confusing term, since it has nothing to do with "graphs of functions", + but the name is supposed to evoke the fact that they are "drawings". +For the graphs we're interested, there's some additional terminology: -If the graph is a simple loop, it is called a [*cycle graph*](https://en.wikipedia.org/wiki/Cycle_graph), denoted $C_n$, where n is the number of nodes. In a cycle graph, all nodes and all edges are identical to each of the others. Therefore, the best geometric interpretation is a shape which is +- Vertices themselves are sometimes instead called *nodes* +- Edge in the graph have no direction associated to them, so the graph is called *undirected*. +- Additionally, these graphs are *planar* since the nodes can be arranged + so that no edges appear to intersect. + - The lower-right figure in the above diagram has intersecting edges, + but the nodes can be rearranged to look like the other graphs, so it is planar. + +Graphs themselves typically come in families. +If the graph is a simple loop, it is called a [*cycle graph*](https://en.wikipedia.org/wiki/Cycle_graph). +They are denoted by $C_n$, where *n* is the number of nodes. +In a cycle graph, since all nodes are identical to each other (they all connect to two edges) + and all edges are identical to each other (they connect identical vertices), + the best geometric interpretation is a shape which is - Regular, so that each edge and each angle (vertex) are of equal measure - Convex, so that no edge meets another without creating a vertex (or node) @@ -32,105 +60,229 @@ In other words, $C_3$ is analogous to an equilateral triangle, $C_4$ is analogou ### Encoding Graphs -There are two primary ways to store information about a graph. The first is by labelling each node (for example, with integers), then recording the edges as a list of pairs of connected nodes. In the case of an undirected graph, these are unordered pairs. While such a list is convenient, it doesn't convey a lot of information about the graph besides the number of edges. +There are two primary ways to store information about a graph. +The first is by labelling each node (for example, with integers), then recording the edges as + a list of pairs of connected nodes. +In the case of an undirected graph, these are unordered pairs. +While such a list is convenient, it doesn't convey a lot of information about the graph + besides the number of edges. -Alternatively, these pairs can also be interpreted as addresses in a matrix, called an *adjacency matrix*. +Alternatively, these pairs can also be interpreted as addresses in a matrix, + called an *adjacency matrix*. $$ \begin{align*} -C_3 := \begin{matrix} [(0, 1),\\ (1, 2),\\ (2, 0)] \end{matrix} &\cong -\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \\ \\ -C_4 := \begin{matrix} [(0, 1),\\ (1, 2),\\ (2, 3),\\ (3, 0)] \end{matrix} & \cong -\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \\ \\ -C_5 := \begin{matrix} [(0, 1),\\ (1, 2),\\ (2, 3),\\ (3, 4),\\ (4, 0)] \end{matrix} &\cong -\begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ -0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix} \\ + C_3 := \begin{matrix}[ + (0, 1), \\ + (1, 2), \\ + (2, 0) + ]\end{matrix} & \cong + \begin{pmatrix} + 0 & 1 & 1 \\ + 1 & 0 & 1 \\ + 1 & 1 & 0 + \end{pmatrix} + \\ \\ + C_4 := \begin{matrix} [ + (0, 1), \\ + (1, 2), \\ + (2, 3), \\ + (3, 0) + ]\end{matrix} & \cong + \begin{pmatrix} + 0 & 1 & 0 & 1 \\ + 1 & 0 & 1 & 0 \\ + 0 & 1 & 0 & 1 \\ + 1 & 0 & 1 & 0 + \end{pmatrix} + \\ \\ + C_5 := \begin{matrix}[ + (0, 1), \\ + (1, 2), \\ + (2, 3), \\ + (3, 4), \\ + (4, 0) + ]\end{matrix} &\cong + \begin{pmatrix} + 0 & 1 & 0 & 0 & 1 \\ + 1 & 0 & 1 & 0 & 0 \\ + 0 & 1 & 0 & 1 & 0 \\ + 0 & 0 & 1 & 0 & 1 \\ + 1 & 0 & 0 & 1 & 0 + \end{pmatrix} \end{align*} $$ -Each adjacency matrix is square, where each column and row refer to a specific node. An entry is 1 when the nodes corresponding to the row and column of its address are joined by an edge (and zero otherwise). For undirected graphs, these matrices are symmetric, since it is possible to traverse an edge in either direction. +Each adjacency matrix is square, where each column and row refer to a specific node. +An entry is 1 when the nodes corresponding to the row and column of its address are joined by an edge (and zero otherwise). +For undirected graphs, these matrices are symmetric, since it is possible to traverse an edge in either direction. -Swapping the labels on two nodes is as simple as exchanging two rows and two columns. Just one of these swaps would flip the sign of the determinant of the adjacency matrix. However, since they occur in pairs, the determinant is invariant of the labelling (equally, a graph invariant). +Swapping the labels on two nodes is as simple as exchanging two rows and two columns. +Just one of these swaps would flip the sign of the determinant of the adjacency matrix. +However, since they occur in pairs, the determinant is invariant of the labelling (equally, a graph invariant). Prismatic Recurrence -------------------- -The determinant of a matrix is also the product of its eigenvalues, which are another matrix invariant. The set of eigenvalues is also called its *spectrum*, and the study of the spectra of graphs is called [*spectral graph theory*](https://en.wikipedia.org/wiki/Spectral_graph_theory), which is among the most mystifying names in math to read for the first time. +The determinant of a matrix is also the product of its eigenvalues, which are another matrix invariant. +The set of eigenvalues is also called its *spectrum*, and the study of the spectra of graphs is called + [*spectral graph theory*](https://en.wikipedia.org/wiki/Spectral_graph_theory)[^1], -Eigenvalues are the roots of the characteristic polynomial of a matrix. The matrix $C_5$ is sufficiently large enough to generalize to $C_n$, and its characteristic polynomial by [Laplace expansion](https://en.wikipedia.org/wiki/Laplace_expansion) is: +[^1]: It is also among the most mystifying names in math to read without any context + +Eigenvalues are the roots of the characteristic polynomial of a matrix. +The matrix $C_5$ is sufficiently large enough to generalize to $C_n$, and its characteristic polynomial by + [Laplace expansion](https://en.wikipedia.org/wiki/Laplace_expansion) is: $$ \begin{gather*} -Ax = \lambda x \implies (\lambda I - A)x = 0 \\ \\ -c_5(\lambda) = |\lambda I - C_5| = \left | -\begin{matrix} \lambda & -1 & 0 & 0 & -1 \\ -1 & \lambda & -1 & 0 & 0 \\ -0 & -1 & \lambda & -1 & 0 \\ 0 & 0 & -1 & \lambda & -1 \\ -1 & 0 & 0 & -1 & \lambda \end{matrix} -\right | \\ -= \lambda m_{1,1} -+ \overbrace{(-1)}^\text{entry}\overbrace{(-1)^{1 + 2 \ }}^\text{sign} m_{1, 2} -+ \overbrace{(-1)}^\text{entry}\overbrace{(-1)^{1 + 5 \ }}^\text{sign} m_{1, 5} + Ax = \lambda x \implies (\lambda I - A)x = 0 + \\ \\ + c_5(\lambda) = |\lambda I - C_5| + = \left | + \begin{matrix} + \lambda & -1 & 0 & 0 & -1 \\ + -1 & \lambda & -1 & 0 & 0 \\ + 0 & -1 & \lambda & -1 & 0 \\ + 0 & 0 & -1 & \lambda & -1 \\ + -1 & 0 & 0 & -1 & \lambda + \end{matrix} + \right | + \\ + = \lambda m_{1,1} + + \overbrace{(-1)}^\text{entry}\overbrace{(-1)^{1 + 2 \ }}^\text{sign} m_{1, 2} + + \overbrace{(-1)}^\text{entry}\overbrace{(-1)^{1 + 5 \ }}^\text{sign} m_{1, 5} \end{gather*} $$ -Note that every occurrence of "5" generalizes to higher *n*. The first minor is easily expressed in terms of *another* matrix's characteristic polynomial. +Note that every occurrence of "5" generalizes to higher *n*. +The first [minor](https://en.wikipedia.org/wiki/Matrix_minor) + is easily expressed in terms of *another* matrix's characteristic polynomial. $$ -m_{1, 1} = \left | -\begin{matrix} \lambda & -1 & 0 & 0 \\ -1 & \lambda & -1 & 0 \\ -0 & -1 & \lambda & -1 \\ 0 & 0 & -1 & \lambda \end{matrix} -\right | = |\lambda I - P_4| = p_{5-1}(\lambda) +m_{1, 1}[C_5] + = \left | + \begin{matrix} + \lambda & -1 & 0 & 0 \\ + -1 & \lambda & -1 & 0 \\ + 0 & -1 & \lambda & -1 \\ + 0 & 0 & -1 & \lambda + \end{matrix} + \right | + = |\lambda I - P_4| = p_{5 - 1}(\lambda) $$ -We will come to the meaning of the $P_n$ in a moment. Meanwhile, the second and third minors require another expansion, but one that (thankfully) quickly terminates. +We will come to the meaning of the $P_n$ in a moment. +The other minors require extra expansions, but ones that (thankfully) quickly terminate. $$ \begin{matrix} -m_{1, 2} =& \left | -\begin{matrix}-1 & -1 & 0 & 0 \\ 0 & \lambda & -1 & 0 \\ -0 & -1 & \lambda & -1 \\ -1 & 0 & -1 & \lambda \end{matrix} -\right | &=& (-1) \left | -\begin{matrix}\lambda & -1 & 0 \\ -1 & \lambda & -1 \\ 0 & -1 & \lambda \end{matrix} -\right | &+& (-1)(-1)^{1 + 4} \left | -\begin{matrix}-1 & 0 & 0 \\\lambda & -1 & 0 \\ -1 & \lambda & -1 \end{matrix} -\right | \\ -&&=& (-1)|\lambda I - P_3| &+& (-1)\overbrace{(-1)^{5}(-1)^{5 - 2}}^{\text{even, even when $\scriptsize n \neq 5$}} \\ -&&=& ((-1)p_{5 - 2}(\lambda) &+& (-1)) \\ -&&=& -(p_{5 - 2}(\lambda) &+& 1) \\ -\\ -m_{1, 5} =& \left | -\begin{matrix}-1 & \lambda & -1 & 0 \\ 0 & -1 & \lambda & -1 \\ -0 & 0 & -1 & \lambda \\ -1 & 0 & 0 & -1 \end{matrix} -\right | &=& (-1) \left | -\begin{matrix}-1 & \lambda & -1 \\ 0 & -1 & \lambda \\ 0 & 0 & -1 \end{matrix} -\right | &+& (-1)(-1)^{5 - 2} \left | -\begin{matrix}\lambda & -1 & 0 \\ -1 & \lambda & -1 \\ -0 & -1 & \lambda \end{matrix} -\right | \\ -&&=& (-1)(-1)^{5-2} &+& (-1)(-1)^{5 - 2}|\lambda I - P_3| \\ -&&=& (-1)^{5-1}((-1)(-1) &+& (-1)(-1)p_{5 - 2}(\lambda)) \\ -&&=& (-1)^{5-1}(1 &+& p_{5 - 2}(\lambda)) + m_{1, 2}[C_5] + &= \left | + \begin{matrix} + -1 & -1 & 0 & 0 \\ + 0 & \lambda & -1 & 0 \\ + 0 & -1 & \lambda & -1 \\ + -1 & 0 & -1 & \lambda + \end{matrix} + \right | + &=& (-1) + \left | + \begin{matrix} + \lambda & -1 & 0 \\ + -1 & \lambda & -1 \\ + 0 & -1 & \lambda + \end{matrix} + \right | + &+& (-1)(-1)^{1 + 4} + \left | + \begin{matrix} + -1 & 0 & 0 \\ + \lambda & -1 & 0 \\ + -1 & \lambda & -1 + \end{matrix} + \right | + \\ + &&=& (-1)|\lambda I - P_3| + &+& (-1)\overbrace{(-1)^{5}(-1)^{5 - 2}}^{\text{even power, even when $\scriptsize n \neq 5$}} + \\ + &&=& (-1)p_{5 - 2}(\lambda) &+& (-1) + \\ + &&=& -(p_{5 - 2}(\lambda) &+& 1) \end{matrix} $$ -All together, this produces a characteristic polynomial in terms of the polynomials $p_n$: +The "1 + 4" exponent when evaluating this minor comes from the address of the lower-left -1, (i.e., (1, 4)). +This entry exists for all $C_n$. +The determinant of the rightmost matrix is just the product of the -1's on the diagonal, so it will always + have a power of the same parity as *n*, which cancels out with the sign of the minor. +Meanwhile, another $P$-type matrix appears in the other term, this time of two lower orders. + +$$ +\begin{matrix} + \\ \\ + m_{1, 5}[C_5] &= + \left | + \begin{matrix} + -1 & \lambda & -1 & 0 \\ + 0 & -1 & \lambda & -1 \\ + 0 & 0 & -1 & \lambda \\ + -1 & 0 & 0 & -1 + \end{matrix} + \right | + &=& (-1) + \left | + \begin{matrix} + -1 & \lambda & -1 \\ + 0 & -1 & \lambda \\ + 0 & 0 & -1 + \end{matrix} + \right | + &+& (-1)(-1)^{5 - 2} + \left | + \begin{matrix} + \lambda & -1 & 0 \\ + -1 & \lambda & -1 \\ + 0 & -1 & \lambda + \end{matrix} + \right | + \\ + &&=& (-1)(-1)^{5-2} &+& (-1)(-1)^{5 - 2}|\lambda I - P_3| + \\ + &&=& (-1)^{5-1}((-1)(-1) &+& (-1)(-1)p_{5 - 2}(\lambda)) + \\ + &&=& (-1)^{5-1}(1 &+& p_{5 - 2}(\lambda)) +\end{matrix} +$$ + +A third $P$-type matrix appears, just like the other minor. +Unfortunately, this minor *does* depend on the parity of *n*. + +All together, this produces a characteristic polynomial in terms of the polynomials $p_n(\lambda)$: $$ \begin{align*} -&&c_5(\lambda) &= \lambda p_{5 - 1} -+ (-1)(p_{5 - 2} + 1) -+ (-1)\overbrace{(-1)^{5 - 1} (-1)^{5 - 1}}^{\text{even, even when $\scriptsize n \neq 5$}}(p_{5 - 2} + 1) \\ -&&&= \lambda p_{5 - 1} -- (p_{5 - 2} + 1) -- (p_{5 - 2} + 1) \\ -&&&= \lambda p_{5 - 1} -- 2(p_{5 - 2} + 1) \\ -&&\implies c_n(\lambda) &= \lambda p_{n - 1}(\lambda) -- 2(p_{n - 2}(\lambda) + 1) \\ + && c_5(\lambda) &= \lambda p_{5 - 1} + + (-1)(p_{5 - 2} + 1) + + (-1)\overbrace{(-1)^{5 - 1} (-1)^{5 - 1}}^{\text{even, even when $\scriptsize n \neq 5$}}(p_{5 - 2} + 1) + \\ + &&&= \lambda p_{5 - 1} + - (p_{5 - 2} + 1) + - (p_{5 - 2} + 1) + \\ + &&&= \lambda p_{5 - 1} + - 2(p_{5 - 2} + 1) + \\ + && \implies c_n(\lambda) &= \lambda p_{n - 1}(\lambda) + - 2(p_{n - 2}(\lambda) + 1) \end{align*} $$ -This resembles a recurrence relation, which is great, but it is meaningless without knowing $p_n$. +Fortunately, the minor whose determinant depended on the parity of *n* cancels with $(-1)^{1 + 5}$, + and the resulting expression seems to generically apply across all *n*. +Further, this resembles a recurrence relation, which is great for building a rule. +But it is meaningless without knowing $p_n(\lambda)$. Powerful Chains @@ -138,190 +290,511 @@ Powerful Chains The various $P_n$ are in fact the adjacency matrices of a path on *n* nodes. -![]() + +![ + Example path graphs of orders 2, 3, and 4 +](./path_graphs.png) $$ \begin{align*} -P_2 &:= \begin{matrix} [(0, 1)] \end{matrix} \cong -\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\ -P_3 &:= \begin{matrix} [(0, 1),\\ (1, 2)] \end{matrix} \cong -\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \\ -P_4 &:= \begin{matrix} [(0, 1),\\ (1, 2),\\ (2, 3)] \end{matrix} \cong -\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \\ \\ + P_2 &:= + \begin{matrix}[ + (0, 1) + ]\end{matrix} + \cong \begin{pmatrix} + 0 & 1 \\ + 1 & 0 + \end{pmatrix} + \\ + P_3 &:= + \begin{matrix}[ + (0, 1), \\ + (1, 2) + ]\end{matrix} + \cong \begin{pmatrix} + 0 & 1 & 0 \\ + 1 & 0 & 1 \\ + 0 & 1 & 0 + \end{pmatrix} + \\ + P_4 &:= + \begin{matrix}[ + (0, 1), \\ + (1, 2), \\ + (2, 3) + ]\end{matrix} + \cong \begin{pmatrix} + 0 & 1 & 0 & 0 \\ + 1 & 0 & 1 & 0 \\ + 0 & 1 & 0 & 1 \\ + 0 & 0 & 1 & 0 + \end{pmatrix} \end{align*} $$ -Without the entries in the corners of the matrix, the characteristic polynomials of $P_n$ are much easier to solve for. +These matrices are similar to the ones for cycle graphs, but lack the entries in bottom-left + and upper-right corners. +Consequently, the characteristic polynomials of $P_n$ are much easier to solve for. $$ \begin{gather*} -p_4(\lambda) = |\lambda I - P_4| = \left | -\begin{matrix} \lambda & -1 & 0 & 0 \\ -1 & \lambda & -1 & 0 \\ -0 & -1 & \lambda & -1 \\ 0 & 0 & -1 & \lambda \end{matrix} -\right | \\ \\ -= \lambda \left | -\begin{matrix} \lambda & -1 & 0 \\ -1 & \lambda & -1 \\ 0 & -1 & \lambda \end{matrix} -\right | + (-1)(-1)^{1+2} \left | -\begin{matrix} -1 & -1 & 0 \\ 0 & \lambda & -1 \\ 0 & -1 & \lambda \end{matrix} -\right | \\ \\ -= \lambda |\lambda I - P_3| + \left ( (-1) \left | -\begin{matrix} \lambda & -1 \\ -1 & \lambda \end{matrix} -\right | + (-1)(-1) \left | -\begin{matrix} 0 & -1 \\ 0 & \lambda \end{matrix} -\right | \right) \\ \\ -= \lambda |\lambda I - P_3| - |\lambda I - P_2| \\ -= \lambda p_{4 - 1}(\lambda) - p_{4 - 2}(\lambda) \\ -\implies p_{n}(\lambda) = \lambda p_{n - 1}(\lambda) - p_{n - 2}(\lambda) + p_4(\lambda) = |\lambda I - P_4| + = \left | + \begin{matrix} + \lambda & -1 & 0 & 0 \\ + -1 & \lambda & -1 & 0 \\ + 0 & -1 & \lambda & -1 \\ + 0 & 0 & -1 & \lambda + \end{matrix} + \right | + \\ \\ + = \lambda \left | + \begin{matrix} + \lambda & -1 & 0 \\ + -1 & \lambda & -1 \\ + 0 & -1 & \lambda + \end{matrix} + \right | + (-1)(-1)^{1+2} \left | + \begin{matrix} + -1 & -1 & 0 \\ + 0 & \lambda & -1 \\ + 0 & -1 & \lambda + \end{matrix} + \right | + \\ \\ + = \lambda |\lambda I - P_3| + \left ( + (-1) \left | + \begin{matrix} + \lambda & -1 \\ + -1 & \lambda + \end{matrix} + \right | + + (-1)(-1) \left | + \begin{matrix} + 0 & -1 \\ + 0 & \lambda + \end{matrix} + \right | + \right) + \\ \\ + = \lambda |\lambda I - P_3| - |\lambda I - P_2| + \\ + = \lambda p_{4 - 1}(\lambda) - p_{4 - 2}(\lambda) + \\ + \implies p_{n}(\lambda) = \lambda p_{n - 1}(\lambda) - p_{n - 2}(\lambda) \end{gather*} $$ -While the earlier equation for $c_n$ in terms of $p_n$ reminded of a recurrence relation, actually is one (if perhaps eerily familiar). +While the earlier equation for $c_n$ in terms of $p_n$ reminded of a recurrence relation, + *this* actually is one (and it should look familiar). -Since the recurrence has order 2, it requires two initial terms: $p_0$ and $p_1$. The graph corresponding to $p_1$ is a single node, not connected to anything. Therefore, its adjacency matrix is a 1x1 matrix with 0 as its only entry, and its characteristic polynomial is $\lambda$. By the recurrence, $p_2 = \lambda p_1 -\ p_0 = \lambda^2 -\ p_0$. Equating terms with the characteristic polynomial of $P_2$, it is obvious that +Since the recurrence has order 2, it requires two initial terms: $p_0$ and $p_1$. +The graph corresponding to $p_1$ is a single node, not connected to anything. +Therefore, its adjacency matrix is a 1x1 matrix with 0 as its only entry, + and its characteristic polynomial is $\lambda$. +By the recurrence, $p_2 = \lambda p_1 -\ p_0 = \lambda^2 -\ p_0$. +Equating terms with the characteristic polynomial of $P_2$, it is obvious that $$ -|\lambda I - P_2| = \begin{pmatrix}\lambda & -1 \\ -1 & \lambda \end{pmatrix} +|\lambda I - P_2| += \begin{pmatrix} + \lambda & -1 \\ + -1 & \lambda +\end{pmatrix} = \lambda^2 - 1 = \lambda p_1 - p_0 \\ \implies p_0 = 1 $$ -which makes sense, since $p_0$ should have degree zero. Therefore, the sequence of polynomials $p_n(\lambda)$ is: +which makes sense, since $p_0$ should have degree zero. +Therefore, the sequence of polynomials $p_n(\lambda)$ is: $$ \begin{gather*} -p_0(\lambda) =& && 1 \\ -p_1(\lambda) =& && \lambda \\ -p_2(\lambda) =& \lambda \lambda - 1 &=& \lambda^2 - 1 \\ -p_3(\lambda) =& \lambda (\lambda^2 - 1) - \lambda &=& \lambda(\lambda^2 - 2) \\ -p_4(\lambda) =& \lambda (\lambda(\lambda^2 - 2)) - (\lambda^2 - 1) -&=& \lambda^4 - 3\lambda^2 + 1 \\ -\vdots&\vdots&&\vdots + p_0(\lambda) &= && 1 + \\ + p_1(\lambda) &= && \lambda + \\ + p_2(\lambda) &= \lambda \lambda - 1 + &=& \lambda^2 - 1 + \\ + p_3(\lambda) &= \lambda (\lambda^2 - 1) - \lambda + &=& \lambda(\lambda^2 - 2) + \\ + p_4(\lambda) &= \lambda (\lambda(\lambda^2 - 2)) - (\lambda^2 - 1) + &=& \lambda^4 - 3\lambda^2 + 1 + \\ + \vdots & \vdots && \vdots \end{gather*} $$ -But wait, we've seen these before (if you read the previous post, that is). These are just the Chebyshev polynomials of the second kind, evaluated at $\lambda / 2$. Indeed, their recurrence relations are identical, and the characteristic polynomial of $P_n$ is $U_n(\lambda / 2)$. Effectively, this connects an n-path to a regular $n+1$-gon. +But wait, we've seen these before (if you read the previous post, that is). +These are just the Chebyshev polynomials of the second kind, evaluated at $\lambda / 2$. +Indeed, their recurrence relations are identical, so the characteristic polynomial of $P_n$ is $U_n(\lambda / 2)$. +Effectively, this connects an *n*-path to a regular *n+1*-gon. -Since the generating function of $U_n$ is known, the generating function for the $c_n$ which prompted this is also easily determined. For ease of use, let + +### Back to Cycles + +Since the generating function of $U_n$ is known, the generating function for the $c_n$ + (which prompted this) is also easily determined. +For ease of use, let $$ P(x; \lambda) = {B(x; \lambda / 2) \over x} = {1 \over 1 - \lambda x +\ x^2} $$ -Discarding the initial $c_0$ and $c_1$ by setting them to 0, the generating function is +Discarding the initial $c_0$ and $c_1$ by setting them to 0[^2], the generating function is + +[^2]: It's a good idea to ask why we can do this. + Try examining $c_2$ and $c_3$. $$ \begin{align*} -c_{n+2}(\lambda) &= \lambda p_{n+1}(\lambda) - 2(p_n(\lambda) + 1) \\ \\ -{C(x; \lambda) - c_0(\lambda) - x c_1(\lambda) \over x^2} -&= \lambda \left( {P(x; \lambda) - 1 \over x} \right) -- 2\left( P(x; \lambda) + {1 \over 1 - x} \right) \\ -C &= x \lambda (P - 1) -\ -2x^2\left( P + {1 \over 1 - x} \right) \\ -C{(1 - x) \over P} &= x \lambda \left(1 - {1 \over P} \right)(1 - x) -\ -2x^2\left( (1 - x) + {1 \over P} \right) \\ -&= x^4 \lambda - 2 x^4 - x^3 \lambda^2 + x^3 \lambda -+ 2 x^3 + x^2 \lambda^2 - 4 x^2 \\ -&= x^2 (\lambda - 2) (x^2 - \lambda x - x + \lambda + 2) \\ \\ -C(x; \lambda) &= x^2 (\lambda - 2) -{(x^2 - (\lambda + 1) x + \lambda + 2) -\over (1 - x)(1 - \lambda x + x^2)} + c_{n+2}(\lambda) &= \lambda p_{n+1}(\lambda) - 2(p_n(\lambda) + 1) + \\ \\ + {C(x; \lambda) - c_0(\lambda) - x c_1(\lambda) \over x^2} + &= \lambda \left( {P(x; \lambda) - 1 \over x} \right) + - 2\left( P(x; \lambda) + {1 \over 1 - x} \right) + \\ + C &= x \lambda (P - 1) -\ + 2x^2\left( P + {1 \over 1 - x} \right) + \\ + C{(1 - x) \over P} &= x \lambda \left(1 - {1 \over P} \right)(1 - x) -\ + 2x^2\left( (1 - x) + {1 \over P} \right) + \\ + &= x^4 \lambda - 2 x^4 - x^3 \lambda^2 + x^3 \lambda + + 2 x^3 + x^2 \lambda^2 - 4 x^2 + \\ + &= x^2 (\lambda - 2) (x^2 - \lambda x - x + \lambda + 2) + \\ \\ + C(x; \lambda) &= x^2 (\lambda - 2) + {(x^2 - (\lambda + 1) x + \lambda + 2) + \over (1 - x)(1 - \lambda x + x^2)} \end{align*} $$ -While the numerator is considerably more complicated than the one for P, the factor $\lambda -\ 2$ drops out of the entire series, pleasantly informing that 2 is an eigenvalue of all $C_n$. +While the numerator is considerably more complicated than the one for P, + the factor $\lambda - 2$ drops out of the entire series. +This pleasantly informs that 2 is an eigenvalue of all $C_n$. -Some other Exceptional Graphs ------------------------------ +Off the Beaten Path +------------------- -And now for something completely different (and which prompted me to research this topic in the first place). Another simple family of graphs are [*trees*](https://en.wikipedia.org/wiki/Tree_%28graph_theory%29). They are in some sense opposite to the cycle graphs, since they contain no cycles. +When we use Laplace expansion on the adjacency matrices, we were very fortunate that the minors + *also* looked like adjacency matrices undergoing expansion. +This let us terminate early and recurse. +From the perspective of the graph, Laplace expansion almost looks like removing a node, + but requires special treatment for the nodes connected to the one being removed. +For example, in cycle graphs, the first stage of expansion had three minors: + +- The node itself, on the main diagonal + - Being on the main diagonal, this immediately produced another adjacency matrix. +- Either neighbor connected to it, which are on opposite sides of + a path after the node is removed + - Both of these nodes required second expansion to get the *λ*s back on the main diagonal. + +For "good enough" graphs that are nearly paths (including paths themselves), + this gives a second-order recurrence relation. -### Platonic Trees +### Trees -Of trees, three small ones (which are not also paths) stand out. They are based on the [Schläfli symbols](https://en.wikipedia.org/wiki/Schl%C3%A4fli_symbol) of the Platonic solids. These expressions convey which regular polygon is present, and how many of them are found at every vertex. +Another simple family of graphs are [*trees*](https://en.wikipedia.org/wiki/Tree_%28graph_theory%29). +In some sense, they are the opposite of cycle graphs, since by definition they contain no cycles. -- Tetrahedron: {3, 3} - - Equilateral triangles, three around a vertex -- Octahedron: {3, 4} - - Equilateral triangles, four around a vertex -- Icosahedron: {3, 5} - - Equilateral triangles, five around a vertex -- Cube: {4, 3} - - Squares, three around a vertex -- Dodecahdedron: {5, 3} - - Regular pentagons, three around a vertex +Paths are degenerate trees, but we can make them slightly more interesting by instead adding + exactly one node and edge to (the middle of) a path. -Each edge in a Platonic solid connects two faces, which gives a third parameter of 2. From each parameter, create a $n-1$-path, and join the three to a central node. Intuitively, this is because we have shown that $n-1$-paths are related to regular *n*-gons, which show up in the pairs of dual Platonic solids. + +$$ +\begin{align*} + T_{1,1} := \begin{matrix}[ + (0, 1), \\ + (1, 2), \\ + (1, 3) + ]\end{matrix} & \cong + \begin{pmatrix} + 0 & 1 & 0 & 0 \\ + 1 & 0 & 1 & 1 \\ + 0 & 1 & 0 & 0 \\ + 0 & 1 & 0 & 0 + \end{pmatrix} + \\ \\ + T_{1,2} := \begin{matrix} [ + (0, 1), \\ + (1, 2), \\ + (2, 3), \\ + (1, 4) + ]\end{matrix} & \cong + \begin{pmatrix} + 0 & 1 & 0 & 0 & 0 \\ + 1 & 0 & 1 & 0 & 1 \\ + 0 & 1 & 0 & 1 & 0 \\ + 0 & 0 & 1 & 0 & 0 \\ + 0 & 1 & 0 & 0 & 0 + \end{pmatrix} + \\ \\ + T_{1,3} := \begin{matrix}[ + (0, 1), \\ + (1, 2), \\ + (2, 3), \\ + (3, 4), \\ + (1, 5) + ]\end{matrix} &\cong + \begin{pmatrix} + 0 & 1 & 0 & 0 & 0 & 0 \\ + 1 & 0 & 1 & 0 & 0 & 1 \\ + 0 & 1 & 0 & 1 & 0 & 0 \\ + 0 & 0 & 1 & 0 & 1 & 0 \\ + 0 & 0 & 0 & 1 & 0 & 0 \\ + 0 & 1 & 0 & 0 & 0 & 0 + \end{pmatrix} + \\ \\ + T_{2,2} := \begin{matrix}[ + (0, 1), \\ + (1, 2), \\ + (2, 3), \\ + (3, 4), \\ + (2, 5) + ]\end{matrix} &\cong + \begin{pmatrix} + 0 & 1 & 0 & 0 & 0 & 0 \\ + 1 & 0 & 1 & 0 & 0 & 0 \\ + 0 & 1 & 0 & 1 & 0 & 1 \\ + 0 & 0 & 1 & 0 & 1 & 0 \\ + 0 & 0 & 0 & 1 & 0 & 0 \\ + 0 & 0 & 1 & 0 & 0 & 0 + \end{pmatrix} +\end{align*} +$$ -::: {} -![]() -Adjacency matrices of T as a heatmap. Purple is 0, yellow is 1. -::: +The subscripts denote the consituent paths if the "added" node and the + one it is connected to are both removed. +It's easy to see that $T_{a,b} \cong T_{a,b}$, since this just swaps the arms. +Also, $T_{a, 0} \cong T_{0, a} \cong P_{a + 2}$. + +Let's try dissecting one of the larger trees. -Dispensing with the Laplace expansion and finding a recurrence relation, the characteristic polynomials for each of the three trees is $$ \begin{align*} -|\lambda I - T_{3,3}| = t_{3,3}(\lambda) -&= \lambda^{6} - 5 \lambda^{4} + 5 \lambda^{2} - 1 \\ -&= (\lambda - 1) (\lambda + 1) (\lambda^{4} - 4 \lambda^{2} + 1) \\ -|\lambda I - T_{3,4}| = t_{3,4}(\lambda) -&= \lambda^{7} - 6 \lambda^{5} + 9 \lambda^{3} - 3 \lambda \\ -&= \lambda (\lambda^{6} - 6 \lambda^{4} + 9 \lambda^{2} - 3) \\ -|\lambda I - T_{3,5}| = t_{3,5}(\lambda) -&= \lambda^{8} - 7 \lambda^{6} + 14 \lambda^{4} - 8 \lambda^{2} + 1 + |I \lambda - T_{1,3}| + &= \left | + \begin{matrix} + \lambda & -1 & 0 & 0 & 0 & 0 \\ + -1 & \lambda & -1 & 0 & 0 & -1 \\ + 0 & -1 & \lambda & -1 & 0 & 0 \\ + 0 & 0 & -1 & \lambda & -1 & 0 \\ + 0 & 0 & 0 & -1 & \lambda & 0 \\ + 0 & -1 & 0 & 0 & 0 & \lambda + \end{matrix} + \right | + \\ + &= (-1)^{6 + 6} \lambda m_{6,6} + (-1)^{2 + 6} (-1) m_{2,6} \end{align*} $$ -Searching the OEIS for the coefficients of $t_{3,5}$ returns sequence [A228786](http://oeis.org/A228786), which informs that it is the minimal polynomial of $2\sin( \pi/15 )$. This sequence also informs that, where $m_n$ is the minimal polynomial of $2\sin( \pi / n )$: - -- $t_{3,3} = m_6(\lambda) \cdot -m_6(-\lambda) \cdot m_{12}(\lambda)$ -- $t_{3,4} = m_1(\lambda) \cdot m_9(\lambda)$ - -Perhaps this is not surprising, given how $2\cos(\pi / n)$ also appear in the spectra of graphs. However, I am perplexed by the apparent relationship of tetrahedra to dodecagons, octahedra to enneagons, and icosahedra to 15-gons. It is also strange that 9 is *not* related to the smallest Platonic solid, and is sandwiched between 12 and 15. - - -### Wooden Tiles - -Platonic solids can be seen as regular tilings of the sphere. Schläfli symbols also exist for the regular tilings of the plane (which can also tile the torus, another topologically significant object). - -- Triangular tiling: {3, 6} - - Equilateral triangles; 6 around a vertex -- Square tiling: {4, 4} - - Squares; 4 around a vertex -- Hexagonal tiling: {6, 3} - - Regular hexagons; 3 around a vertex - -::: {} -![]() -Adjacency matrices as a heatmap -::: - -I would prefer *not* to wrestle the adjacency matrices into a general recurrence relation, but if one would like to go down this route, try using the Laplace expansion of the southmost tip of the "island" in the $T_{3,n}$ graphs as an example. - -The characteristic polynomials of *these* graphs are +It's easy to see that $m_{6,6}$ is just $p_5(\lambda)$, since the rest of the graph + other than the additional node is a 5-path. +But the other minor is trickier. $$ \begin{align*} -|\lambda I - T_{4,4}| = t_{4,4}(\lambda) -&= \lambda^{8} - 7 \lambda^{6} + 14 \lambda^{4} - 8 \lambda^{2} \\ -&= (\lambda - 1) (\lambda + 1) (\lambda^{4} - 4 \lambda^{2} + 1) \\ -&= m_6(\lambda) \cdot -m_6(-\lambda) \cdot m_8(\lambda) \\ -|\lambda I - T_{3,6}| = t_{3,6}(\lambda) -&= \lambda^{9} - 8 \lambda^{7} + 20 \lambda^{5} - 17 \lambda^{3} + 4 \lambda \\ -&= \lambda (\lambda - 1)(\lambda + 1) (\lambda - 2)(\lambda + 2) -(\lambda^{2} - \lambda - 1) (\lambda^{2} + \lambda - 1) \\ -&= m_1(\lambda) \cdot m_6(\lambda) \cdot -m_6(-\lambda) -\cdot m_2(\lambda) \cdot -m_2(-\lambda) -\cdot m_{10}(\lambda) \cdot m_{10}(-\lambda) \\ + m_{2,6} + &= \left | + \begin{matrix} + \lambda & -1 & 0 & 0 & 0 \\ + 0 & -1 & \lambda & -1 & 0 \\ + 0 & 0 & -1 & \lambda & -1 \\ + 0 & 0 & 0 & -1 & \lambda \\ + 0 & -1 & 0 & 0 & 0 + \end{matrix} + \right | + \\ + &= (-1)^{5 + 2} (-1) + \left | + \begin{matrix} + \lambda & 0 & 0 & 0 \\ + 0 & \lambda & -1 & 0 \\ + 0 & -1 & \lambda & -1 \\ + 0 & 0 & -1 & \lambda \\ + \end{matrix} + \right | \end{align*} $$ -Where the $m_n$ come from the sine polynomial series. To me, this implies that where chains are connected to cosines of fractions of a half-turn, these trefoil trees are connected to sines of fractions of turns (but you'd have to derive a general rule to be sure). +Through one extra expansion, the determinant of this final matrix can be written as + a product of $\lambda$ and $p_3(\lambda)$. + +Before making any conjectures, let's do the same thing to $T_{2,2}$. + +$$ +\begin{align*} + |I \lambda - T_{2,2}| + &= \left | + \begin{matrix} + \lambda & -1 & 0 & 0 & 0 & 0 \\ + -1 & \lambda & -1 & 0 & 0 & 0 \\ + 0 & -1 & \lambda & -1 & 0 & -1 \\ + 0 & 0 & -1 & \lambda & -1 & 0 \\ + 0 & 0 & 0 & -1 & \lambda & 0 \\ + 0 & 0 & -1 & 0 & 0 & \lambda + \end{matrix} + \right | + \\ + &= (-1)^{6 + 6} \lambda m_{6,6} + (-1)^{3 + 6} (-1) m_{3,6} + \\ \\ + m_{3,6} + &= \left | + \begin{matrix} + \lambda & -1 & 0 & 0 & 0 \\ + -1 & \lambda & -1 & 0 & 0 \\ + 0 & 0 & -1 & \lambda & -1 \\ + 0 & 0 & 0 & -1 & \lambda \\ + 0 & 0 & -1 & 0 & 0 + \end{matrix} + \right | + \\ + &= (-1)^{5 + 3} (-1) + \left | + \begin{matrix} + \lambda & -1 & 0 & 0 \\ + -1 & \lambda & 0 & 0 \\ + 0 & 0 & \lambda & -1 \\ + 0 & 0 & -1 & \lambda \\ + \end{matrix} + \right | +\end{align*} +$$ + +Here we get something similar: a combination of $p_5(\lambda)$ and an extra term. +In this case, the final determinant can be written as $p_2(\lambda)^2$. + +Now it can be observed that the extra terms are the polynomials corresponding + to $P_a$ and $P_b$ ($p_1(\lambda) = \lambda$, after all). +In both cases, the second expansion was necessary to get rid of the symmetric -1 + entries added to the matrix. +The sign of this extra term is always negative, since the -1 entries cancel + and one of the signs of the minors along the two expansions must be negative. + +Therefore, the expression for these characteristic polynomials should be: + +$$ +t_{a,b}(z) = z \cdot p_{a + b + 1}(z) - p_a(z) p_b(z) +$$ + +Note that if *b* is 0, this coincides with the recurrence for $p_n(z)$. + + +### Examining Small Trees + +Due to the subscript of the first term of the RHS, this recurrence is harder to turn into + a generating function. +Instead, let's look at a few smaller trees to see what kind of polynomials they build. + +The first tree of note is $T_{1,1}$. +This has characteristic polynomial + +$$ +\begin{align*} +t_{1,1}(z) &= z \cdot p_{3} - p_1(z) p_1(z) + \\ + &= z (z^3 - z^2) - z^2 + \\ + &= z^2 (z^2 - 3) +\end{align*} +$$ + +Next, we have both $T_{2,1}$ and $T_{1,2}$. +By symmetry, these are the same graph, so we have characteristic polynomial + +$$ +\begin{align*} +t_{1,2}(z) &= z \cdot p_{4} - p_1(z) p_2(z) + \\ + &= z (z^4 - 3z^2 + 2) - z (z^2 - 1) + \\ + &= z (z^4 - 4z^2 + 2) +\end{align*} +$$ + +Finally, let's look at $T_{1,3}$ and $T_{2,2}$, the trees we used to derive the rule. + +$$ +\begin{align*} + t_{1,3}(z) &= z \cdot p_{5} - p_1(z) p_3(z) + \\ + &= z (z^5 - 4z^3 + 3z) - z \cdot (z^3 - 2z) + \\ + &= z^2 (z^4 - 5z^2 + 5) + \\[10pt] + t_{2,2}(z) &= z \cdot p_{5} - p_2(z) p_2(z) + \\ + &= z (z^5 - 4z^3 + 3z) - ( z^2 - 1 )^2 + \\ + &= (z^2 - 1)(z^4 - 4z^2 + 1) +\end{align*} +$$ + +Many of these expressions factor surprisingly nicely. +Further, some of these might seem familiar. +From the last post, we saw that $z^4 - 5z^2 + 5$ is a factor of $p_9(z)$, from which we know + it is the minimal polynomial of $2 \cos(\pi / 10)$. + +This is also true for: + +- In $t_{1,2}$, + - $z^4 - 4z^2 + 2$, $p_7(z)$, and $2 \cos(\pi / 8)$, respectively +- In $t_{2,2}$, + - $z^4 - 4z^2 + 1$, $p_11(z)$, and $2 \cos(\pi / 12)$, respectively + +We established that the subscripts of the tree (*a* and *b*) indicate constituent *n*-paths, + which we know to correspond to *n+1*-gons. +But these trees also seem to "know" about higher polygons. + + +### Some Extra Trees + +$T_{2,3}$ is the first tree not to partition two equal paths or a path and a single node. +In this regard, the next such tree is $T_{2,4}$. + +These graphs turn out to have characteristic polynomials whose factors we haven't seen before. + +$$ +\begin{align*} + t_{2,3}(z) + &= z (z^{6} - 6 z^{4} + 9 z^{2} - 3) + \\ + t_{2,4}(z) + &= z^{8} - 7 z^{6} + 14 z^{4} - 8 z^{2} + 1 +\end{align*} +$$ + +Searching the OEIS for the coefficients of $t_{2,4}$ returns sequence + [A228786](http://oeis.org/A228786), which informs that it is the minimal polynomial + of $2\sin( \pi/15 )$. +This sequence also informs that the other factor is the minimal polynomial of $2\sin( \pi / 9 )$: + +In fact, both of these polynomials show up in the factorization + of Chebyshev polynomials of the *first* kind. +Perhaps this is not surprising, given how $2\cos(\pi / n)$ also appear in the spectra of graphs. +However, it is immensely interesting to see them pop out from the addition of a single node. Closing ------- -Regardless of whether chains or polygons are more fundamental, it is certainly interesting that they are just an algebraic stone's (a *calculus*'s?) toss away from one another. Perhaps Euler skipped such stones from the bridges of Koenigsberg which inspired him to initiate graph theory. +Regardless of whether chains or polygons are more fundamental, it is certainly interesting + that they are just an algebraic stone's (a *calculus*'s?) toss away from one another. +Perhaps Euler skipped such stones from the bridges of Koenigsberg which inspired him + to initiate graph theory. + +Trees are certainly more complicated than either, and we only investigated those removed + from a path by a single node. +Regardless, they still related to Chebyshev polynomials, albeit through their factors. + +In fact, I was initially prompted to look into them due to a remarkable correspondence between + certain trees and Platonic solids. +I have reorganized these thoughts, since from the perspective of this article, the relationship + is tangential at best. diff --git a/posts/chebyshev/2/path_graphs.png b/posts/chebyshev/2/path_graphs.png new file mode 100644 index 0000000000000000000000000000000000000000..2137309e7099f20d6900a5d6529a932d206ad3a6 GIT binary patch literal 23724 zcmeIaWmuM3|22HsW9z6G)QpLwk^&NniZs%VC?TzMgUO5mii9*MAuTPfGD?S}a1koq zNH_1=%skKWetSPX$Mb&pbIi=`jc{J)x%V&DTEDf=zvX4ccWyhfjY6U9l(>3HfkN3* zOQEbg@!Mv6CqLV90ROYm`l5u=Z}@WgP5&AD94oV7J_4ts z>@Rveps~34qGRiA`Fy&dZFEBS#P?h}E%GAaHPh#9Dtok@K6gcLrSm;`S>skfhmYvR zt#_vcqWXZiIY^ zZc$YpAU8+8B82utZ20$&q8t1F{R8FsC68VI{ZZn7zKNCiKeQknkr^2o`YTKG#czJvMH7&{xsA|2)vF?kBi8(1amTz5suIuU3BRtH?%DvY_ zqp`8RlF|FOJ;Xnf*&EE0m6(&}sjJSn+*RbVY{Gu?o30rPkjOWx`;oYk==+c3u?((c z1JT8wLi<|7-Ca_oUBal(_e&W(Y!HPMMXs~fx)-9W%{NxgNlja^qStxW}S-H zm!H(78`V6ek2|RoA%1ODfki%StQO>iYhxx7azj!l-cN93Q=3Z{Pcc7m($CJT{ zsc62+GOb=#ut!{E;hJ5GK>#;5cXxb3a=E%usGk&j&T+xf_cxuU`mYVBL>32e8!N~P z3`Ch_x7)RtrW9=KH*3()(6FMKXZQF>v6qSM7RoU68|n?V46AYJ<>K!Pv98NBZQf?T zm0mSfty0^*-LGCwMCgsUH%)}t!^$ur!J@g(99E6Wss>Go>T&V$lBTAnn|B;~et);{ zxxR3Bw<}K%T^rzyl&N}k_L%N`xhm(KpZ~CG=Wx?-<5-HY^U0TxZO)XUM- z?hR^o`Fl-GOv)Ko#yyo(Rr?<7lPyio8x0y995hQSJ2{{2zL-tt)E}9%JVWI&DEF1j z-bSxrZEcMpDO@UXUlPYIY7f|5FL0PBJ7qo7Vq{boC6O~#C&lGB(Y@5e;Vw}VCS?8V z^TEEyEXiv7;x`PbBDPM-hP>i%pRaHn$!unB-({or?Af!NZXcrU6%p7&i|6))w41Gg|Z{NYJ& zr?#@xC(`%&348g^&rev|Pug7leB*4*`AKP#n&+o##r!O`2;@t=JlT_=yKF)pB;?MQ z!;U}yKE;U#T>8F6q_o_RWwKz*l|xn6HPe*s9fM3TFI#MwlZlSQkB1?)P3nQ?9jzD~ zyI+u%nJ;Esc|PVk<{X!jl429=LSd=pyOC13U=kx8=!3k}Z`QVVrJA?q*^h;7*nR#C z9$S}$nL&WIUEKB9+FzBSf_$plw#sfRli_*eVxCs>Jpp|^0lL+@-Nx^`{Cc7*?ep|7 z*U4bBG>JmQSZ|#aN0pu@y}w@ZBjxvs{c0pu5>g5Uim=>@y1JImjBlSKAp^OLda>rE z&;Jyg2w$BKKg_9r)knXAExVGJYWA{tx5)YIPB-V3Y28&Gak@K~9tu91VDXd8`SFO> ziY#ia*zT%_2X)@}@&-^Xi(E;v(ptR#Q=HybX_xTa_igsu=_|0l*0b&QeS)3yvbYPK z0XvW5&05wnVeTvQF4GCRRr7t}MZH6s7C8o+cOLP@9`TdEJ}Ld``P~g$RNg7}AJWj& zoLuZ&6-H61HjWMTU!5*mX%5OWwyNx$z&C&WX9X0%DJLNMu{Ib0X}v+5Sdfk4k0L;n>&HW?dr_D;qj7V(Fe& z$M(_bYg=1Luw@~CutlyhZsc9>5Hdq>Btwx@jLJZ+66VcnHKY=J+Ip({({>K&6rBRA zg@IVA>_+A&d8Tf%F?jCu)s@AfF1z>lH}5Pj5uQn9)yQB%Axrc5>sei0wA5tjF>n2r zG=ur>QzG+OLPv)N2d$QVl^B)zoS4Vs>U?C6>{2guaYSsVg;K0d8Rcri*fMJG_m*^Y)?OD%F&|V1h8v!TC}|<`Oaljop?PUap$^)D~W}L!e|sy-V8zts;aYICAgb9WLaepPr~~4 z3niIWJ>{fUX4K18bgr(zp8pInbMArSoi{cQ&7dbBwbQAwlF!BJJ;irUxSnI5P= zbx_AakGI{Xp4{Tcdz<_$wl+QC>u@+G!Fm0IM|M@AbjP;w&AaGcq1ax2LK7VqH$Z>W zBkP*Bb|_2o`=d9%Je5#ZRz4{cq%`0kA(jvqCsE|K-0^D~so59i%wrQZpY;0sC(=hA`eE8gJkwP7mxYLzP_JNII5A9R&^4m3{ZjJ+DO%&3G4%73gGQrmIsC)#iYJmRU0H;jrrz3^x=_gNn>Hs8G{h;YB&xl* zk@_k=KD#ruC?|)%s;X+25~b-0qT__4sX=?5OhcdWw-f=?czU&!l@Q{Y%(%3^DQ-Q{%l#_UVm!;<+ib( zHWi>H78r)){t;T*&Qy-C6Fn8_F7p#R7|y@HNWZ@JMWW8N4url!9D*P?I9QR{PeD=f z=Bfc@&Rxgl*XIz_)*NiJb?Kj;-B@?ttwGN;@JS}7rsOjAuK8-L$t^VpC=OCsRno|G zSEqI7o3ac2u!k6-uHYLc|^eG*23&q_@hUUDqo%LGWX8R$};@&^sup+S>?CXn=B1~j$8bB)GTpf zYT)H@^(-@WY<=f12Qe`*EFyqJhxO;Z6r26%!n=j0xq zidM({$k+}xoJNGm-Mo1-C@84omxGj)ls}th7FqeL_|8Oq_zJgC$ek->ub*%fo{J5& z(?H2k8EEoYH5&i^k$=AXW%@u&a4&%kh)3r3-^au}3is0fhZqs6MnC`g8~dg{sfODl zO~z)ljeiTH%k52h54@^&a0&P%WwkPwX*#biO+J3D5SL+?){G8X2Y5T(!AQy260Kld zmBi;QywEQl$az9{?$f~u(!YYuvswhRdhb1xLBHU%>8}NO$iI136nlVf6S!$R4FPHg z2KP`}14zc?PgYmt^o0fgDfXyaWOY)6WF>WC3-k5)i5^D+rBD?0KR-Tz<|fai|G{J3 z;WO7ou?A_kzP{dOTh=;W=6p;ArG|i0V{`K=Qf|*L^uLkt`SRt9)}7A>9LGOyN$+%9 zG{BYt6MA@E#{wPZHB%!&#EQ~x?oGfxTKrXXjkHD;%|Na7qMpjkeiP%xyZZq6WdZX@ zPYSW`a6B3CRS(Gi)SD~MB=Jc5KpShs<>;e;u+ z>jl-eS$i@w#g&btXvvDukYOMd0@5ei$K3e9JF57A_3ekB?V^}RqG*RNG{kaR_f~4z zHY%&9-nc9otw0($a97XAEsT{h!4^TTGcB=oN$W*F6R?HyYeB#nh!fALFozp>4u4kl zi7XKo)#MENJ+#ru+IfaW%QF?gTs|Vp19FZ4A&RUt_y=7z1TeHn0+o1@1MJGr;sAwt zG{t?{l)Z57C%Q=Y!J@g#SxA3?`ziCjXFGT9w9FG^tF-c)MNY`y0EZt-11=` zI#-plsE@1~r4<&e+ zhlhtCUn_)M(a^UV*HLT!rSW1#ZS8`vya!pzO#3H(dApyV?R0l{o6YO&X;74_x+YHV zhsLR8-)`#&U~gT1I#z$J=qJ?b1%B8xB8L2Rn=59FK`0QE#hyR@$)29?#y@|BIQ9k} z<}qn-8r>rhhQ`oME(atU(z!B|O&}0KhA85M-=MBCaskVPSXc9B^_lc-?57uPPS&>W zej(obTx?ev$tu(q5|rp9eil1Db{P_IE9W-xQp@J+<@o_Q_aO95(jAK*?X0jbT5KmY z%glI(xOd&bDtlWR^i1pQTF|EeRx)kzC+MAwom*beL~JNi8jHtdM#GlTRjo%{3-bpl0N#Vh+wK;^1P@{LrKZIeoJdHwfjB1uH11|d_KA!pD&4^Ff^16lwUsQOTk=D$*5mC?d8=oI%WM#R1 ze=i#<5S^9Pw0M#>sqx_9zN+8=fTz=CnlI08*?C0&0wrSuF26=6$;Z)Oi&&4w*G%U* z78@U5erMZI%ivHr;=VG&xE{Pb7>}69A27|Iyu9y!i&MW>(5?Gd9r{a@mizk=!R3D_q!> z^Y-@-M5XB}@vcD^3elWJD!xu>vUYF8cW<|e2vy6qF(v_$ zpvqBl;)7Fnec9&jYQeEe2s*(f49=`CPsz!~DLIwAB6SZ?x#q#veG>pKyj@?OC5Xn> z-a)%Kha~B=D&EQ0JrEmSo$olA2GYRe-3-_aUea>o2^--k-H>{!QQ?(7dPSZG3YeVh z^6n$WaTFXKjp!JmArMA&X&-<1Z?Ee&b5iNp}xDuvVWU;n!dyeFhw_temOdZ zzd?n+0a~i*#m71YP6lHIv(-d}(za_ku~s!`%T2)2azN&+hmx`l2OHu{z3w862(@f@ zdyUYyKokZ(?3ACyL4gNYU|{_o)b|S1-xs84V}H=UWB~3tt-4F;tV;iELH{b?_~?|j z;Is;u^6Kw>r`GhZ?Hu{fo0^);atC4#3)-1|c}5%1Zbz*;O0OoT!WcjrL8yI4V6%=h z8%a0N87|<69rOa+n&z3xGv97{PYpIEd}>#aeOQ+l{Vsz=%Ad6?IzT6gak*a{u&X6+ zbKhzr3PQ2x?ixNwg>?39cLq8N7M=Pb3E_j=@FY3opSDk8mtsIyHiRoGEBndtwjA$V zXv&^Ir|zI-rcFd}Y5^k<5oeM_m>O&0*c?a>=)juZ(U{`q7b)hM94i~y#YFSOvFjP1 zRg=0=4}P{9I$pv2V3W>?F(OyWOsHvyvFN5q|NDO-EgAZfk3#{%*HnMJprvMg8+6x2J?39sXkvj_}%30P# z5=ebXfwc;N1wiP^%9*`2kSItW?Ry!%q`xpTqB)Rt`u^Y~GA&<{?_(as71C2=MV6A zX^@83Eg^e<4m!LwiJ66=6ggMdW#>YXq{5^{LQ}!m1%c(th)CtOypYsat=FZ36-L!0 zaZXgyHF2deUfFbguDcQ|O+6aJKz(c<0sSb-01fB#=risj;LneL*udZQlxrfdbD4dz zw+f|ai0W0**sM=93Dc&;HUKH;WU^UpRuxlYot@qOJ3}Z1^ei+_{#EtdR~N_f6n-pY z0nbBiB+4^VUvLX+B3Y)gm#6wzbmt{wWP)d2m=G9DR7Rq7fgygqe2w=I0A(cvqcBu~ zIdjbeE{E!4zni4d@0CDN2t?cE={h3BsCI``cJwDH@Wvdz(u0ivT%l+amACl@XZ66`4^ zL})OIvKfQ(a4M+mxtX(*l$ z=k4597dvAkBlVKPspzvrk_Bt2cy;zBr`fkNeNW|2A}DfxK4zIfRp6-+SzYpU>WGqf zY1J2MZwPv3rDgGbWB*74>Vg%Xs~2c){^~)km9K=D0$TOBFL|%NcyUbJKlVa@gpTWU zBT>T~r@o3e=QMSBi-i3s_A~ckk>a7fHu`F6PTi!5q3$>aAkTqmyx3{-{h7$&~vN(oC8h#0Z z>;3qr%{PC1ddR;#Rd0=6=hFR|l8}8;{oVBo014RyT2*RaEU5!MXGzKD)LmU@=0dD` zE4@);H3a)5gNj|}$3?L&o43=jmXboX)a<_8tkL;nBAh7y9QorH?b_~?5Vl`Qf3buc zQvf;$$&4ln6(%6aPiWZI15IJh$X?Ew(*2YPE>Hj0w0hWhD6Eu-sP^)DS}{alV_n~ zM`P76Bbw^iI2578+=KGr>IQK<**Xb1X^06Ge}BY%X@UE;+z<*0P99nc%K;py4B_WO zEwgu;9#oDQRSR$9dr!~oC+Ya(;XyK}^3NPi%I*kK)p3kYnUODT(ORft&`CEhbuPOaTH7`SQO6p+U{afF}-!G6aZ$3 zn~yIbn!$!UAzS`^Z;)x)?H`}g8q6##s>w&iDaQIoGh{^nhYki4Qe<6SUDZvRnw$IN z+!qu9=#>1OYWITiYB`T&GCI=cx~s6#SQBmg?^9uOSE*apS<(l9@@u(4pa~c`m)qm7 zX@%Y($gW3E(3i+!OU;D)>e#Awp9b#GzSGs-4Jxf)Bp34qkB(g^x4kH(HTO1cFW1Nh zBqW%UTByQYFx?kk(A?Z=H7p|1r1Pb)x%sK~Y-$3dspZYikwvEc+Z?~&-BQkA#{v0~ zNb~BZ7jxK9UijK>i>a&BC86?85L$_(XVH}DzlxNz0DMW4HIpC(qlaKS{EqlF5JiMn zH*SK%v|T;jkY88-zC6=@Lc)_KvyQF~2O5Qy0p6%L1=YUDpJ_EEJ+xe75*@wapA>&p>mY^$$9Lb$sf*21sg zWX8j+g(4@^$6h4d(xR8KWuFJ5p_#MD*cm%92F>zg-sgRQ{tIR!yd%_Ddx?U9Sq3y% z)uz_ky#z#KWU1LQR?de}$9Yt$z%zOm)rT&M-$7L~Y|7hoYv?+((j4#<0^+k0ZH=AR zPuaayV)nD0X%SJXUY@O~4m4tyv$dV&eY?8SG$YpisB-rG9fy>$Uw@y{F@M<{jFN-0 z&?|OoLgOBG+f`9rt->A%$?w>zXvwWtAky=0djfRK%voA~7 zy_fdW?6*3F%E_9dRJ(^F1TjNi6LOyuGu`%ZFs<41S-bAaghFsbD6hE&W*M*0v{P?eBX^`-%T+?)mIv;rlYP-CA#kqrI90C+-J-bJB4#Hf|Xz z43O0E)(B70jvGs_YhG+>9?JF(w>(`R!&aJ*;=d};g((BtOg)#K+37O(qFW^k^A<}f zMOphiDwc!%(pGfxe1TcU%oQ9V3$CBq`5et3mBgUPb4ik-Z1yJ^#7!`%vG25FvrhBC692wSaD!oI~|bgkVXXC(})wL-?+ z-R}t4a{j$h_$kIFP#XClJTp6wK!SDY6Wl(bW1ZJz%lT29e%9?KOJn`Qk!A+>UQuGqJ zRmVR6EYJUSg{rlR^4wgHUJpWzeQAA!7Bq+<1=Q*ao$UB{#rXJK{{nWKjg5`kt%-Kc z$zD>eDS+^plDLk4@cy23AesJq6HV=A$>@pBlM6|?FhG3fjoV3^=kK3I-EM~on7ImV zc_h&H=Np;@?)&RoHC9ZIze{DIQH_a?9#Q$5kB7~L+GM}_wo-8C$14WaA%PODy?>A< zY*=L?Yn$1>Mfhn?MPHN}YfVSrs@e3k)a3CNNe}pIQFfN1tlG*qc%B zK(%(b(0PPv=w3*D=$~0I zH=!4n$IBy9X)RK@>9yocOUHuo6Ncuj(ML-{SsD8$x?djSvh0{NRb3M6Z%$Foq9)r1 zx1Th3)si-U()>++(V`;PeEA6NjZQ8juhO=ho}`>sfTz}&GrkfqPf*R2K|5l1Ftl+r zj-}<5K3Z6eP0}$ETWW7g7Wm}T&f0K7-w0P^9-8eKC7%*nrYV}LY);6=TkM@ssPJ-APziV%<^k9<0=G-nc zbI4C@cV^vg;m6Ioj7=xkExgk!R(LyQC^Rk%$*B%=>a;EW(6}mJh|g496Q5t*&8T8+ ztsEnLIEZS=Vd)DmzucrF!CuG?G(B$W|f5{9}}OcTAf|BrT*d0VdL98!)2M$CD0@1J{X{? znNuv;kZGDt=WN#bluo@Vt#;jh^!5#t4T_=l4Gl_7<*+)mxUa684_}=u5UELO zqS^PWx#az`kxc6A-Y*SZ3yJEiGc_A_+ms>tn+t0-2C>ynGiG^P%`S;L4#X)PD;g?gLr1<*Ww??>va~`cK%hN+AWRHsum}O-2^zWY<6x zjlgb8$w)}yaI6KYv=J`3{GoB%hdk)msn87#gxFu|W8C-d#$CGbbB6uIpB{PeorTj{>jo1MuPKHU$9#S{IgX?t*#bDrWHI8tD)-)~q9GO%J@fiIo6) zj7Af=ED;5W`j*!8(CY>y7Hs0OqH=Fw1q5Bk7OqYGSG~^t{7b2b8g^l*A42bGXPMS8 z)Sx56E)K+akmfo*43satI$skIO=F`^#D5r7f_=+P6o4|=Ytx=0&6&@)N>mca|+HsD?XnH`v8O{RLg!kZVFWQMU&3(N@R8rDm5 zzYgQJJ+|F+>ey*XBZn1IUD zwiO`4h|F~mb2d(!&Gb|h zHDuI)kxPdK(tyPEhrgu;!l0!CF6^xpD;F-jrsl&+^`7;hs-Ej1jIjhTA1`5aKM#t% zbd^WIcF^~xw-7IgP4Y`|HF0=4j$L_rm8=%hk<8|gH6Oumxxr53>)QB-%_Y~xnX1wk z$B2K0@Y_(6Pz)N@*3iva?iLGTiHMpCC=-igMIwNhj5#V$0ShNX$GV|v+BY9n6GxUx z;!!7&Lk5`D4Jn!8!>T~|M+J^0zQMMdfkmtVF=%7Sib+__HMs^hsc=r)E%b_*_Fs8+ z#E%FG5b`woG{8;F3NffBGh&0m=hG4%9o49GgqYV5A07t2(BqP)t@Hk!lC#645P4v` z{1s@x<$OM?vffqc8<6;-~$*ttN~4LYPf|U{4z2KA|9^8 z+_#<|NR~Gw8uYp?bk8Aa_F@ytA%~Q_?8Lt+0rl%e5KsA(}UtBQm%z{bJS3 zGD|v0#!LK*BiXv_MN1PzqNCX$8c5tONWT{3>zYv%a)@bxd@K}Ql7{dFgmP7%D|SBV z`xWCvSQHn@+>7}5gd5i95}yiJ_`Ec^;0{LN{GEAGNe3hu?FNn?sE24`TpwcqpbawV zOb9fqdfIUeIN&{%A|n~7=V0%`{HT6(A@9P@Pd6y8xeg(b#vFieN9X84$e#3MG%869SG*bV>X!4yVhJ>PzMb z6586@4+TA+X@avu(#(Q9L%$|mVxD6!oj(klEb)fXVcm!zL7LY#>})Y{m|^1B4J(Ls z7=p7hTx6C0CPubgZcB5dR?h!(O85mVfA7|ZUZgtUI}u4`mDnjwY>OyUm@R8V%Z~alJOzb_z)s`U`|rD#fuRo zf31KMBL#495raS!+tyk>c_Kso=Sv}8G7MNGW=GrW5wXzXilyb(9CAcvCxME&7O`xY zn3xcw5QZl^4s%|*U3z7ROuEUW$gCv|Rx=ii7>OCNE=9L!YJ|#%`g~^Jk*4$$QvTi0 z;L8%#(>bA8V?xRT*-j3A*%xGO$cTIMZieBIy-hDc5y6b1BkGh9p%>B{411?w1}X)F z<#d@FH^cTF7It|*E6pnj>nzdAiF~0CPb%g*FiaXCl@1Fz*`PWVAwbW=M3rolSNkWK z-j(~FUaQrR4%h6LxOP4Mo_LapZ(!J<)`&S` zj8V_AGVsZ!VJ4qIiUsMUKvHbz7gkieTQ`Zmjc(;ne2Az~U3nIv%~%y81oE%Ub#d7Z zeWC{2w|x@jvHN{wKglc>UiCuvK?wdj|T; zfunbpR0m}1wyI0~rg`z()<3lLE*;WW7R~zc*S!xOe{3s%&3Uvh{tQ#sz5a7dX95I& z`|VQ%llZ2Cd)6~)s(qqq*{HvD$AbryKmU}7&CYed-7hG_da-}czM}A=#B2<@lR~;8 z2VDmpb^d)={8#k%b^pu%LcVu=@Bi|^kpK7pzrXa+XB*i{DcTfc?6gWf^K>ZdKNk;f zmPu%1?cLw~0|Vo#g87EPv>H-xme~CIc{wm9?(JJ9SYS8>M0zxc=dA3PsFe$1WiaOS!3&u=(RBZ~pF-{%`S zVq7@#RQfCi)#G4cjNxaySHw=wm35a3?&zb`P0U)>nI=0S(un= zp$26dRM1#n4q>@qlTBp{u8QgJzjfmH@wdRPgSCeb}|$M?n85v&gQn z$aY@j+#z=M>{%y}sVTr)W^QiZx={+{yZ@`0xO?~3FT-pZboS<>EX&U1kPy0@_EFt@ z-lIn^Zr!@|2nfof-Hge&zxCvtBEIIT{_xl}cR@!d3^V5#oK9(^Jr@v#AF%DOy#N(P zF__m}DMd#}Jt@Fm_O?K%q?}wc46+%3E74I={jgqlm_pDetG^7phl-8O6n)Vt3PpbA zRm|z)GrnPA$>5@0|=MOB8hX>`rfdgd&Hae3byymU9Ac;6(Xp~=b=HGh~ zb-Y5Me=j2&s~GMw@i$J$Y%(x1a;DPqn!SZptp9~L!!c(%0tmHF-`~bZ{E0(;WBTPdF$&v z1+r0(>gwxxoThFiY2_%e2T1woXKFOQzP$YzgOJ7uHCq+D-ypq3|Iniy#m|j{tj^Ju zS5(wv5T4kq>#jZ2oYD+ac>Z!zoT4~fzN>Gbs+ZkJ^=%sYFVjwVQ3P(&o@ej|#!ZB^ z$dQVZX|G`y?k5M6dRC&MEd0gghWB4pp*W=*=JJ~cyb;p^Pc+RCPe!5*``GR;% z{j=FvS*15@+0_7C8TabdtKh*?e0-{Kyfwk!5($@=6ICOSlP8&(nIGG4por#NqR=y)tmn?O>=e#4 zuD^1SL&w*~v1StXTumqfb23I@tEaN5N%*sxobY^gV z_M^P4?8WgGGhQJ~u!7Fr`6;udCgt`yx&f0vvG zC>iHi-!FPLM~nR#EuSnn)wsXr*w;6n7|%wPmX=aS^N_X+@B!(`h8zvKP`2W&N6 zH&8q#P8~ZY2Ilqv3{B8d6Iv{f^Nbnl(S8<|e}3G)1>@L4h3?8xtlfYW{~T0;IQ;7t zOwNpY)OG!G@b&YHhLzC-1`ncD*$ckay^*T6pO!WOC!tKfz0;GFlstNjo+8hVy0g(E zjTl>no&7YERD|H_&Za+KRM%V^DdswJNV~|bpgK&*nYwmgpSfiaw#+;{jZ_*2hGfVA zES#Ka-?pn=xNu>xv#1ECMtjVybF_kRo9KYmk6#{G(m;@z8M`SWMPaCQxTE-ZIH$f-{h;%pGYTD)pXSmzgfoI!Z;k6IKVA~sl3agrzH(N5Y9yG~TN z!KS2O1qFrf+vko;K#};04&!i=++z8A5U)XujIU{E1o25+^|^Qd{xmr^g$-4%kC9Q1 zytwJ`qsXNt7kVKlC0+OBOo&9WpFUk2F7xj0%Qryq%v&^c=iH21{j^6DS*|?ddCJ{70#)-+vX*kiGyzk$?&vX3) z1u4>Q*Gco_GVvv&9gUa^VjJ=E|H#VYhDBS@tKbW1$hOoSY0FW>`uQMuqM;OAX9E436h!`lr5wH+N;RNC1*-aGDKvY+z zN3UNW4Lx_~)8g&Z64OJ?vqOh|{P-bx_3F5>pv&Al-4e3QoiI&I;pmC8_r87ml+z7m zibjOg3Y=_DoH*g=4J*Ix_YdpJ-;?9y1`QzC)2*f{1N~p$bY#7Mf35)MJ{Djk`!TuX z&h|*}ExeLs?>k&3Wf~LJ>lZcAap16vLUHkJKv!hC18{JIiJ4i!&@e_$b9%6GS>OuV zAhU9Ol!wRaYUdOL#ejeBE7&-wwaC4wM%?x9zyE&xa( z4vGio6N-TR4vXx?_$?na9pC34#s^${xJ`I*lXkwt*OZ&c!L+I~JLu0l)W)*0v&&w) zcFm2pm|KSDR_%vawqwWceSM7wsUQxs5lDY;>Du$RzC4z%Fx*zVt&lZ6UKQq1Hadtz-@>gz8MswlA@Dz zOx(+XdW6R$3Zii3slWSF5b;ou6QH7XWI+nJ1z)S#^2Yx@Zx8z9^XGfQdGp#wo6kzu z`=TC}bp6Vjw?0cpq4@4z4cy9b=#Ycv6W!G^ZkdOV9xY_FjM&k9!Y6uge(A9qfJi*S zfO>?*I&PdXAKXV z6?y$Yi3<)Mdf9$p-@dM9SSLhV41;2@hAAeCv%AMF0`v|EJ10s7h@8xC-^7a#rPw#Y z+vS>8Q(Ro!n0iyZ$i>4nRjmP?l|&qs08e;0siU+M55Z?-dwGLppv27@3%V`6*DZNR z9U;3Vr+M+>z5n7&@6fjG+b50FsUvP2DPaKteb#2_Et2|+N64q0z;=(|96VaqR2C3K z958?z?HeRMtZDvonv#-_I~TT4zRUjUv1|YRMib>EjZ7DsMEjA}6Q0FCvdwr8EPkG!W#>MTWmLW@0slZ(qWUb*q@wc;^NuFoYUz`Ui- zE)(5l30V);Q@%F?Zpcfcgs2iMRRTN{4quhb2){{COo(jkd4?Kg-RnUyr_tk`rcJ_K z8^>~ok~P_XxJ7dmPHdz^EXC^<6&^i$G`~dLi|#AR$nwNkk=`Mz94*pNva3uo2iI0dth6xC?rrbRAC=x(5d?btj`)um602=ZMva`}JUc4Z!3c+$hg27uH z#$QDflR*x4wZ7h7QX+#y+zV$$sC|=TKxzP<)<$TUnK&N?PmjNc0EN^C?s~)YmL*}YD#J-f)!R8*Fx_2#Rxp0b3!-wZ6QoabY-E`;ba%a3+>d&1iwgRCGze*VWoTWMkJrAjk|-fECJv28t`xXl=*l;GcN9#-^B3>`wC^;pfjMA7cq z^8r96qVk6>`*+@d{`sdL6Ng$%CcA9}dTazTuYX*RN-BzaHPtfKx2>Lg8jh~gGduW0 zWzDHsG8kHag_SfWyTeK9lw4Q?@LIuL%O{^-!^i&?JJlTONgZhdDB#xnw9&k?PrnC!U?%J+x+q~LajQCCem3k$%LBCsryKD!u&6Oq=& z@JR7#B?_Q3;*jtO0|SFNwA~||`hNkXb!n?f$;dPUoR7S$>Oi;t{N;;Ib`6VWqrQQ` z0BmMoQP*uJx+Q=TflhhMzR8m%2d@HFlR8Q8-0dxDNlgiy)z(&4O9GGd4gv5_I=cV1 zV+ZRCX{5fSj{)T7my*uEi>j-j4P%cb7iY%;O1fUu4>SM>?ccvY3RCttbSTap#eGKt zDo!LcGRM}(Z9m9f`r~##ke^1rL#ofqm$pAXZ5qqL>@R#})_qk~Pft(vnR!smj^bL- zzbWX{1X}>iZQH%OnGkUtE*-)US%KUwBO?bciQ0UChQv+KWLKOuS3pz&ESH=r$LL;ueV?GR9fG35WCX zIt94|AK`R7Mv9HjGSIcTT^FW?R8r5%DB`o~@d!KsG_Dxx65fTPWIHpgZlJHjn4ZmoiIh7aHQCB%$>6(j6zWtBZGdmhnbae?m1~@zblnk>y zA{&qFkX~{k4%Qd~b`VClt5SCsKL;TME+Q&{ghI5WAGCcAV@$0E>tnq&vMrMAMp{Wc znbgNT^I{Z%k;SW&TZX_;6na=B7C6!X7MO}zX`TSyCICA3BjA0aKrM{NItonM-lv*0 zB|0|pp!VW2jR-eodHFvi(x@Yn5)xm53Ns9=j(}{|X}X<-5P-8~j|mkt73PCt037&? zQA7vgLo-g1p3ttgiPO%@!UwS=G{zIrq3ahD7ndR}pM{dXeiW$WMRjp3Zp21l2b}mf z0T&Z)WC_Q#%2eems}}$?+@7LPN+z?Whg%fkDv!|pUv04MWbqlLIE52LTfo98s;Kz$ z?Qt9be!&$lsL;qV3-n?Tibu>c2?}b0LbMh*XOpVc-K`&b-f<${4fKE;$XN()+~8|V zaKT3haT+}4OMt&jw;6-J1kw&F?Q!F1V*|iljd)Rw?azO_-w4o|YY_2iq4Zh;dkOaedxna7tvbK0G-ScpM>zEkX(0I@XbygbNu?}rgvvEEp z5opU41e755nX%3kyrY5{gc_rFg_kE~lu(9EXSQQ?KZvwhWRtej)}|#9(76@p-nnYG z#gi@&Ht?=w91H6*$CiY^fzThYvX1gz5dg~V`k_ZRZro^y6x%YU({=gsWuGX5@=-1D zqa;VT-B(;$G zvoo&>6Vm+i&p(^BJ-ocUh>`|wbPCWKb`0YW9_!FB)7)2?ploH;vle4+ zkLKs+K^XnA%&9Su4VG zKA*N7_oXw^+7kn=Lel{1dt7EchJ5@Xm1P%25lmTP)?k;2PUir~%h zV2Dn=fkrOnIemS7L)fp5hvN{r+RkWd=V}GT!J7)SqJUqRn3%|q)>#KwOG8JOh=#6& z%x-{7-Y+olv;;FNYeQ?MsUL6z=5{Os0veH#kyu>_n*99y<)x*y5VKNR#z1g0>_#-e zm!x=uN8&qW>ZdGpk4ZoUZG^Wh7Me{$HO~$)*t@fF)MDCJ-5e~}lKX@?q>C+vV7VQf$y^bfkh99$71BV#sUcLGkPPaz#m^SreAZ|`({dHnS0l(5`6x?KeCL*ugo z5LzB{Pr+%fzTCj0DhbMXrvUE!W&MB>vcrpx->S-kG7&XA1C|80-i5LXfa)E}BRj)J@&VV`{}`NMb-amh$PX4oyfYTG0Ta_zFyK zigeTMGqxgN?mO9MJhddeG#{Ctcz5N;OjgB1)T7y=#I}Xk;lCdcMnXZd= z^dfFr;9c0{Yieq*Ku01Wgpe?cS5J>Y{oW5649t{iPF2Ba!UjYt2Wo9%BC9Ko0+Ix> zr$dJW&WS^oVl zYQWNcF&GiNdMi<;0e*6N=25qCa?%)Z zH23z8i)Y7vr+83rzH-UkK6IBk2e_6`Xem9zJ+5 zcP9(r;e1Y7_z$>UG9b4jBc-u;sxB@|Y_mPT95Re*7>I;R=-=^y-R^Vu;nDfTK&tu& z`ZT@b%{ys%rAhD20?;0W^QRuRA>}t$c3S??&MgB}f}WYAmUO9;A3^Uf3)ke`W6Gg?U_*RDQ(zaS7DI zCK$`4$Dw<)$)l3sHEa=h*MTVDuObK_1V5MhW?l8$*5~K|=t5zye~od(RUgR2+?b4P z+PvAHh+L4HJ<$vLaSpteD2foHAizsc;ef78Sy>rD1q2Ub^OY0TuB}_Q4l49DXgLk< z@7x^0AR=CPXR$nCEU??%sKPkN6i1pQWo1=FMLkfzmDJQ6ip}35^0q=u>!bi~qr42^ zm07cH%13BuVsJ`d0%(V&r)3@VtE14ZkP$h(486_Pkn&EPIyHnPYE8ZA2?l=(T~`*j z02R3o?*bzvyxqnfk3g{q*E@u_lzHyQ6)`YUh7RmY9q|Xq1)3uL7-Gn2ZtjNQzenxz zKui4s0%Bjkex0zuEu)A-M9&Djf=`%9Kw#luw%vj~8EF9ClOF>r)kJ1~1y)H89N0w> zm3aL?P`(;b2j<$32T`@MO2ZuR)~&asUZAVZ#>~iU!4oF~Xo})&yfW&qoHMBnV0A?3 z-nMfmTQr`RLb-~81k9-i$#cT&lk4~Vg0%Egbk|tOFix|q*&0b;{BQ7jI|;akBrsy* z8-~UMs;>gKw33NQ{JnekGC)mna9#toDWKgV_JJTk&(W$4OeH`pFzveB>%%AV%!6#{1im1X6;uOZZguC}16k*p71_8UT0sKjx5r3(&I(6Or_R z&vEbcXgk%N?>EW^HnN7Ypw4)3Q+V4X*R-Pl+A59B(~Z_$9yrR4{_zrf^tU22L({umPfp!JbI#HDs5Ui4mhKUO9uF z1nicC7kNbBOVFkd#sAswqoVu}HR*PF;-Dp0!O}zpnSmUS1H^E`JKmJ9D z?QN5zwJ@Z+8lRDY7dyg?)d--xY2&*|R!W4;FOI$PUPNU;W;DaAYtvhK7-QzQIK4vn z{t7S?WFsHf8qBIwF51{+;7vW3G080&s6snJxBa%AOg5RiK-`fEAcev_mK{q3MJipp z_JYJ4P^Od*fkJrYfX~tf%A7Lh#lHKo?ki1^gCxOr;L8Gog8qiNwlXQNJK0?POqlimG@vlQ)Qo?M)^7_&hO!z+) z7yG?<@#lcmR&mZX>2QJ#JWDY~`YXgAOd_XXxK2Qz3j1+6a$tK-Vw%HQ-Sz7hymn4_ zX^yg*+S?BwLBCQam+NJs?tt3U%_$U_h4&2Gj;9K2RImaasqA7SY zX(AxH_T&=FlNOiH2;rsACYj9WV$d?lWK~8+SymRX97;d=UBcTXAbFyTH-)}pC+n*K z$+an2JAvQ2_o@%B6%8cI#LAlJYqXi-!BHpZ!O2S2BUX00tc?f=gl2=(wA+ZFZz)08 zkTMCv`i5)=_=Z2>Ef5Seekjbro`jF{(^2aOpn>-_w3JS zB*ZqACju4Rg0oTpClbve*14}Jq619TCjtamJ~Iv?!UmF|;E66K)!qohHvriXu>* zk;-k5$FF^&XLG@dtUDfm~%EO ziX!?~BX|wzF+Dv!r+IjkiPDMltL#rcA4Q%4F|Q$cz(xkQIX!}5_wL;r?Sd{tR6k0UUyP=C(Zl2hTW#;|K9?-(Ce4Yrq?Apc@>J z2oU+cbN6nJvVrv!x8hP!a#P>=pfEZCwl<=xjC@NKgIA)7a1!)-OnQJ*2AIDvk_s5`f;KJhx$WDxP6cHy4I1;1KT2Fo# zUltmo#&ZAuaqYhzx*OIL?6~&zUA4<_R$>b!;`pAm`&;{F(Gk@dVSJDK(8+MC|E_`x z^#T=_h=5>PfC7Up>9O$R$hX$7rz~y$fBiOg)c5w<2K@UG|5q$oK2z@8RPDcvsRaq- PE+j6?UP``r{oelr7bUfP!~~mZ(V=n95X-Y@;9d2gKd*EXPuBuckw#v z`?n*9i+nyFJA3(=!M||f<^MT#mW{y1%G%Tv zD=jP{^2i>2Kj2x(N%+Wga%!rOlvETY70r0nGfD>dOvh&pVF`(duV25OI(6z}t62wz zbM@t5DSm3HmaTcM+aR7R-d#wyz>5|Mk+jZay<98EqlKF*(|qXsSh77Tdw1gT>4IzYu5UK zSFcErZR@9!-9mo1$@+Y+WB4h$t~gn@HWJ1M@RNm$c#na{4Z`&IP}zgya#tXf|e%Cj<~PLS%x;4x~F z6CwPMPtfV2(Jrg4N-LpR?i_>-JOO_zD`9Do_>t_W#)&`D6s4e+TW7jHzm(ElX(RyHlI2z4n*$lY;fH@N=0S=?Kqdw$hTKp zo3-+BbD5?5rtuz5+dDg$7hZ8_G+G}f>rP&YZ^l=w#QOUCv#xKbMGA4SZB|h&`{CT# zc{DRc9)ENDlzJ6EV5{Ug6Yj}PE4zB%U(8yo%-ObLJwIzgIDX4l&_9m-&D@97)EvWF z|J`3y@;~bZDq}FEPR8Atm`E`zoyq3-_+tC1NyMzF=rkb-2`zjvO68)o)BMlwO7fcf zobGTP7=>oeEmN2(+Q<4jL z?aLWB4<1be567LiFIXMgRmG8~QHgU~EG~#4)iB{2^1Jo>!|cC0|M_O_xk+whO1!5O zvcBOs!cM=-WTfdbe8|Yzd6SQTCJ+csQgi9M>$rU>nmO zHA$1o#2y_jp8^+eR+3u|9Pr#(u#%qQ2-gde->sH!*qVwTF0j8bc-WRjOhhDvrWINn5}rFNqQw$eka#udnP4dMi22o z@ye~n-46A=N71R2pSsr<`d3!u_g9KXUNiMMHKk>iTqP{g69QrFvaP0G>f3-ry04`f zG$N~?=*hAc>%N-E);PS|IP9!-r}=k|BUSnKY}(eWW@S|T{#LyFhtvGr6hj94YX(z> zY&%+FR(&1sPf$esTr8Q(bYHZOm!5 zRY(9PGUUy%tycz{uPlekiW|=z5)51zC>E|%gH0UeBT;rlT57$gAr6B6HnYxSe7) z=U>lun@GD&0qKS(1RpTVI13`dI0Xn$&OS96;niL zflb3J_xdXvzrLW7wj+}W`#Zfb@yF>}t${0)4sHG{(#w_P?tKe4@quV7fJ1@u)raT# z^?I_K6QqY0Rqq){=Tw#&);7uPSh_jg_25DPcX6;(dYhqz?|Bi;W?y$j*LuMKtd{&% zusl(H_q%#e1;dlGX{lG$WtMJPm&_#ld(?~t$j9~LDlw<2RPNx)mK61!M_&1R)+`RX zkP*XYt@IQr?{2!fv|S=at;jg`{x(hTk@(FN!XAnS3-oHrj{SYj|%F zpNl6A!L(Jy2SXa8#ivH!2`u)QR!K7mi2pHr!9esfE@SLYoDEz3uyhdD$ijAd2|1Q# zZ)KqnZ!(xDKG)HA4;5QrKh@+W1{wKVM{vriu4sm(-OZ$Etx-;II zS6*K5Vnu@ZrhKvA`r=@;606JQ*q$7h1~AdebYj3HjI4&{@KfB{?pYe~TxcBH-KZhE zPm@UN%|ml;{^QI_E3&l@vC>Thi7BZtl4OvM^xiOO(0`cwk#kn1efpF{42kqzQfiN6 zD`7DAcu>jCUo9=wkZq3hTldi3aBiK)MtOvq+tQCF!chgT)ip;$`4YvbMn$PSFIYvjzZ=CK{ym|9xZ*EHNi{_S=`{ZQ- zgT|8rk3Of?JfNZ_t>SB$n{2r%Q*@`S@m8@i8_t`!zT<<(aMLU#QIqoi{d&3uENPe2 z@e_<-P<*d#sk;OvWlY}PG8bW-8LwXA)<~WV(eSVTaC@Q|N5fI$9{~QfgQwlwF5Syb z+$-~OjZ^Ei6Up~?Nf~3`voEaJFe5MWWW_}ETStd^?6h4IHf?GM;!u{_plG@Myhu#S z`S+7ryxr&2tF-dFc8W^T<|5nsw$HoF%JN@4m2tO{VZg1a+zOtk95LG3Fd9uwy{eJS zJiOE_N!~nIpN2SD=~@=No)W1(K;Bb_JXjeWF5Eodqg3_s8i9OVa?JOf%g8HJ>2(Ik zIwfv&uCFg<`T=;ne*IdCEXmGJB_#B4LaTJ~2o3YQYL_;Ak$QihqfDT@VOiYV9r-bv zxJzt{!IRn776&V)wBnx>&Xp;xkepWuDS|X#u?GH}U^Uu#yp&Wk3NZRMPZ!HhF zk;++ieCgCA{(N_yZ?R|VuS*OUF8p-t-m?_5F5{@KUWljNSX-Nj-wh@N-8SU=B>43> z_<3CjcciSFQ?0zIjg3BV15cxe?&(sp+zXT6*UUJlyw$e*B|qb8UHX@Lz1@cJClzY^ zhZi>z_e^WI@&0QAwcEvX`2}kG!ctRlZs#3k-q`1!RC&Y|=lqmBBfpp8^7|{5u#iw& zVDsirCAqjUf9XsF4X5AoWD+H($^>X-Yz+FFWj(f6cgNMqMv(sd*6nYy9JaL*0mkUE zGU>P~eDvti<&%|P1m#zRJ(T_^D(jD@l|A~zeFynLNLdEWKpVRPSJb1$_~JLeb4l4* zd#N$O%%|iwig#Pt_8uHif_Osfhu~#l`IQwbc>xt87$ZrX?sk2dFI4lPqsuIErg8k2?^f!T-yk5N~w_hley|vjuA0O&%V)H%89&DPVy+8 z{_sx9$=u!^j5 zMY?juO>!=M-CD{GM>n` zcZ=2eSA}Koa>KRQx%u4YCIj+>f$JXSG`F83yK*>xBUtJ4{E){*TDi^pib~!zJ3FRe zg=Wun`W3eQF*f6gI$>!o?$t1`(bP@0ZL_Y-a$a_Jc9$`~^4?t2W@+-?vu7^aUw(~g z7cVPsHJDa}#c%rLwoh`f{xx9s2#xN<+!Amd_2F7>4e%6Em)~2x7LSF9-|F7q9v<)Z zT)@tdTixg_V2WlFq+>o$(-5RVg66c9%@r_iU0`QBjY37WW8E z1Si36ZFl1u!}th+EYf7T#>qHe-`(j5Nypg^X2R~Sp66ERmg)ZdRF2ca1fYu=HTovb z8A`C_-4)%Ozp6J@pcI(wHH~k2Cr}ab>Lk6%kGH}?ZtL7zUuhqk+WdZgil(V?^oQT> zY!;_-co#;}0pRn+0Y`dASQ4-s_Sj%)cR@Jc)JcO)yUE7r?&Lbuv?vuVYXjTv*ZpW< z_yNl>25Z*_uhy4~@#NK%6`soFgR)Rs?@tAf^+i?Box)%@k}6<-Z{>cVo?~Y@1FNT$ zZh=fNQo2CZBsueuL%U#pJYC=8Zj;2=d;zKC#O|lPo#5e}^6|ye;EIanxhYTnt&Wu0 z%u`Y~Pj~+X3+&)Iq3Ov1g&!fbwY8Ofd+60k^*Z{B-$_7|Dh zKZ9b?KoboEIDiCm{LRFo+9b)f^^HDAJ692E@em-gDp1C0B&#ePJ>j5@=D-gGx{onU z6lDo$SCs8GG{x%T9a}t~7x6o9O@yy>W_gMd$Ww$kfEP*9TD<#{Cl~4UY#vmsChhaE zZMW3Q_)z|OvoN%0QDE)Cy+0$r&@kCp+Ggf!vNTG!venEMztW`pH>91f*iTg-@1u!? zEdipzzT@!`M!)g)cr`illF$g%EdH0ma(!jY{6OUD2A8l&$QSpaJayK_}zCYZZW#t=(_KI6$aOzBAZ;>Ivo2H7Mum!z=RSv&x+= zHkuHc&VrN&877n--oMsJ!8x%YQt{F%t`RTfD39kuOTl&|h#AzYxG*bWyuf z&SfTPd8#owcq(39O*&(!BmpWtQ3((;9-?cFCmZZ;3QFn3HO$;cB@C7|QK*XiEa#95!l9bNV*B8FexBM!lU|33Fx{ZNowx+w-oScd%hwAsG$%j@;rs8oK zTxc{=+mypJP8*M|3XBlq*!o4K>@{Q=7C+&~6l~QGXy6|UUvtW)M0u@Sh$(kBFyTUc z+zbqITphL9X(F^9r{7VN%}0iD!`toevGNKn9UrYZ{^B?)*2YXJW{$e0z5pjsn)Dcb zeBvloFi+-{XUu}xr%qk&*4Hf=O})y%cu&moj-nzmlArQJ)v_p1{TBceJT^F_@db++ zwddWbIFnbJ)x-F(dn)ovx0ZibuXP=+y$9y6J)D>R+H_)uT4d@yHTgkU z=2lTgt) zpJif(JZV6?WHhRA+v0g5$D1@CpEIbz-;;BGFw{F5<}23+v{D+bu%S&4|w2nJlwGE(hDNdA_@W}zn&Y-v~@La zSJQH-%VTh=|9!fJT58lwzW`^D#*~>FR8cV=g{>ng;3B09^UZJOMl#Dp0M7aPcj?kI zbBA9+p`P4uUHUQpl}fiXDbCfxu1nid^N7O@0>MSr@kzp(@O~8~(Z0D8!@$e{QR(oV zqJ`Sq>3i`Is{BLhJ@J9LtnkGMMRx66&PegB#X2uF?VQUl`#bfvXpT~RxUGUFGo24& z$ZLmCUe$&6rrK=Q^M6+VdXnRm(f#m!_}W@1CXkA%zIkuj%&yV5|D-A2}SRXLt5=Ue{)iIJuJEG=|iMaCovSb=Mq{rkMa++outy^$8Ku*U$ z?JDSdpeTtTgNi1YIx^X$5 zC-aU;b7mobf}2U>J^s@4fvHF696XMJ{>de9t)EiR;j%H(cmA_@pKPaxo)FD{C*Xvm z4!%nu*bzAHlJcuN=M(eu~4dj zkQ$q=r|qAXntleq(rC3Wg8216yapz@86 zc+X`VA9{B&Q&FG(P(nL0$`A6M@wN5V)*Q}91_m>)Bc<}e;3W-_!RZ*lh^R&(Iq)oI z87-Jf(_!1OH!x5vGLTVLS&+=~ow@vuV6}TqQfZ5+UQ(ir9B-n>%| zj@3rB-1U2nIs9xW`>&hF;n97q=DIjmrn)ib?ibRj-N~#dVHS@j#>o)4@wmgP=N;=H5sa-8jZGB+m4KV75f{3bA1h#(q@2aP|{to&+(&e zXm-pAltUC2ump|n{rFdZLD%J-`P|?nWq_Uw@{l|8ZI#iXu^Qsm>4lumT+fRbSxU5D z@E<|-HP$Fp-4d6H8L(5f`=!88o2;gqS)2@WS~BX(%W+X|i_*mnM9dFp<1oLSz(RsP z$Hu&TCSTD9DY5YZ_{6wc}>l(yLEoX6KaoOFqqikaDVA*&I7?YkFp6)d8Fj5~dO2 z4#PuHkFvCb8=}xS)v8U$Wg@Y7Dr_wE-a1L$x;#H!^!OOSGIJ|9DOYh5ijMg81#zR& zKwq6@?zL`Vrb9WZEEt;!eSrG8&y6N_wJd;*otSfZMZTRsOJq?F4-@~AefVV5b+vVT zYYM@Lcl2DQG4I>yo$<4QmUmCeGn62tX(Z0r*GjnR@v=-6xONFa@`^c5za( z?LGlM1#mt#oUWb3V_g^0Ro=Y4Mr6Wu=+gTFSSrx2v`|Hu)ktZH;jFFNz8KxLYm#)- zJgV|Xnr5Mx)u&X@Yys^CsjkT(OJ;XiK^&RM^~6BSzL5DobWMh0qUh(N63hr7>uV!` zJX|rJ9BtWG1w~<6py()SS_I2YLD$HW6>>2%weGO1jbQQUTcall5Dh-#qwj)`oYb*j za3k@>+TI5y^AB!#%dOgGP}Jn6-eYz7=uqt^xwmT6o3m|kh%@=eyI|pFNK0s^rxgnY z;GefnYx015qFRJxVi2NI~PT1+7p7JAu;)=SMk zgM#y|iE#1O0=m6djleYE0 zvH_Cj3?z+6>)F!x@vrUG@#Xrt%o7nmYn(80GatKTTf+ECMn4_&v?4S$p7}gonOwG* z?U8`K1<|$^@Ktar*5*cz1sYhOk=ZB9KAT?(<&M`}j{jqz!s0H}SZfa_HRSY|C|T*^ z+0>7fm9X0SHl1i=J%;|gktS)Nyji7JIeB2g)B7nEQe37fRSpNpc18UGoX6SLu7&}o zzv{oW5^Ud$gyDQ|@PK3Z&ZXHu!Ker%0%`OWht#3UsHmu8*df||S=a=8szo|km1nH3 z<8u-Z|6MVwd-^U(LnRS0u*@$Zp~wDuPb&zGt=^9#ac(-%BE0$tdmap>D4!g#57toU z1NN9>sARV>nDK?#^%Oc=SH@zX?wDfLtaHxggcTz5{EKZbWT(G z(zCM@UsDswd*EzOE^bv(1(C@mJe00zz!}qI749+6f;R@kEqfp0ja4`S5X)VjKSFaV zq4MJWC7zT)V{chU>tRi@aeYuOq(shy4L+^=T_05HdUEYe0SeZ-zK;XK9R!frb!I`< zM`#z8`Ko7KMR^uzA%Z8wbUE(HMeS0tNU@B3-IYf1@I}4pqt^!{o+ZaUTsZ# zkaB#f5)+BZsuPY`Cb_<_=;014|_ph)P~!+Ke}&S#GYD%IJdLys>Wp?AIr1-ShbC$=jjvj~b|RyFIQ z_q#L;m)=l%u>x@14<8wU^7pq5b{_0t)D#0q3huNv19weB9;x!UQPEs39C*n21sw`mMSmj- z;gP7J{^bcGcM4=C3&+hH(nxL&)Imw9Dly;pJ`gl;8QFQ3+IB-Oz~^n8O&adVZGN?r z5%bS5h@T(A;4rI4!F&f{-_4lN|N3=MKMu4l0Tx?7MZ2vD<1-FkJ_)UNn&joR^FBF} zRtM~j+mA{-=JytDJ41z1$O7eL++SJ;b6Gi@lU`p7k47n(bfu4{rq$hiX(HTPC{Rq^ zE=l_Uo7ZZ5vYF1I%(z%=6~xhK?GAU+P@#3(7n{ET!I(c+R2Z$z=8UcMI2X9sFE+%&ypsoI4z`>3ULYnnNzt0 z?yCU=xcc?@udhN~r)W6C^;4N>B6`%M`Lv635Dmae7c>9>fLgAlHh9vdCb!T{MR3JQAPc8P!b%5`TP1_jus1b46dn( z{HJIdDna#)G)9X-8Dy;N^7~iC+e9S6ro2F*R-a=^>o}ESU2E}(( zy&|iipRcw4V5nlEK5mQ z0>w~R*(l(o#(a$?>Y&C0{SR;uSzC6PH!!h-wf#6)8Z5nd#ZWm{yX%$o{%%Ryp=sZ* zUx6qEKYJ#$NKMNnJ_J6eA_Ce%#4T7^=|KmL)#`f0MM9u# z*fT*I9rERi?#auHNj##X6+M9{b)y zeF~KqyogQE=*m(D2?L=;#!nI7Iu*w2g4G=0$pUu(K1YZAz7#NJNc1f7b%jvmyRC9u3A5W9nlib2#&Q1<8=)|EJN_)YR z8IK7@szyF^@{fbkT5ibQ-o=>$rvwRy#TKC2Um}4eHFf^zW*tw4?f8Iw{q`MHuy*1D z)_XAy53%m_E6Ji0F@>nn;sziW$u*A7u?afI-kfhI?IFr(?OIPI#xszT$f|=kx_v{BP zA>u$L_Emydbiw??So=oYhLr)aV_7LFiJ_Wd!xUG}^F#T{y`kS|GV{80 zI6T4w{5yaNy`U{9k%7Rz(9_NykK=qA94U-ysQ*o4 z{D0;(6O%j?!@T!ss&r#rOy=_UQt#<|N*0g#3x$2V04C&(qgE&cjZ5iicV^CtL9Vu^ zYP`Ob9BT6cB$H0W+^P3od)FsZ?;x~b%mL?ezRspGP-0{x?1zAE51o*XXE_U{RD!kb=Wld%j4oBWK8Z0?rP4JIY zv|XBXV~7%SzUat-664<$tj?(}Kd9s24$A2s2~T_Sw>1RqiG5#&jHQ)UrQtqI!}z~m zVkS;!^2^NEHza>#ebH(#QQt{BQtQy~#Yqs;i$8*mv~l+B$xuD){+H9E=csKYoJeX= z@#o*I_TdT}d`RJp+uNHM`H`-j(XD|i7llnOfIjZXH|B1DYc(=@CE7O266*yDYkYH? z?wuEa3c$a_tFNAwdf=n}gZgw5iM z7Dd@OC#wq>nkGJ|X$uU59Cr5SwPH}J&p_RT)U-C2Q&TNlzBpp%nvqV0rz<2~m0O^V z@oKk~?7J=#jq1Z(u^*t-#5e=JhyKI1Ri)-4K_o(@!w=DDVwD1z4_f9>p{dB!vc>DU znltD^iEnlVl$L=2RVVl!ONmJUn<9*+#B6g}-xcW)B6LfYk-w~k(#R|En&98*x|(8E z7ou0>cWsux(>ZD?LKzKPRfCMiYK->DkIe{+#l*W@0EAVy3LMNqfS7Q$Y<~@DT2Tq& zYa2YE1OJoY0YyI0?b2ki=(Wy6zBp-o*u~6V-byGqvyxa{n@>~)7EeYAC4(maOU&|$ zGD=XgIQar%<_{`E&9M)sOSGexd7>YT1qQ1UH+%PKzc47_?2!rSc^svYWbud&6 z-ifJoheoTb!N=-C#({Q33eRPpdNLX?f$P|) zS2b*CO=7oB*Bt}l9G!+_20ZjPdQqm9F&?8n>S9G{x~7Pj zA}p+ssTvq(6-Ep0Oarke)Ve4d2X1jtaa;YOm=>Y+@Y;ZWgv)IUhrF^d*Kfy(#^E3r zDd1-2lrzhOpj^v$>0-fO?l0)nr5{Al7%9|&L;kjAbr*!h8lhynldKB9=%p`mknF)Puo*?V z)^`tRRLR}b;%dHorw@V1)rG>X_ZWg)mcMvATtK}^u5>XK<=XxB9Ff5^uV!#6PFW0> zS$Y+|^8bVEufYK)U2O1cV1k1sZP^qGrVVkiK%*J#LA#}g&0sF7p~UO|Q~^jE=|V2F zWacsu7KFrP$bVS^^3?&eBv07V&_*D){I&B4J zuclHcHWvrl0tYNPnZ!A>${ym;4$y!);5vwX3RgNbaDyNJny4Ee4+c@^$+A{So@L+P zA-2w>p|dr`nsXiyGUhu}s013rlP@&UGtW!MgN$l?A*DvhfcyyBD09Fo9HM4#TX=}J zvOtsW)-tt1DTF7@8VKx@jTzQOAntZ$@|}D`*&<5QWGEh(RG`uZ~corC;Ap)=S++IcO3HIVP$ur=bD`9lTwYBP0+)-!pW_Mo z@eY*mCqlY;pUOT&<>^0Q>F_Sz7;6hMd%3P| zgl9W%ub%yeMnkCzxCnUyDVQH5j;uXGNhvFV3FG%_+0;B$aGAa#`z~QSdpNW zCLUVVn#KM&g51^!EhK?;P=Kl~UxLYueWj`&=QFozv*|MjAggkd9(kGLtMIUfWRmOf zgGELQhsi_u^uPQ#A_gIf)>nfIO>*6>7NAN;sT}rGga{DATVvZ_L$M6?Ua3$Y0x?-f zPzXhih>3F-0*w&ChUZ71<%o%OrF+gKrM%7O?W<*;Ol__RM7T@D4O zVxmJea38!eiaGPMMzFE~UuA&fkG)@1#HLtB&6@19h~kbFnU6XV+(_P=$nVH@dV z9rsEUJm~EMBo})#FPGL{QZzV#ThCDG!$@dv!5Yd>CDl_yOJ)w975F>En-@f=;eC%@ zmS`UY#IftJVqw?4h>58|kPx8CsomQ%eoxZQ1v2iH*x9Wq6`i7HC2ItmQOA2t=Q4ef z=I(zAayhoYV0_4}9$MKA5rKNn?^PL5oF&lqf^!AndmsfP;}DID4+NcdWZ9r6YuUF7 zrO4wf{wxs+!R&+PHiNJZ*2{B$=RlmRX+8aqIEP~P1MlLbW@n#>v#aqn8kC~-q;Q4a z1?-@h@nu?>O@n4B@eJoB$o>Ntpk0YfWF)&bh%4SQgUtbQGErSPTlUfxopVVj$SXxonmt;)l;Ej!kgvc36f zyYAwQknB0^Cp$3bPzz$l_q6xzw^zHW!>QO*3M@aD3i-c8QnwPy;RTK5GzOG^zl7}L zy)lv**2ht<%^(!{F$D=Nl0e0GF`fC_@F~E<^uluqy343O;!U<`45+8BSYY})E6WoT z(0WJ^U)$i)#Dt!r39}_QS|bl_68*_Jgm3!{}C1w@K%FSGOPEomz-?gA5K5|H@&7dZtJw)(}tE*62FIa&i=M!S2&tM2Ll0H!FnQ zcUl2|xK=9*aBK|qZ%4*S3Tu~_l*OG;AVmwO`0m_=XjhG%&G116Xzf?^2ek;G>nTE1f)KrwpvC+;IsS&SP(&z+G5(QodL;RQ0`p zKsY`Mg-!Dcbj}aB7;3P<-KDqaPwws)(1)Z+HT=r_Z=IKa=lupK;mez2kgx7>4J=Op zs3>eu(^NRNzs~lb(KN^?m>!+!ONRm(=f_4NN=>B_nlN&b|m$4ljmcos>VBpAH7VIV=9EwRu|v=bU8POhb=n*h6$VRuRm6T($di*3rv^oLQw-OrC0Z_IzxV*`aM z{hTc^>m2^nO+D~!jZM0fq<+r z4K(By7C4c|TbhSwF^GqaF7YFYnN-O#@Zy;-tk?XK9GD zUeR-2YINVP<9Z7CT&CZ59mdYIjmOvn8TVRxx;{UiQ(w2#lRsL}A0+EGoAHi~1Ca)N zQPW4enIfEF#}3d1$7+nbE#wA}aRuY_93JGDJ($xc`EUg_M$cvVz&AiDb~1x@;ZoVI zT`!-b&?=Unyyn6oUdUE6v!MPq2a4LJ`>Mr zPCFd=wE+7J|84&nT?V0bS$YgesL6qX1QU^fC z>~!|VvEzT8J9b_B*6ly;KNw)ep2^Vp<9kv*KUz0`JsV93NDAm_Ja=nh)PKi%@Il_g z)2ELZ8PIjT{POa$k-A9}DPTuZ_BpTiWK85`Qn#avu~5Unl$wf=soYdW<*>b|?dYvF z(y#%MNPIv((I@u2=!zlsDyqsO?D8;P?$8^~`ke8d%HXQo@6MaUxrnR0ypQhQ^+`=l z4G9ZNhEtf>jYZbJFMoXu3Oaf($Y0vO(+1^rGnZF+#O98%alFOSXg~U4&clb(UI7`O zKR-}a^>ZQ(WlYqEV{3dFO5p69L%&twXKZ)okXjkbpKsn>I$=hM8h~wZK94i?GO3xw zEPlLw3J0%lhN06|S9xVO^!(vSUgn=SUw_gqwBA2{80DN;R;ITy)!Z#lUZV9NZ%thl z5YVjlMCWN6R-ZD5#JqFiofwb;oFGUuBSZi zEeh565PpWub2BcEKsM*oUC*eiyH~jp5p5lG_Uu^^IP2lZCa*sgPpGi7w?B96@CQM| zguO4k%1KE{C0moxYeQ}%^X52NZ})WLP9El=jK*j-4fB~&*Qwa}>7VR4O*^}{-nmCn zdFS)<^GnA3`&Vn2vOZ;I7HAv3yzwWWcFrwLjAJOAggWBKEGhIY_hoaA7FGWHp8xg& zyqGvA?XFwynm^eTo943ec&1%l97`JVJ8`sK#OBu-@HKr#sa365hc+`~qc0n<*FYl7 z*nFX{vt(~QdJVQoi_8@F_V$+SES9dd$CDrV_@oz548VSA%R#$(J{>rVnOj@*>-oF2 z@Jbc5np)wprcr}WGbE-rnz;69KGv4^-ly)`g zo6Yk3M=R4%sJoMnlfmk8P^axa`thTmU20vlTQ3nNs1BQceW!~Sw4W@G6N3|FeF_?K zc+rm@O@oa(7Yc_nvnt6t#>U3p?!k{VHB-KQv)b;ilaWdrZzY}2C$dd{RFSWvwz)LW2N@07sUVvR_vMVF{9E~?@ z0Z#mbo}NDN8U-pNym_iU7C)5Cp?v%yC18p4jfkT+3Z<3cRi*aV&ii?f2oQ< znl1#HTCVPbZk`5op>dJU(};! zmCad~O0aJZwZ%K~=gyRP?|Mze&F1ej^&=CUdudeg8td^^tmneP;8VIYX(-D-;b zUX}$mT9bb9K8zL;67n(IuvXE1e*LYmB|ZA_<5@Uz+5r|lcY>t|V`CT+8amrdi2Km3 z@5cR<3-F)|H`T~rSIc2(U;CQ=KavX zAWKu<<@&2v{gWJmfzgWtc8vIo62Kz z#QO|GRz-!HM)E*LRz(zj;1UXzF}y>nOpFwkf3sOsAI8^SO)Jm5WczG=8jjrA@%88z zT4$Iv?Oq)HlMQt%syuGIbnYHaUd>0*LHwtz&)FNdpX!H(qTw*A%L(u3%FQVo*fyWZ zp&V8u=IKV~yMDMY70}~WfXwpG>r6r-wPAeG4$ZRriEyI)dT%d=T?`(54e@hbT=`_* zy&3$lhbEkP&H7ArC{N+$%@_J^jpf7beSM7O>wU^mA~RfX0|M|97plIBh>Mu{1^9II zEI7)A<&y|I!`%_J^8^D!@?eFc?WZXb$AL*tYCl;g!^yJ!O3gFp-$QdG;l=#*Fc zt|Pn5SwDTydcIP8V@Y+dFqu{Q>qnR z+v#DgP!z}uBN_5Gv}Z_uujRV(=by@GG}EA@7p!thCZ_Z%KYvrcVICJ4Q7g|ZFl|f| zBCH=5epLWBy)pEqcyFondiB>K5zmcbTCuJX^5DDT;%iieQ$rEr^E>kXwFU7cw!VP- zpY+on7X#{j`EtLrv-6(1I(|<}LHCia?i|t9y+Vh@`q>TMvg5b=*9L!QanP4 zUX2hQpHt6^j-B+b?kloQoI`ew9^%t4BYEspp25vd1zuo3?|;Tm61@2Gq|KKdue}9A z&WmK9d=h4Ck}k{`dC1I6e`{ZbldB8;-N9q4bKOcT(u;1xWP&oyYT<-UfO%bXZOy=N zk9bL-#AD^S;hvpKTa(g3_7*dS(Nf(v_jW}#R+8lklbQpPn)|oA{eQx~r$_tb@;saO zZna-tNZf*L0WU+t!YtrsfJ`>i{(?h}ivzn;D^%GNm-b|32HshS{HT-B5w7rlbGcGp z&BsSFlPv}Em8J3#odnG+{Y*CYYu6rZ40dD8&4+1KXdK-31N>Z=Q5T&!I5=kD!h}}9 z&CHS#DNX;t@bHxPH@W@J0Ysgd?5v}R7jW<4J7%Mqr=~{h^kYtetI>OVqgr;+Ccv-5 z{)5YW!FEiIe((AYtvkW6Mxtko#$o@Ne`iOr*t!;>kjM54Nz{v#Dvo+s-d#_w#_o<~lwHx3#zDn>Mp*1_TGTD$UFUy0rK8i1)O*zZeMF zDRUQItm$?rs`cC$d$#!QyJ7S)b775D6Z1eE{$nk!sf=kwE00Q!nxRb-=ws@qPc{?B zo+&6$9zFHsHgn6NyLaz0N;{iEqm0PNDoN5khr%_%P#7r74tS$6wf>j)icRM;B z!EtppPq!I1FB9mGU`4Q9yywoHgKWtv>pBgGmLGdrokg`Q?m?RFg4-|FT9w#tTQ(?M zOn{3%cmxClo*Ld5o$osW*M&GZ?iLkEOiWIexFXO~Usu-#ZQ+~UHEh?OzI=U(VYF{k z!R?yE^!-@7I_@)U-K3210sQ`ShPlH98?iiDe=V?Fk2zW6 z$CT30paMT6>za3znsK~u6LR4QoI!l3rZyfe_Axnmb~Y{RvAetb_u8X<(QuT077k^; zbuKJ^kf=BVNp*bV57ckAo8B~?>;W<#_%S7U&gr&eH8b$354+D!9vjsYM4roe)F;z7 z7Sb|u0mf)A3dLgIaIIux$c^3exx=7i_Y6F*-*kk6n;1}1)p$8ftd!&1pUy9iQn$g@ zL%bttNcPeg1*-38<#5*BV9pshY~K}e%`gi6^fDKh5*+Ai1@iJ4Zbc~;R6Y!uTSl@k z*bIA?jt&jk8b9R1HEOs4B?R2o;SE!J|NTdgKEjP1N^r%%%h|cPXxXOe*2J|Q!+-~5luc`n zas4Ws^wfeoIn3KuM#sh+n1)sPDNH8-bY+%t7GeOGyt#Ic@7Wm1Rvoxrd%Of^g6B83xd3ZEjT#Bz=y^1h58WyQ5qM~S6 zkb8ITyjd6Nr+zLGo}pi^Q#jyJ{K@ z1(6AM*PLpK4TXR?!>%|D_fBX$e*8EuXeKdT@E!nzytjk>_VRei?sC23_cKa1hmNAm&e!MU;Ys?TAt9gO zX`u8+#=dy^&3Xr1Mdan=eUbmf^2&;+{iI5UUhzYyR6C(mhEIP?Pv>2mX;-RcBa}74 zy+M#ZZo8$zci{ErG}PWFUfoDdPk#g)Wps2jBq}QP<;%m5E0HVHP^i4?NP`)9c~O08 zfQ3U|&R($Z;NbNe1sco2>lej8x2d5}Rh0kdEC1ZM1|OjP=MFab6YD>>vcaEZ{=KK| ze?R!YHT<939NbO#zeqW_vhn`~hl>{$j>F#o1WkU1!VQkV=Q}Sw%`m9c2h<15ygyvw z(OHNyfV^Wq-SU36Cp+=^^-HLWeVcrTk*_6$atjD_(;K+IhcoHOMG{xJxg~#%J^z{j zOzVR(oPmSOygGph$i{Jdk^W8S$QMz+et#SJ62^~7g^QZ@I}w!*N?Wm67h7A~+15nw z#flwk)d<1s$B!T9Z~mj|*}oXqasu=gIKn-f9R2_Cbk$)|ZC`r;0YO4a1u5wU>5vkn zJEcLTyOl;IrBiYM89J2i5TtVek?t5;VCeWZ_jm92htGX{u5-@JK5MV_zVBN5Jq~c7 z9H#NfC@6&AfrB~U(>VnoWgg(5kmLQEIiC+zumMJH+wiyRX*CcfA4RSmox1@8fji_f z9*Oos=6`OM5)m_iCaVDdt+kB}*>_E*Tm_Gf-%El&&&e&_mtJ+3JM$+Br zPEP;-Z-6ZF3V0DYn**iAavPW-xtrTT7G(eXM*8(Gu$%K?{|0_PQ0Y&Qlc0(5bEdtas_A@ogfGd_!ek&-DxgnoGaQ^#BF~b|0cO)huVRg&d#l^)?90T&{e+4bz$wa;?6+jiW z7jGe4{}!)M^^RcNvF~ObhEK(Xg!ERrBHz9uUnKbNa#}B6egv@j#bnq1Tw^V8Ok+Fu z5u1!cY5V_Q0Y-iO3$mp`WPD};do}V!PW1Kkgr5C@;6?m*+uzOJo^u{E_5=%J!Va^7 zM(z{Z1QbMV+2?Hi6*;2+i+(4o+BuIjU>j4U#x%bCBTDq-^_>jWH#8L0HUQz(;hHA; zUj&4lUM}1k#~pVPsTMRfHR-)Q^AU@D^86)GjzTLcDrkg6A(3t2|9GE5^uqvy6g^*! z2kvIK`J&zmsmHS*vc7OM$N>zl?%+_S$aBvL4B`HB=_;D)YBNA@7B(|HDFN&;Daf;k zXWL$!(Oy{@bDOrNbwj|CZQ!}`*chMO z88C-A3s!Oe<~tPYB$(UK!27HFR67Lk!`3u11f0|(8ZS4&Kp}r<{@=|BvtxKY%e0I+ z&V9nRM$EFxTD-D28a5wSuql#|cmuaM*kj|K@vC#m^Xs?;&cp<{9U1hTVXFUaprIg}JA#J7zv)~65Q6b>UUN&&i7ZKrxk#f3n?bS-{(#MA|I0#IiD&Ci3+w)1 zO+*PRZ2jK7jPCDubudUufO1ZZzvq#KVE(rgSk?4dd@l;IezPeap69v_#V#+m-2NF* zDzw#Q{65n%XQzt((CEM4foeOcU{LdQCW)TnL+*IvX&}{8Do*6?_6v_whmV5PkN!W6 z45ZR)>!eOQIXlA<`HJnIs!Xds2{y{xxK|evVNy5z7oX1O=kPfC^%`^exkg1ByH_r>f`QFJnSGN%bluJu0$8nddjb~HI5h=-k$eepf1aj zC@OOCEQ8=h{uh)rZ$qj~1E=E1@DwRT6!J5@&Nj>~6sD$zHoQ+$x$q>8|J!jLNgRAe zs%aHuLrH12V){v1x{UVoI}vDY-v4daf<6UA<#4WAPf4(%0(bEeAtBzaAyk!2aAdZI zt+2&dzaH*$?;*v1|D3u%?h$(&zrBmj59BT@Xce73uc#Q<61qH}sZnRd3uX9k^QjqS z+=YaZy-vru58OImzTI@CTTVH#!NXmQlO>LYg+@#p5-I&(KAEmj)^GY#Vo}Lfs7hsh zu$UJao63URu?Ej{YOBG)XmtZS%Q-dX8=8dMX8_*E$E^@>n0}p8Hui%D)o;7;fH==2 zB4Pl@*49jIxlA-=>CTQF`X|YApB5|Cr(k)lYMfqQ94c0l4bAI#4Lpx@gqt2+4tnUc zE|4;cn~?D^R2-p?2!fyaM&HaVd*1KTUKE`E)d!Lr85tSg#h<(8*45eHhSfMlH@G|_ z^PdF1OK@2U9A*~o84dP+Yq-;T3WJ($5jdJDAyJ_Un=DJTv3)vufFkkk2Oo)q63Cbr zCo_(B9kw~I?NT5nm*bKCl!pUrH6-9i|BwpcUZtg@vp#AEA|jwizfNtsWlrxGzstKZ z-Hxe>irk@$4EC}{kCY!M@1v>lB$O_IPU7B6pS%eiY}7!Bh|e_mm&pQ8!Tl=RNseTT z``}yF(Gth44?Ji6^V5u3XzHGGpu|zv(Isrw&~>IlsWO;Cghs#w5(%~pbskvV>m%sx zc&>bWmBnDHMf6*}B;faw_tc?IQu`Q?KZpeDA#yS=Dve!0S9q%+DH2RgAR1Uw8eEHY zQeyA}YC-UKCIBNJVD-5d-lM?ZUvUhCZv-H~n)deg_bl!lpzDeoycQ;$#Gr16y&66~ z{au5-&sn#3b_>tX!AS>R5Wb0zWW{#z}5#$2j~${)dE&HmajSqgo8Ut z0_->DB>KTL#>C{b2^+sw&~VY{j$)^3)MRAl852@@6;x%d+24&m0t^=*Z@K^!S=Dz9 z0$n7l_K)ag5xC$2(m#hX;(YsT^ek8r@{B1GWiV8fLjPOeeQ@k~Z3Wee3~Ytx;261m znFAF&E9)3&_~wIO0SXZKFt4s4+hB%mL&|jZjLM5qJLbp)$xj2a-ZR@p+JMKec47X5 z2j0B&^J@W=-AJ^nNV^#H9SueA{J%%YCnn%m=L}CO*_fH-$)5j2xRGH^O=;K^X)>18 zy=GzkGJ6KW`zJ*H01@^lN3A^z(9o`*fX_;3>LpdZ3DV29DA(!lzr4|bCn+ezxwvKw zd+sGLeZzVG+^m!n&`eyw@P%6VamdSo{YCBXJYfQsG(T(_4Rk%7UUD)b(p(dyazrU&{e@^Jw#3vJk|bZ zv0a5iK;YgdcmT@KUt3!k?$cQj$^c)GvqQ0(y^wIA6B+#jKEy9Zqls}aK(_!~VT9P+ z9G+~F%3hdcp2{3Sx^m-ubT}Z}&mBqgyDX86Y*w5Dau*#mPjK#PvO<)bZNcqWrKM_y z-v#3E+@~x8A6$iZqQRZvUgf8{_D?Y5=2>xv;mkah^kxc={zqY%76AhP1i1RQp^*R- z##cVG64ZJd8J-ypp84u`OYla@x0%;9PfK&9B>1VQzJk2-?H^DqfY&C}af(J;r@`M4 za<_5;&2%?M!<7^DNAG_9at~kJ6m#G83RF-i8*lm`mNW}4MZLwQ$il=$p}0FN;vN?z zBy;!%4Y-79=p?!BRB&6*@SjFM0J?(&&Yv1(uQM~mZY}KdXCn92SbrVrhbinu8N!k9 zEXin_?kF75bjy&4& z?Q%sC4>?^UdRU&9>n{SZ5@%%<+=$}x^l7J*6rjU-iG+X?%@S>&KgL!0HP=(ze=mZc z)ok{PJfJ|Y>2<@cpDU7`*v0s)J3{_9k?NH~wD?U`gXjL#s`JY7GM~o|Iyl!%3i_AP z*Q(wpYCWHwD=p;lMc>ujEjq;5;Gd-Z*(r|KYNUm4rfH<{v<3HRc=!OiEo2W{Df7h# zmnue-EZ@S?#Cd-cuM2DINsgnRRCtQ=^6>KwMIr_{YiktbJ~TgGg{%~$i^PN-9e~W) zF74JJaq;ndc7L!MkiTc#f$w9n>xL2xcJ8+GgW>Z`)6{rQeD3la#Ec`1!zkBb?ltLM zqIFD2kmIqC6Y)${U#;)_Zx-Ol6smeLHJqMmZ;W*>SG!mVVhMeKPiZ$4iBcB=kl~BB zdhq$?yhp&zG362B#N}%B9pbPb7O$GLyfV1rE7lq%viDv&<3hJozxpNA|0b;E#w!r} z!Ivsq-5+<#Vq#(`hf#%FC&9HFa5%OdFVIX#NnwT#>mAG##seg(u`vV=J<7SeuiyN9 zi5Qg~+@O^a>;_g+kXci`JjsqE_92BT6trA1-y9xj(+fnJX-~ z*2R6qC|(M_nq9i8rrL64V0G+qS>;YWRm9}+XbmO*5ESZG;)QD5^r zJ*`~ttw)@+t(b&&Tlr(iBnaAITnpB%B5jrXjPg>!U%RkGz23X7*{{kmGjy5&+xg2s?q8P2M)!%1xe=XnkJ6xLheO~MXyi| zH*k50cs^b^sISG4$nF<-M~EUR>1di}GRGyQe>dKkG-`l1NECH>H98lIXx7ubn$hg! z9;w_)=~m%zk1gVidUK1^mD^2O3!xU#T0Yxc@f-Dv)7HVOI|w58r+&;$vD&u7eTON- zMZs-@n97kuLvbi*lg~CsfGSJWw4FI1w31D82RSI9>^Z(=V<}?e)xhi5#A^|um+?rM zLRjvx(YsW^rt>_6DSe7cng3-P7CvV~58GhADLbSMH(N~(jI-QH=KKz`1z^Ib0Mu!a zSiu}c8K8>UKp~~4qwDGZLNHRquJ@)UU^;N}Z+F_!h}BcBHlHfApYGeal|yk?Y%?f^ zfYwpxuqgs4>9vgIT0wvm#o{1QKC-%2vQf-1MkKbU@3;(PRkS?C#7n($jD&wTUnIt`(991Zb zq^KaqVsP3sq^B@H)pgXW@+trL_}5_p2VUI4oO<&|R{dbnr6bJci**%MMa{QLrWncm zTCMw>rp)sw4cWF9OfJ?qVY()XE!V#bfvc&dhVu`%wM2_4Fji4=oe{lv9f-i7sPvx3X0a={r}HE$Ol0KSY1`t>ny1h0EVVmDu|zl>1jVIe*D*0 zOtXA%^Bb%|IR9Ibc?z`yLc{eVyxO+P5*uPQ2)x}3@A^WBe5ejkOn#nxSu-1-m?#7) z0hRA@Eco7TTZQ>7at2aa+6BctBJ77pgY~clM-Rhe1kr8^sTj1%{EN^n@_fK21Si%D z8GbSlP!m>70nsmM(D&MAM+9OjCDS)j8oE@twWGsHbicl-DwWhv<+Y9z5>ilh|5=wq zGj@*5@Ju%c2%Ps907h!2VF+m4q+x#c zY?{YDwN4Pxbd+mb&WG-{TV9yk=~K$t{H{d@0wF5~fesOA`S8@DEO zO|+Sa!`pTsb@b#(>jSYxMd`q+B&7RyjVg3_+(kvfWzV2>K7})&2jsF5yPzPDQN(Yp zb;72KyDyGo9a`tyWbEyqrL&6}3oqRR&A&mok9Q)p`2zT{`!*V*K%BThi=$z`iA%iF(Z}VKGnw7mR6V}pyxXqsJKd5=9q?z znN|wfovEMiAwp>f?EAUhm-!tc)*}LH?r>)OAe8fZjWdtOM(PvR@<&NTf@ZGC)z1$E zj;swHiDj+EWCBA~9{526lg%EbSSw<;FQ$3!K{_kIlB)tkZZORQX4C+_*9Q)^pldqf zvh@A9++S#;pP3on%P8xugDGGd;M!QGqF*~?-GV{w0(K>@zI*lYyf^%9w7iI?aP?SR zJPeCypzp_TctUm|_{$eg{y@X-s3Dd%qsCnSD=Dud<-#1A=}K_lR6uL)Mit8d8BFp6}t>J`oSPDnPB;2`0oR3D-Db~;49V!wzHPL&2*XgX}Xs2 zUXz69CbiKAm>bxr^4_)!QC>{#SyMS)*T}r6;MMU+Zv;KqT*_Rsg_Mwh(yT0rG{Co! zPwu8(Ja(toww^|3Aa+op0%f@a}RYfu0#U*|C!2{)ZEJ*CDhnR~oZ2cvE z-is(>xmkc~<>A!M+oW=L{(9w|H-B&mGwV>|315j8VARfzsnf^eZ~=^Z-vs#OAkeBKaMNKcn@3?DXI#yX(Gys)8tX zQp=9f#N3^6%-H?v*LnxKmoRX{PuRZEip-Qmh#Vyk-axgJ7s{^SLkcN@>;PphX=|;ILKkL<=Kb%X1RE{>HGa`mR&8!Dg3skVI z;=yAiS7V~{J%=G88f+3PON`@WqLUmNdU>CRR{!2M{(G+UK zybz8_CC6KV7I4zPabyiNvI@g8JvDXpY`|J{qfxT{dhGGeY0$emd`)MIBqO=p7!-pR z5^bD{z;u3>e%VV8sA0O3yF*1MCK#l>&drJFd}}FZ|NH>?+{LBJlJqGd(cmd9qpa88 zSDG=C8}WU8xt5vFtN9pIA_n=95XkA;>T1vaDeKOg?RL=IXQ8M6Rs9!**BB7Nv<+VV z_}rxqSV_s|Q1Oq86F&Eyq9Uaywbt=f-nHZPu2q&8RTR%Nd(jT!%v1C&hs7OV)}@kJ z_L~DBrRqlmG{0xFHy9`gbR_pym!^&HoGdVo`uDr8@$9h0zP^*A1#?*Y8 ziM6y-nl#st;^hRab^KDfd1Y^J^1?a_)EUx2Es_5-TMwtYp=LKG-z7zbH2to&)dfzx zy%TTU5b$5fw-CV>{c$>F2|DHcwe0=lnnQz;Cj+S#ixNkp6}ipcu*j$NSvb;!Kzk4B z0981Tx#J`HCBM1g$!kQCfl|-sj_q;zh6@|S@|Qu9SKbEuU6JrA>pKFG4&n&^8XUVG z$(8~*#tiQ&QcM9Q2F{5s`?P~?zfFZY3nMMw{j>$ zId-SbjqN(jTqpLr#rY{DnT5t)1O@=57GCbRW+!_;1O|k;3Ejc1y5;2p6#~d&>>UXC zgoz(@Rwo8k1$_~1sF*L1G6M3__!L=~pKtg8dc2-uVXkKzpIGha8q97mfNl z69$7<4l9&5y>XZ^U>bufX$Jpzt1K$0^OFy{z)9hr;C3_^*UZXH?y=P+dQnjIfrn23 zOf~fP^o(%&pZA9f*lz+=4ZOAD(J%EjlF$aY2BM!cW5S7)6z<&p%3EhJKAjD@Y34BV zcuT-8^lqzsrpB|fWb1c3@L455e8SJ2*3V~_awxOr=klr|rlQ(SslgS4>doJNF_8oB z^RR#!GQDeA`0`j$Gw*9@J1*{MCNrds{ceH=RG_<;K7>Z5#KaVV0ioBlG7&M+#TF7; zdP(&?4W8w$f$k&Jn)9$~;Vq`4(HpNF3}T3W6u7Oe<;DY4e)G#1wdx{U8z4jbkU~B zORQPg*WI6&wVJK_!fP{bLV}&~thfBa3-BB3HV8)^%BY43r|3~cm3y%e^vjoc(5~2; zEO)*7cEd!9ys=@sWKz+Y~LS@y#)^GUBYmEfR2Flcyj$s2mF=cf>+0q;b zb+`3tp~F?5sd(kU+nfT^=LlO0dhDq7#=6~#Z3gc~iP4TOuff%!T~QRpcVE@o+M0!( z9Y8M)rqyKPgav3;Zmt_HxuDvliT^i;)@y%W=VcNy!SBVt%aFFilt*OhCXT{ncx2M~ zu5GqS^ra@8&3}Wjihi0EDn53NnwuUjzxEqrMuM95*9KSO6-(dI#3(ONZl9PHiroEgtQg1~OMR1zX-H6i0ydP9mo;sOpbOapa3i9Mdu?~e~oP`Z~> zN3eYDJPXB#cU6{Hpz#BHz!6i{pwKtqR#TXi@YTzYv&Bk>4;3=qa(wKD-1AKr_7qcQ zX1<;niE(Nxo4&q~*EP1*(Vbx}0y5zFiuTbTv`~6Ha9YxzvY~p zsvGqggy;u@r}>tQOv!8_gp!-D`==REr(O~ug2zYDH1jn-zst8WK23ldz&ZVyky~qQ zx15{;#cP=#y2ejH3bzNb_;u6AST`RH!x;dGH=o_+Kdke0wuB!2dJGSt5@uaQsq3!D z4SE1ue#2NGd|^doTuowatua{!8Z0T?0%-!Wo+=UsZ3fO+xP>JN#=hEK2a-Tt+30-1 zr`@nh=!#5Nk^RB^kn2~CW1}*F)vnOyIOpGN;7wR@{C10jB#P913}9zXPA?CQ2+;dQA# z{hWX6)Q!XwOo)9vMdwtc*VZS~dw6m1?VV&5CDAs1+_;3n%-TP7qNYvXd{x2wHh9Vp9O@9+ zA#+|RU77wW&;)e4T={k6&z2{(z9M`wD7D1Ia;!R_FK4dv6PJ>FPN<%q-F~6L^VKU2 zJ-y>~v?_G)lUe!wTaMe%EMBD>sj_hl5#NB9RLra&o}JJ=Nr)2t&Fd_9D90F4To^m= zs|#eHBbf(~5f3{0lrPUuPR6^+UVuR?GVysk-Rd;nQbT4ic*p!5kD7aH8#XL1(5SYf z{f04<$^4zPr?G?l9Zuo}D5eB%)GF5CimERHJcme%K+t(BdmXETQpfbJCg0E_rSN%D zD%q|cjmE`k^37%IAa=d!$W^O@Rm>yKq`hWc{f2}F;J2vrM>4&%qQZF?^km{y;y9Ye zONs!Z^5?NkO&sUr+Z%Xn

l+72@9XPx<+2++6mF3!H0fDXoeg2X$WVZX5TifUT?q z>l;0W_i4|iyw(zZ)41JsthU0zS=E{C-{bS=J`C@gm$CB^!Of^HD>9mxo0Y>%=?@_G zl5dtrfo==(M4heP7)^Lvdo;}OZ3Y62U0@9`jll#@*yRH7aw)}24Po)~D6YT1t zls*PnM&WgmmLc0ULKOh(ujWf0_dUne;r6vD#m=9d>~$5w-TwZ9D+|aQH3;6`ehJU* zrsQFz6l6vX_+2W*x7@<|tldq6f`7orLC?arXilC);s~@RNp!liQfSvPCA zA^kmD(rbeP;por9D0`v}s`@s3wzO~|F@{?CtLYH#&KG`dZ8(wYh&+iEM?bf@B=&=h z37GF?>d}uA(>4fzqys?)0M<`z>2@M0aO}Y71KljGl{0s|@xEjps%d}R-B=Z)`?cYGM8T@77Ngb@M zEq@0a(<~a^P8UPr@PS^Wwr&dQ4=ZScd%Pc#)p}O2^5ajAfo8YD<8E;U6Q6%Dzdg+l znxWt2P%yLtB-bJA%!y)HH&t?9pFY28mgwK}0fjnx#et0^koPd~qxPDb#!J%*@pN`%% zlkyMjC|GlH^PCz%zJK7E`x>|oXvdoopt8OiyWCHEEa@=BXV)k<9?hVAGx^_o5nTW{I1yaCrD}%0}@v5>69ARfP|GeD}Yp zkdM3odpP2L&_M6OcwydySfhQ`hg`a|Wz9(s@j}*5)1a|w4&02P9+lB*a{5(0<79^Q zaTEBEhud-S8Ks3wPVZ{`>FMQ@jV$Kn43fs=k%jq6fcIfO!b|&-ii^AMVN=9wqg7=| zLIL6{`eY#nxozN=4Y7&_zCKUXw9U8LmD3o2ykN(!q@2jntd+{!ODu~{MoTLNIt2qy z%f_`fHUMU=TsvQhHqdds4_PcrAl|5HMrR}B=28BZpH99}on0VzF|z>Hn0!EB;j0mP zO;gi;IgTx7gIjDxWrns>P|$kwgMd7MN^?p|l)P>}ATm624_)#p4Q-0i5AUO55 ztCv$PFaO+qg+ZCSeb#fkOZ2h?$Xr9iWDx2aI!5s2`QdVA zuEW(OQmiA7z*ccx7pz{Q17ecWr;-yUG2^YdnLG6&xAO|~t}h(G^gY?tafabed3s&Z zJUdsBEBOiNXK{cAU$=~WTl*+!J@5ok+sfzIv=iU+4-tcfP{!3bMxU^uKrXjO+UqIs z(zvKKuKX%X_YV69J+vD?w{JkxCeGa??~!j$rja$qHX=ZVoZ0f_izP<-P3# z+R8TCcllZdJZs|5FX3<)-1k(zKUt)@>BD7%rES%E))qid3k3YHiIOQr9bkF@^8CSzwn;~wGE5Ki(Q1S;|9F*V_Y9_ z_9!{K&ci5gep4-4u}#3pAngBbGaZ|k0_tidTpXQdb-oaLi zK4OKk_=r^7T-RYBv<72XBW)_V_huZY@~|O4enwj0UMk9QNzRUB4}~KDuK;o>I$2ip zO#N6%@X`6ezMM-10B%^{rYk8$2Tp&AInI6$491nvtUeN_4X9;dQL-;=nQT#XIX%$tE1`TdO4jOdR~IE5<(0D`ueJQ0-esLn!Jb9i7iN!@DBY)9^-EKnA7! z&Q@9C+lAu_t8badS`v2WZtt)ZrWep{xc1OgqdHJ9Ob1;%`0dqjOELA< zR<7ql;?0$%b^jxk0tmIfhDQ3#Nw}cEEd!PFX8@i>jB4mLb8mih57<1;68*teN#i!b z!kA9^;twx#z;mmZb1O_|FncjVD6w*PSL_fNy`qw6op$lSMs|!|A~?MX9~2l%KpBmX zr#12}1)d-O2sXo;hiiFh`^ kPMJE11zk(%>2^4t~u(Vjd%>47{6m$SG!B3>EAa9 z9{O|~t$eIzu%%ds1{?%%jr6xB|VXi?4>Nq2lVV1=V z#K6Z|T5Kcj5!9O zt@}20*;3y`i~oRu3EzvaS#U9df#GN%uKWh#N@y1D(_HaudC=3#=K(#M23F5`=Ex`Q zBz&D5&|zL@aF7ISYfD=VqYNMv!&iF^cke+s?|r)T(71K@#>n~3TweS#rI6kR+HW_< zB6=9AWwY`6REVoPl zvrDP09^QzL5}zOcRGI9E_Je~~3aDjco$VacV43JUj}c%70#5n>GE0n;O5$8It-o(u z<-X5hg>YcNlvoow@*%ECg^% zluPUpkYhRG4Qd24x(Eq#d4>}ln$)+Zcp8rGrLyo%G@&#eD&&WKGEWgO8_Sd5Z&CDQ zgE%Sjrt<9!?m8!AF9a`QKyCtL`>RZ%4Pb$R z)8eLCUVC6Y2;2g1E%#eizOjup2i|5{TEK}2O_`zvC^eR%GtAVT_Lqood< zZ54-})s&5vy<)>aFiT;2wN>0uSUk)q839h3OXB1>5kF?sa~8i90`n_={<=DSTyc+0 z5(4pdp2|uSzgEfjr!Fg0)ZBjh9JLOqBihtn5s=6ls4BijryWl2An@I%{vA|5sVa_C zbh=eKeQ2UGf6pAei)%UB4NRm`L*%6;wE~rlABS>81`6iLurSA(b}~ZG@Xh5E;~}$O zpYLGGE)DYr&Nl~QQr#2wOggQbWQ75L1_iFYGiQvI&`?xnVg=2_uTOdpsJJBX4+{%X z9bljOPZV>b^q6&%>JYS zf9Ah`U8s4SvgVz1wd9IFI=1|9G?ETn^ypV(asQ47S?R7Uf<4o(j$7hjp>B1g!sLJW z&n=VNw-cWZwcZ-#$rfef8tQglx~kr$C-71>~y(H7@-L(3c*9+Y-J;L zX*#E&X>iG7p43Z>T>1OQ-&a{NemG!2i6TPe1L6B4<*d4|DbB<#Do~6XyHU(-b^`@| zawC0xvY1Sc=qbjif~6;+v^J3bxUmY()`Z>y@6)YAoDj6SJ>f-0aTNV3Q*4n}HMw+) zd1(Qcd-11@*j3G1HeEPjMSU$uCYv~$N(*7vg6|K%iX>0^VXG$5 zqsc{4PKZ0AVK~W2NeN|mnSP3ke>+#D6Vd zEOeMcZ9?i;mBenkq>JH}7?y)LB~s$U z3a;tW%Q<{dOL%v@_fWc`kWf1rVq7K7i!RZ_`y=JhmO$kDfZZAMP${!#iix42WUOMw ze!A^-TQ--!HK5k09U*9%c|C94O{%=AXIZDF`lB{oc4s!AxRbCi2_~8y)eh_=L|Y37 zJp_db)Hx5{Qb%plxVQv}-w?d6QDR6cOzV%LfH_}}WNV}<5J%!jT@<|ddymVvA)V5@ z*@gCG&a-Xb53|I;(%*!ZCdWz3|Lud%IyHKBC5ETnkz?(ky8=#wuQd!8h7ogsiPs3f z{y41mNh8bC@Sm!7CHJ^c&OKlF8D7W|js`t{DCweuv}7VnVxoL-=Tk=r4CYZD7s}*ANB7x5CLLZu z&t>~)q^4Btvyht{o>};pU1N&Tp!&JCzQl%I97x2IXPDt`AG8|dzCM{Ndbe-fsQZd| z8iaCDeu)x;e}-s6wjNIkA-`+h>=UBVb0h-o#W@|9Q&xJ6SF=lH<2$SalUtZ-W?1Ov za$MX?$JZU_Zkv!7Ctt-r|6t3?g1o=^z^qP-{p!~*?sxZMPVMwl?=2TNbMss?if*jR zxu6kbP=N@(T}a_+OLN>ZCfKs500G>N3BwN`vj(g8GR+LKJB@<>g8GvZj?_nIW6tlk z$#w%LyDJYdX>t^?Cd_axd2q69b*Z?g&Z$63d;UXVB;C&=HbxCz0> z0x$P5{m!I%x76C}Izj@)uTajGA2V7C>}LMozDKdtKi5cwcw9)(3!*#UJMKeA335&9*ey<~W_|T1Q@i6e0m&u<4Zh zzza6n9)J=z(UFZK9r-r3O<4ftbe@$F#&Te!kKJ^dc^vh2L69cr=*yQQPUX@GPtMiVZI)1!r~I3}N75b@Y>Qwlj92^mh5H`PJIk5IGAB#Dn|RG;V`lY@ zVbRfZ5W?#H8)!-FXg4PUS>M$xcRIUJ1!f^vXWj7q&!J?T3^M%Y;+Lc&rD=EoenX%> zG}ljrmNP>)4f7BS$-j4#x(>71I8?m0@W=}kwTg=abxqJ~>?^(9iFd~@osl+Jb_Pku zl@#KcQ%<^lTmexO*ZpG;9!S;ZX7)JT{cbQ$qY*Y~k{m&vn3@@fI_pUV^6-r>9>_=I zyropPPoD5Aokkv=2b8xaRU9vpvJb4*a!X z9rUGCfn;jX(RImDln$I|sKyaX;gaN5^%YAgNKAY1;t1!vpRZN25lG9`7o^UVs+*Rb z%%uisp0m$FQj1JxV`;gGi*tVNO{iB@u$c~$k@n@G{*(%qgM^hCY7ma(MZTzETO4O5 z4V9GMctahP6Kviad|Q|gDmMN74P+nU^>Ahzr(gSzHR<-GbT*Xz5Go8f+>N@a?lnV^ z-!XxzYFH>S-}iPdx`&VPNSy=Ty)&7k+fYnbWHJg< zVyHttF?a%$N<=#q6r6n<>A73stu37$mP`?jZOnN9a^M3_IjnRWnk_el!r5=ps3|ER zNiYe2&AXZvJ$?w%LyKNp+Idu!^zWcZN}m)%2{w?ysxs-^@41||OX2>C=3St1 zBKmU9p;1?M)S~}UFI)pWWs^Z2-oT^`cHh&4kEl8#4>Rz=-uk<>6#&X0y!In1#b+KI z)5CYniMA7c{@kPl=*b-@IAr&(j`JG|YbRL;;~#TkWcun{)IB74Re2%0{Iif(+qphq zy9^C<`lX&gRd4X1z6?{&JC9|Re{G}dl*U16Cmwr^Gd1dxd=PenEUzHjfyox_Mh!i0`{THeX=Qhe zh}4p{r?iLY;Fe!R96Ct_VmcUlhM3di~=i|3Q(w(_Jk2Gt)b($NRk@cT9~MCJI0kP>Po>dI=4g1Ktu6Fjl{{7)W0@)E{foAtj5gQd-d84x5(U{f zU|=B4hXz{|4|AkdoXfi=J+BCA(vJ%Ai?NS-D%+7oRA|nxsSYw5+YXURIv!0tqquk^ zQj`<_Y_e7GdD_R0iU7cGG`cq8y(6DVUHR8AeTR?1aAO*Db{9Ckd1>Ha^M+>ik?WK| zZZ340JrBIr&;&SCg1KKD-v8tzojt@Aus3HO+OgOUpEXd%Hf*JQe_?Gp$??z6^M zT$R84Ekzvu9xEqQO$Vdt2=8D$tu2M8p@dyX58pgAx)yAYaW!^*xdWdIxAQ4&@v-`P zjjk#STvgpLro&&IJ*(=lB9Lz-%uY?lVBaZTBWa+gm|6gg48JPz?}r2{1~EE2hIZJ=$wppV+ShH5bolO=a8 zU$o!C$}aO$^p9M2b`I+6T9uEDN%U(4w6cAo80gVvn_*Qf50jI-p|&{}V8OrVa%_d* z^{NGzx5Vu{A^E&Li4WeF9dj6RK~Et~Y;4HUn|?Mm9H5eM99-H&{{Gs1ao-@%` z0(Ga(u0FFIY;r9fnIVfB03C9R%65~`)5X{^*+cNAnuWvfE%+6C%NRTw$;XdLG(RoM zk@Bc9Y#c|jh(k|prI8@W&3d;%O^MIO+4}rzJJAnc*8~?J3f_ARIX&P*2c1ORYXe+# zPd5I_E!6p6p)s+9rw=j{#1ay%KnZk>DD);9s(7)w%-?Nxj1w{D!k0R+KyWXWl;OQ@ z)WKYWm>yfz6j`%4J4Gu|6@B>zak8 z^>8KC*ar%^($NlWCn|4Uol7`BcRHPu2*JBs>w>>pGKSY?xUnn@7PiPf3khO3$<8S<2OJXF=sj_sCkCi*zpDrnwWA!^5?O+VrhipTPr#PkYqxfI5-oeiG(9oZwQ=-c> ze6%X^^06mqa}B+&P*n!@mcJO4)&*uN(4-2BiIy(Jy{?EK-rA#uH*FZzA*^gwp32hM z9|Hxk_1xXt!b#c|ZW!L~OrXDD!1&6K`+gC{dR|3(w4aNPb*~*Wuu#*yV++|=-t>ZW z`2aadzAPcV)Vp-x*tqmpF6lL$?YyCWRFw@3&5=l>~Gj|keprh39Re^EX8?!wF*MrpoKL4VLg z+twMD?jg+rB67PaM7L&z4 z5ERq~y`jt33)njyujM@GH$g?iI8()^r70Rl-19oc04=rpa~=9!KrHM?4+ePPY+rp> zLYWNd=+DKYR|9d8^@eSc0$|#w|1F=q`;CujFX0EJ-1jfIbF+&S{JWx`dOA?2rRpez z1G*dpyLb4$e2)zz`Cm&!&T%ic`R((o(U*m?oz`HWP2w6`#vB z?_I)~kBhI+d$lqF6Cblv?66Rdp$fNXLHcP_XJ%#>is7N(l1XFvuxKas*tz0wYNmSJ z%*a2_jZlS5AtMddV9Q{&x$m;9t#5f(IzsPg3_4C{Y^j1`;D@7t)A{)IMwa`NB`Nn7 z9h#A|Pt|C0g2TgNTjHWcF{-SxFL4r+(e_&&G$9|UX}q~hSws6i9b`E$-s+b1LHd3n z9!<=ZC@M_j_b7r+ZF>{3a|#Lp)wb@%Psb7>-q%!O;p*wRi05(ZKX@=znH(A@SP^87 z!l>HEba8%U-VodHqpv3>t(1UvHAh+6jXqrk@%S_z+EZB4pkDruPz5^j*Q%pop)cjD zlJigrKkvZN&qkwHzw6BL?9H)avaGE&1Ymf{6GqS+hGbB?~_>9|C>{R~}4iq!j@_+d;oeY$u-c166u zj7s0VwcTorn^!&i<0K5#3HIxm8bD1{?%Ph3DRNzhT%K-cDyuMZ0Yk=U_f1oI^zD35`PxTl#tFz%b_pu9WMmO;fa9C9>s+3YG0zu_4>oi zO-(h(&OCcGyW$Cf@5P@+24P)~nyUf*q*=?gwde0uMuAdj!_CJB5*D1!_tx)L3{Nv3 z74T9~iSaN_0(CAr2GrUGj!)zo8g5}@*-{#Lz&^*NLPeSwdwF@)SiZ0@Y+iz#npBm? z0zxah<=s22zX%SDnTfx`uQi~`D$E)>SgL?#jldhKeN4uyS;e7&g5h@*F`nrzTcLxo zo?z~RU<4^CVZe$S291rvj~{J(laM=dT3^}1FfoC$-^zK-s+tkLH^@N{gb^ae(97!X zJ}|2+kFwWdprDOXuLBjLJx%dGb@@ca9z~f5f5&%^nqApTNprKeC&v1uFA%LloGx4k z+*D03Nr@ZG`kJ1*2>sBSVgzgtU!2XC+z=p11?kbQC5YEa!gkE`Kw*nBIO%b+*Zv8o ziy*ccB*tap+BEvFkeGC~>*eXH(ZE``#$u$vJL)H|TI^@8LfCPiP_r{J9n&#vok$`3 zHN$d9Kz86wLI*ZvSI}EDA7tVzZxOZOKb-Jc2Prw;KX)v7E4#QMe!Bm3<1Yk^`$?Jq zF01wqk|rKh8f#T0=UM)2CMRkfBSK?SK^|qgW@0#+BHph_dK9Dw?1DH##NgkP84bcL{))j=6hKp? zNZ-8O1qgLCD3S~vkWYzLKMjSYqu#-rpFwRVH#B3~VWFwvX6Yg&f$cC?2qfZKaGKp;uHPD;0F zx~j0#v9-Ah;U36j*Npg68yNaB!@5uT8Zd9E;2tOlqM2GW*L67)B0Oj6oIJHw-U+U+ z1fI{BncE^rD@Ju;jxd;uU^;Zz)+6`(oy5=^essQS`KIR~p7ni9Jj|Fx`bl1i6JP;Z z!x7fQkJC9yqMjcGv_${2PwB!%7WGN=R1vCTSU8j=oDI_d&?Jy&pPY73Z9T&Sp*PPi zMXpnxG(b#~W4io3IM{X+_5IFs(&enZSE}idf25%iAa78U3qtIsb3c{J%eS5VowfXo z))6CN`0^uO#QxOV?YL084#h`C1m%wbp$O(C7o>iyU9PJU9fFTZ>2=>~a%fMRkbqCc z=LOdXZm0cb37KGy+VX-JoJId@MU}M_Yf0($9PVWtsm#VXHs$889=ibG-h+?1bM3XE z^hU5UFCm4~^&WjU|8h*CxzJ5O`|b@(P)LpaHJWo!5I0IP(=>ptkvh7VK7Y{{Nc24A_)I4yBE}r24HtRZ0}$R%<=jh)OYYs_i(S5d@kMMO*HwOA!`whub3&$Q zAk~#b*#b-2d75JYzWBR`Jn29mEz&*|tzu)ArF{N#PkVGtPI*G=l1;Hs^K`$~U0%Az zlsbwdZL9w8UZYFHYi*c79w{kc|6shD1*AacJ7jU=%3SR!Z0@?@fySzfI{X4{XWAST zUM51);CC_OoXy2W6^^1yZA*}@h}g@~uTO5}i=cje5*BsS6|XQD3MkKApCw* zuj7$nQOc~WfRrL)UjS_S-{{5tz8&`OQwweoHY%E^VLxa?I;Mc#5tdA4n`<_R4J|5rUX>`VM&9E++s^&UK3<*prJTQ-W>8n% zT$F3~HA6}>fFj)`DS~t;gLH#}q&jqWiGWC|lyrmCfTW-_C`hVENk}(>qKF{o7GFX&p%ha_BiY!OR)`!C?DXF+3ZTPK! z;~G+uV^yAd%&u?3nBduDObzv^()Qn_%hW}k-ED7|(bW4A6twMxM*UFPUHuQK9Pp*yP1I5fK^C)+1 z19e(BIk5#9%v&KP#j|GBckn=v9RXPH zxuBl^_c8THJjQHQH3_Fa{LOHy9~n(K=urG>nMYVX!nhd;l3tcGIcv32Y>Hv$;7Cm8 zd)L^@ID5@o3kRRgt9r0#}3k55k6Dh7qwOe5B;y zkm(4+vkBGijq|*}^QT|^j5iObx}Ahc`abq1&y=xve2i}K{QVokHuV?83WJ3yaqF=# z0Is{)H{XOy7H70(*?YV|XEe0&Vf_O@SVkEx>4)*s3*HQsY+9W!dG z{xM@p6aZ*AOJi9dl+H^r`Sk&qCp37e3Jy#x~_9DukM zK1up)COclw%_NaK;uEzYQGG&#w20gPQJlBtGts}<)?Br=iqKUQl6RBp4vS`ZznEa1 zz4Tk{4V8pt*7eR=Kh2#7KK~y6%HLB}2%d)L4)LzOFD~Al6ff>zJvLO0^ZkLY#yoZl z2>7U046kaQ4A*Sn*V5C@_Yq081(9O)uH-X*dE#$Yqgar`s{ofu&3h05&KwvWZliu{ z=BWtoVA{3Iswi?pMXFLUwX)x2%3_`+x@pJeKEY>aL4f2J7voHo)*F=+mp}Wk=baxC z0_{=QSYbp+!}!^0D{mq8skDZYj2(yMkVIzO{o6d3#NF9`Rao^Kad2=rwm!k{zw&5T zy+6tD)4QSUMC%!+>i!2Dg-_KrM&g4N@|&mI8&D*rG?x`w(xnZL*n`@rFPPL{NSBO% zr_*ARTJOmxGBITkPKaQZnQRdzc?B6(fC9<`6@r@oIwVK9_$vJIL?#`UJcrD3Ws;G? zbN~h>8v=-j)VEIO`O+c@?XXg{<*uD0!{0iaPQ|l=ATOAA=-w|psfz3rRil*xp8!V0 z=vaow(@W|OT-AfxJ9`e+qdfBBpEr})$!SgD{?E;x5AE)5o094qJ^%+w<2!?&K4eP= z$~*^l0W7vd{A@M+{&yTrvT^0w|8W6?IXFn3Rau0E981zKEqJPn!ub7-3*OltuXQif zpK7QA4T2?{)DptG=1lH?K6&aD{(M?d9(piOw7*>&M1u@$3> zI76ROZbQI}3v1*vgt66$*srfway3^Q=lJ90$ zWc_zMA9hi|pGE_yS8W(q`3POCvwbi7mU zwY9$0&mObOTM(A;MNtk?-6&M+g{pbP zen0V{QC&UKdbjM0S8=<)<25W!zxO!gI-km=Qo}ku6a%B{ngLV%frA{Hrbt#Z4)&KlYC+pIYbXvj3 z8ei)Mi^Dy>y+LTE4YWxRsHzj!_*4j!f9^}zAy5%ciD6)^-tpP}^8;obhSqGtkDF!< z=Jw)4)J)4YYIW5Tu-JbeHWSQh8I~9+{(jao@<`2Byq>;CFxa|;D7n@ieA)<$9+hCghtik?Ni9fxp)ePPm1kP!=MJ} zc&_HtAUyxFQ&SBG5G(6{?m3m_ru?TMMo#`{Ly|pO8Ybc7y>N}^*0f|zh|kJk-!EMX zuqD$FE>!DLGKZ=4LN_t-dm%F(8`3MU3zdl$3Zg;_ln)DTp=e{5mWo(Ew;dc2Eti*b z(JZ$eG#+xs-qtC_=cVd&?a+rr$WaOt?=>C0jD-y~6eht6RVGdhTF>ukz!d=xa zAts~8J=uS&G*PuXvz5YMo))8E$!TYBk?(V#)ZYd8deeOd1+aA zK1eT_utZKDUjigDBI;`;j91dH8pN&r9k8|OrD*!PGu7pMxzHYJ_c8BxnGA$WnHs)t zk}*778yYWyk3)gu=xN+6c6=~s$G~>}1}afD&R72?+efR!VD#hB$>gHikob zsjp}I3wsVT9V_L>barKW14C?!hP0>x0GNmcr$m?N{sW&9uY2sj))n!rf_(ybd%$Fl zPgwYtx;pX0XG_S4i=~EDcpBQ|;lH&%EaKdXCvG)Ws!+w=hg?vb!APX?MhCafK`*V#^Q*%+hbxNCCzI5q`Xg!((1_sw(3zFJ> z&VC0z#rg&YkHK-g-ff=6<8M}|d1nkw9r3qz3!POXDxJS|An7DN!-Y`j4f*H(6D?3Y zD~7#P{fplL6018FO`OJWu8_P;X}vdlXuNAJ(dLU6lKw*7hxXDCZA|3oBa+byMIh^ zau1>s`+kGVF?m5m^8~kVpt?~!_;(2`aEZ7y{rEPZ>_^9kDzHC zzO3I*6gVghmm3TCw*iq10Wg;shmj&o9~2sYHij$HM@Ms*-h4ds>gyPeYFwXo`8^!F z&;M#XSH)V7zAsO<9&X)g^L23%`dV#8iF5h7^JOLqRkk!8)Sb?{P$9D-KWesjhqVui z-%?9dKEcnokmY|_QI_E3Zk$4<)$;wy;k;={phqeK1JO~#NH<74YxwIu8}bwy}Nf~!T+eSWv5;0apbEPFkwzD%zdvHK z?U;D%D+_s_)5O=WOW@Zo1e-m2#Ec86V7(QUrAG@l4r*Ui8!Ap%#9NFuX&{+wME>hI zPkUh`vf7E*d`+arR^?^q(4jP38RVCveb<;^Wqr%QxKQoAl6eAHt=@ybmPuQngdEGz z#kSinF61Pn>r34+5;cMu9Dn*a#Z041T~Vmv-o=E`rM*1tA+ayX*WjA-oZ_b^U8B2P8E{`K(2>VztP+38rAn%kPiZhRi*vbUa!#Yn&z?Y>aRdb(}Tq8CbItz~=x(zxv0# z^D7VAJN?9AZ4Ps)pegmQ3GTukb&cH}`P=&U=I^R?_X3tp@Qj{wo-t2XEC6Oq)->T4 z)~7qH#E6V*z~p@3mG)1qm#~sVX)slW)OB9rj7%TBv??4;!K&~K%zPQZFc=X$J21eM zobu_00reI#I=V0et_+=(VCV1UFn)FUJlMEXbR$?hhVS2J7TiwOPhS?iHDVmsKg%?( z_~QLpQ`c1-5hR_gRX*CpSd%jDzDP=ikpp}DIBMzTyOs~^b>w&+H05T7<|;gB$iItyAp9S@!TC3Q|41Q^5>_FROmEQuSC4I=h`_ zzWREnb;X*+PQ-sunhLE6oF`aSdi;3KkXJ;6ZhX8IkCP+z_Qi{srySw&kR+k) zj0i2_I$symCf8o>{g3jQLVxgq4*J3UszIGpxFUGK48RkdZAJtiPq&GYNYvJ1%bm%( zPymr=-pPA$IeKEB6^2Lj_)G%KJUssWD##CE#@0tVr8Kp*?{vAdKorEl{ zgB(kjdH;SWqbm*}dD6N<9=Z!0Vv}u;9`08S2{T^DSzVYSeZhkD#DQ!GqMSm%*% z>)ggkMnPYXrd0wOjmAH9N-v24V{M|-Eh?nGJy<>6gxdGUDFa-0?cI!9sI*J0JFJam zWzog3FEgQ zIVFpn;H?79tw|&_!0m43R_2cse(ir7{?i5|tFP5WGp>h{YHB#Qp8Xp7$yHwM5AYYRF2 zi^On1hgUIq+)KaRsqMVSXbV@~wm#ddEN^01eizn0VOtRB!Unv`@X8nRMO-kDX zzwLk2%KiojEzm~Ls=@hChr>QB+4msy*0amZV-vj4GDx~FQ0?s~it<(GWM;;ixi)cQ zZ{Bmmj;6K=MtM`?Mb|MtSlP-gS}L~OenM?hhiZ>cEC;^GTOAg&RP?*&mlyM<)V&pQ zWVd=PMcfx~;F5V_-w&$1#vgCKJx(o7$juD{lW+O|U1=a>TzYMH&b2^40w?nTMzDc@ zzhC?U;Zxvc zF~U3onssX9H7{n&^Xo=_8Y2k^vGL4ZN)){9pyE^DtDdi($JyJSlKtPKZKmrt)8&tA zL)+J21>f(i`4hqz#|d2&d%;;eS5S8ZT^ecQkLxhwly5C~bIE_5nOF?P04UUVf&5om zELl9FuGuHDR2CXQWUR^&c2Ia|azsw80%PXKWl+SzewbUGR+7TP6kugdQ&jA6{|XX` zsIB$*x2c=gEiv(ov~SDC)^;hwE_V^_T1aK2NYy(s_Ury-B_NyuXk?o{#M=?agn(2L zxtCZ}ZxktBW-#-N%-Y&rhF=d~LkoYpKCu`0LQ?D<(HsbP)fI1<-zzV4?}HV)D6aS= zKKQbb5g4Dbh6F2F#zVCP1&A2zSQGg*`QSWmaU@iX6j0r8bZZd~!WFL5cq!e! zed%kJ#Zy>iSUp_5=*hh_ta=^|KKslVOqfd_WS7Lne;%-2*1z8AfGv{3;&GKlNZjqp zI^oO|>{S3ed1mky6Nb10UYW;4f={!eaYe4`i=m`mv7cB33AqEE(S%?*RTxHiZ+uJ< zwLy{zdDY=OfO=(Q03QEdw>J*d2sZsIV`}{j#T#q&L5Sf(aFoZE*TYp7vLCY~vEjeW zNy(5hiWAY_AN&O~I+U1rmAr&LoBtIApgB1fe!MHfspNr<->IH4_*`TO+_?Ji&nI6d zg@>0veE1;c^PLvAO?;VvkrJ0dmW4 zxI$&qMJTWScR9W|Z#o)zHl?)qei_kzVsJ!vH}ynbH7Kh;h*QNX;%bn z?3JHh0!(RRK$L3YiGiWv?=7oyhPU&NWMT0@EbPp?*Bi$SZQc6GTi7!IXG(77=Qk=w zSqkAhX4{j9?QcXi_oJhuKi@Vddv%wa(JM;1&bCD7`HfPYjE%7vhYP4g4hZ-?#)KE) z{z0ywpL1U$`*nJ-8(dkIut@$X3$HEcTig4=v@B9AOH7E=e#&59gzS>x1MeSK!laaN zJ%}iAgO7JlQH#&R8hO^dWro2*)_Z4;`L*3p4=iO&NK1=?b&=W9UW6GL8GQo-H=)N! zOizcuySYi@m(U4PBVz<9-N1*kGY38>%ilK3@Y`Gw7?msuC;Yt-$w&R6M}x*|oUy7d ziQZ#TSctrFoyGbyQ+}D+V~xV;}tgZOMm+Fo-+@&kxE#m z347w`n+ZfcmzFjdVUC+BM3F#udiB2+82eX&BMOT--RI6-chP`cE=*oM#QEHh0D|A% zPl4=HB@_zDp~yPfY|N5XBJ8)+6UDdNXde1{j`^W+3S8Juhj|tdxe)^!y)O^OKyK~C zpzlb?cHY`$*xqwElrx~uy22P&Rx2jPCA-&$46xM8CkmyC5Qy}=X%0wry@Qh0GyEk- z$I!z++`&1~(S7T93a3U2bXtawU~3mzmqvdjCMMB3+ran(|Kr3?@h}8lXv@!$7e;NC z8FJv{Eh9zu{c9zjPWG3begqy`QF+XSo?a=i`O%{ds)P5mXAlwax}pXnHMIL=9$tnx zdg#sr1+eVz9 zlqEJCO~ss-zOXY#Z%xr`jP?Ia(QgDPg_&f)tGV-lfc?rSJ}P)O8em_NF_uW)RgE85 zh}1h3g_m16K60A+S2h&+ImZUCmyJn(<-UXC3YY+?!*-4>viwX2`Z+k?zSTcZ9x7N* ziRCxn{mMkcsmu_K%Pwm+XLzMAD~%{Qb-L|JVGlq-T0pLT!GpkHnrH0)*a9_S?jan~ zmq5_HD6m)GoqjokBQ?|UU?7?=-CP);vYdN3z`hj~7SJSO)xlOj%#$68d+qBH5zXdb z>d^mC)s_&NI8<-qCS+jpfCC+VBlge#w?7c` zi|y=Bog0T=N~=8M8_AjFtg0KC`>XfM`#U~N@M$>5X-7^TE=16QEmX^$QWy^JuI{!B z@rGOv6i-OCg`(I~Dkte8(MG=bH*tL_c%^4jOi33fnj7Z)ga44%1h+t^%28P2z4U}- z`a!1BeGXBd^6bkr`e@k})$A(-MSYM;L>~|Wt=5!@-y^}@0Jm%!YP~H z-}OpDLcrw$SY#;ecZ&)9k7K_Hb?}L0@Q6CniU!m{zqm3nkkVP2H{EhwNg@1=Tbgw? z$puP=?(4*~CXop54K|{94cDsRE%s&uvhE1_Qkur!w*XXVLkRHUe0?>HS%CPR0UU{+ zvesRM0j`-!FzgSOdA%527;#U{*C@CkfnMbu4WoeR5a8fGR^)E~{ymURIPl*#Gqd6T zwVEcQl%C8r+OlQmLQQb9#a9V*ZwqF6Y@^FD?~(9(@ktmfJX>B`=`ykTkRxLQCjgEB zoTz^4{>Rs~4<+tD*^62(GAi6Cz}@-2o_qS3GjEiiyBwCHQR~GMrAzAaV5aqRolQI6 zxO66R9&Pz;a&SL6(JEBZ)WVnXP3|q1YpD4GEINrx@G!^j3;Zeu;f%mTYybDSm>6>B zHt+$MWmjtN;Q(8|-ht_h60OVkG&{t{=%<%3m`)2nb%}L;XNJKsxS+B>om@^_4GI2eU`r+@bf zk#OkeNZ4%{SVE=mEiFsc`>b(exQZEg6M;$PLqxO}5!J0D_2XAl37BN?x2KEq{5EmD ze@uHjzj}yn@WQni{e&! zg@%q-fCnfXq2OP$Irj$@)~#fI8E|4VH-ftjBc>i^Z*k4uxIdFe>T^l^keGluHf1^w z6%F3Z!`J5LF?>g5O4-flFy7gtm(Y0ZK@lZvXwh~zuqUAH-T4u4G}k^gTUi)TgK6Bu zTSx-U`-My>+}(CrPt?HcnD^u&Dfd2#7O8fpUv1XHRO!?$X=s9q4c_YUgn+#N|L=oG z1dlhL-_Dy&h;`#7Ap`qm#0@yfr37X52ArK>3Hw7uZBTcmKpdi~jyJMF{T z+PZV&C@LQxrT>lF$>!ciNrPx}kudm%7+FR(7})-IbCslg$*_V8lM-UUJPb>+%`$JH zhQo_7_-cAfuqT_#I8RqYW&LxCL&>`(-$6uTFQ?TtZk4*l=*OQ#izo{mzO%XO#9;^e zWDviU0%hR-Yw?L`A1ax*Ugi^i6J&z|;^K@e@%tQwO5G453VcGc8b1pZS|kP8J7T1v zO+&> z%%s%Z9HAj{Wd)`?)vlQ=NVu#_1O%OtL@Ws78yRIC+ zBVB{p*F;!(ZL6H9Rd3x&=*IDm4_lSfoqXNA&Q=9|<-gnf9ngf~vr2W|i=ef<9Q~B- zjs*cQn|f$$7{g3qp z?bC(PT2AP}vh^}boYyW1-M@`x+E3M~Q0R||Z-3OXevc200IFbVTM1ZzYFEiNxdZ=> z@0zDz+Rxh`z7bCyf(fbJ=Z%Hl1a_rcJt@^08=l3bctUqKfc>7$qP-XaM+1Nk$vHkc z-iEMmZL*D=A7enl0F2w!LGG3hqG++n?ij%9{(GN@d!n3ipNB-z_FXP-``LB=CnagC zXL#Al1as{5DE16|MxaA4&U#QN4~>gyoI}PWPEVJNLg%U>{n!~9G05eT@MbiD+y{g6ZC{Y zuMH7RFT>c_4F>7AiI9?nes_fLJ|+r--?B?W*r8Ao4>rEq46bm&;ky~%izjG7!X#T# zYDLK+*byE5U3R{P(6)Q{kc>s}g%P=OT@}!K*A-9n?5HgUa^;nD;-JTONS?2@`t?<7 zjLN}5>D!y5!{5uE`RcS3@agm-5oAmk_I9fC^5lqt;^sC6PtgZf%-;#PzBWg*;By-l z6ndlQaQ9|1<{J%9--A5eecZv+{%Xx1q@X*B6cBjPTf+Z?+PsR#RAHDv z8Y-0!hBo&9#|0o#3;nmZ*^^>HGliWhU!vg*XEZQaQ68-WeH7z-5lFTl+f9i{i(WlH z=lzp^Ln)rc`H41+>#Z_L)TqENs{OB?{nMDlMe=aM{zskbc)*l8m}}Wn0wOHb`xeug zxx!JWC|@tBBHe;!xAH1N5>ginYW;AiUKWr3VpV>Uk*9$QT;-wJTP ztaOV|^g$#<%|fh3{pRDj(7Ttwzz8@k^%72mFy$0)yd&T6IU8a55DA$5iA{Mb0q7C5 zw2aS>^KS&+I-bsO0_ z^dp^GE+iLSz8w)Q?f%JN)>?$m$oHjLLewFNWk%0}97{J?f*%jefIXG&U*4^7F?iW;XvN%*Xxwky#pQj15af0N$GHrM{12jBOxOmT*D`QX`R5FN;u-8)M`B4O1W( z*G1nzz2PmFvL5Ed;bA9qww{wa}6{( zmH(?<7Ov`-K}oBDMyo|eT)78))I-lHe2DR*Akzh6mo!mshhIQuhE^oylmhrJ_INDB>6)U(AEW4xuw@ET8j z`{N7|WO z1cK&$dlv9YMtW?kilOFDErh4Yic6-O1vyAKfByzSlE4Ip` zF00QM8$Z$ZMTnG7#4b;YBpAL_0l*w%N;&zi^Aryca^Qw=#9p$jW(v)gDK;YjNk2VQ zujCi$))ggE=sm_vm}PMM=E-3y(#4>YlXNipF1*gFag9M*l!HX2gnu+NN5^8d!LJ(r zKh3m+ONDx+I-TiPci%Z?j^x=NdVU?DK}tkC#SLLC+qwekH~vpBZ>mbcsD5yN5PBH z*T|YaLz-p)F)aju9NE(}eMTT-4s4M`}!XL$VZ8tr-h@o8g@hz;<3^V~q zeSZ+Qzr)?cybSCjr^h8@vWMc3PmGIuGe~kj`ejd9RjRYpTeCS;;WVa8P3F5DvN_mP z0>ayK*G%frp!4A1J{0YhX1}y~;}Ulr3cMcLOyHy9jLdlMqJysy;XJ*B=#86d5eDm$ zH+~|(W0bqDosl5pl8H@=efk}$Oqzz9o)~uW7QZcds6rt-pPgHHiitX;oRA1K3MpC3$n%QaU68-F81)cfMMV%bnxj<5>!1~Pz z9d89;x-Ydap}NU0Lh+nYM*u@;BLvh!iYEm#W0?9s5v0;3*>E=iZcvbM>;eH0x(nmU z%26m#{BsIt%KP@6YqBv6uIG>FzYzAV8+q1gX-bIHC~tp3_;0Wi4`A?0!imBrtn6yS zZ-#dvfG8-?Ixv8q7SS)e#};=Mbx&=+(6Vi>rxq&IX4&wEMRXJA%J2#VU zCpI^+M~)+Al(@U+`+7qI$Tqr6F4cIIq8l*BXZN~<71a7f(RpxkTMvvnT@PHX&mMMe zxnwrbSVTK$bV?~$rj@R(VbLouV52{xrbfFf8zh~%TePIo*g;qUrHX?m0YURvDP;QQ zt-Wq(puS7VQr)rmWPL&6**Ef6=KMQ!qxj%Lf%j5Vzl+JW&3G<|BFbo3(2Vfmeg=Mc z%yx1He~_s}&AlNO7CpTUc(KpJZL-+*m@lgY{Xxj|J>_jkPJH|bNZZe2GL`(6p98rZ zB3+@{vOCVztIcE;C6S=uN_Y8&=F1A)+1o&Pe;=zkuXfO2bA6BhpM#XHVoEq4p?seX zJ-rx{COe>{~S(X9iFo5P9=)j9jBLIx}GOU1*zR-5{F5qNHZ81hPR%9 zPz^;J^Z9dh1?C>r6XD8o4NA0Op7C<;AWMG1(lYnuiG~V=*6ONMYUBMC4q1$XN9eYN zJWD$-{~nYG>*MY6qBgN;&-9Xq)mRpAmdFItj4j7&n#? z__?7Eo_)3-kjU{n`s~`}@+>(>QQK$2&)GOgB9FqPx~$`+nx$Z}cjV+C{qpCJDDppU z&hwX{t)R!%$|>i?;C7}8!StQ1M}PEbJkfN+3+&uYLFhCn<|YB2hqpdx9E#MH?iV@> z2P-)I9C#&Fc-}h~tf=Z^bBufbbF?xW2dQ!?+WtXZpS0bBpdK2go?QRlgReo=Kdn5i z##^o(XxI0$P%dXUkr6sSjv>?%OXmu^Kuyn1TrlQ{IXJ%8W|7qsN>CQ$mv{E4-01s0 z%NWz7M8>T}+ED2cx z2pZ?Yqwr$1=F>uASrP zR{s1sP_5s2?W0hk=A@F&2_$$!FEm0y-ciUgk%&y3C%_$kA*{^K#^g&!$^GU9Z&)me z8M)*=Ts`xdfb-*kfX;7jnkg1+)7i;)B^MGC`?~7n7yZqhIdO zk_{-^04~tGy`kTfL4z!=Q$w)`fAp3rUWpz$IeZ0&d(x1k?{nOl+ow;i_Y1l&QQ#f# z_dC6Ag6ZYk^GCVHmMp)foy5A|)jQhTWBo4{rX}9IE%>)N%LwAk@#k%?*Lx4`?cJH_k%_Y7pdr>7@RLa62Wgg)(mAHSPxR#86FgF=fU zRhg4=DFn?gc<;EnEzpT*(A-YVpwYkL=mx~_#I=q!cK_}RVD|FX1F7%W|2a;lTSB7g zX$18P`Vse?+>=UtT&NV1%A!+1U;!pTFGqRk{ot2=M9$omJwuMc!}`PV4vEA9+N5+L~9~__4li|L$gV7bo3!_iJBISe71O9xp-_Aoga4w6hMN&8l5pV8#?hhAr zcfx;~2;8392QJ1lDFOgRDw$<%^+iW7sXAGo25w5;XL-b{lPtnf=s(cEIBXOsUTHI0 zR`9NBzEme=`DN`|K;4Z7bPTg?QA7RPsoL-qb=shah`Jk&XI}>f;2iw#0aX^OwvK@x z5S=jYNl9^ChKil8(uM}+F9ACNN@>FTH^QU&a{a|qSV~K7MZQ8@r@#K-*5169pbc70 z4Co26T<^2XrGrxYrD7`|HoHB}f zmsJi_R1u#2Q7m2;*MC)1ipQxseUNy;{iwdhKbnkZX(NW8K+sB9(%8#TG0>>ws>hwD z(I-F0_!nU8R++qAFKl+{Tge0p6@UNA(j;db%h*@K?P+e+-^oeuh_Bf;Hd%pvSnKI^ zJtMSat?LX9SfL*3&IWD~25D-L`8D}v-lnh{!exEL z7tR!Y|6V6fla8a1RZ5Cj=aW8ecnStqeeM)kDYlRX{i}I)i;?Mfv)nE>eJGcmkXtyU_*(B-T>j{6(5yY{k9cZXa%#eySJ||5GS|2Iy zoN3y(ESJD4{&VH!#ME*`sA>!!H>CcZ`IP1QfCJ)O?p-#vn8veH7h`kd6uGjx*6ipL z+g=JxK!2o9Nnzo}7CJyW{?`jL>?h2Uxp-M|ZVu%(i~GiTvGxMTE>SVq z3WjY>xP)&3a4<5m(XNF;3Co!vC%*Q?HX4;QXdP6Q*B!jle_0rW=Ef~vG5VzY2p1xk zz(JJ--dqr6qgSublNDYS6{Q*JToDe{Bw3N$%ODDf#3yG5**ID`yqwB$rMOAYNTYtB?s3pTV6ZDmHlNhcTy0oaS3gM=+PaT2~ zpRDiK$uT5J7bm_fJ>r8#p>8@!ui4db2sZ!~&u(bIsd!~$-D^mie6vs$>O5_xHb&NEB6Yv`dEhktjsmrC(e#d+`az3 z{oi{Z?-e2qL^zSAl~-l4XMJn7aoP$6jmMY+>^{h9%Xn1OVDzE37Z1t(QttwY+wyCN zDeTkb88;?|uy1ooVCh0aN4V2OC=KsQn?X`&mfVz!Ide)P;+2H}uk**(D5nae56m*% z>g9XeUM~5t1nsX-w7j(C& zBD$|IUMQ4?I>+Z%ZBh~v68zk~(r$D0A*5hYDlywqL-p@)$flCn5L|x| zVg7Lj-gR&onUJHZ310dbDWKm9S1D&;yFCLVzP8pB++w~R9Zj9{wKEJ)NhKoq0-rEp ziB5yOXiPM<`t8&l^J)pknNo(zu<8y%*V(#*$|PzBoxEoUmF&u)tfy*sZ>C%NUBtS~ z^sEyH2HMKgkxifb{$!FA>LbT~KpQ(vV{^;g897d*Lw(@ia%`$=|2AF$iSJFh5`V_p z*R~eypRowb%O6cXe89;nY^eT#6WSv#Omb33gv!&Tw<$N-aJ2F$VB4p*m?{U>-RyX0 z5am@^3NF<~R8B%xbRxKa|5m*$H0nk%eSo=LXEOip^qBl(w+JMBQ^)fgMT}l6l{8nkU`ZUF3 zPh9MpOo=BfYiq+P=Wg*;w^AB6FIYsG<19G z^+u+7mi*g_{2y?{-7hJ-0A!kdKd8k(Z)EI&N>0Cf7s#D9`nG{W00`3XG(LYCz0r~$ zEA{%YA7%c%@gcpG$4yHCf|WJg*S1r~CUt|K2<8Gc1A`Fz8B0KA*G$Wfyru5Ap~uGA zMd8dR@F0TwL!PeiaB{SqF0}`^a&TI%58*{odU>d!V%E1!=|^z-{+8$Cz$nsp1x^Ef zd`SsUC1^QpM&6n_>E?Woca&1*&oDUyj^+^UTUYEnccyVs=BCE=hzI}&_5SP$)=FEW~-uak7>HMsUlau4fl~S|Y zV|4WV{k=^m$7z1=Ey9m^J2K^y;3TmyfA)zY+>k^nm;ozZx*1pY5|%!(bow0D?Oo%I z<>gu8TjSAAvRz**0Yl<8!O4lRXzCkWxJOJ|TzVr68 zyH~nCCax@Y*<2~I0<(sPJ3%8)r-7qCMcXi+3e$jXknrF`6#`BIsXn2}IC-pOe?l-5Q*}0Z+y|f&nZw zXkt;f+>;=A-LucI;70pVVVoWbD3dL-w$P>-E&hBGa67M-CX36lDq7A3vAD0tk-1)o znCZEN!e~1MB=C#84Ys@W499lJ_rDNPT&k(U6eUqaSXmrwaul=X3ZL>a4lF0}uQ$LYbu2vM@jPyZ%Af@r3r3=HUan8u@mn4l; zjxr(CLjANCI=upm+b44E{JxQrTBxd`#ys9x?^$Pjy{&`TYY9Fss!lOT(o4U}=@Uu1 zx{l}8&Tp)}HaGhP2dit&M^k6EYg$_F^+(D2!7R(~x8C=A9C1swd-m3AT4ow^Gh`2s z`2AR;`^YQ9T)q{#t)8CxtbMF)13V)s%s>e$$B^ZtfsXPD8)e3X`QU?}VnPxrKP`Z) z4ff(%1`?`XPEKKpr^JoEpM1QNHy+=>#Nwgl{nz96%(!CHXq(MnI6=0Do%as+<3e*3 zTZOhPal6EtAnq=VzN9a=K@aKK>s2dV66;dO~0S%HlHN2V*E_0l!NABbQ%H zVA7G>@&-j~B_w2!7<3-~vC#wEd9Y_XP=@k$_f_PgE}+C|R@2%=t#Z<-nXy@FVL0Gd z0ezQmk|Uf_MT&?2*m*G{FZsDu4R<$Sv2JN{rh>+l9L`-DMw8oOjIFceQVN) zksovenksw#%9%!2ns4qnc%fF@Izupt@xbZ)N>Y#CJjv2z9YqIV3zc}U*@tkPBuhY|^u=;^# z01*d|Dvm-lI&cGg`UMQIhp<2iwkm-NPht z2I{$1Y2SAeD&_v1=f_A>Ou@6%7XuA|`ipJXx$z25t!I)N9I@P$#neB$iLpINwdF{M znEb4ZGYU2I-l#i+#RL18*LKB@L<#d=c?z9Rh+Q9O&=L@cwch*Zp7pGvI_;6i_NfZx z%jA=`%PuaS_aF1Iq(^h|*3|)ztB7fGuU^Xg0-wNgp9e>5PP5DuJ7t8k#0*p!`iajcTjCj1r(mR2T6Q_$>^B`_BZ!yN^T{2@Pw&*cP!mM6m$?W zPNoy?V@TxtihWEnF8FBh>xRzo?aUEecT26a<|s6QCrWws++L=*jPo(aNk9!w^Ef=l z6uB<)_b=qveG|t#1tkZ}RvERfI`J>qQh0xQW=r5osNzXjZ^Py{64F)l6MlS5dD2&I zRBaE6N&027xT?sNI>~|RcHB5-FSzoD!_OH3N~xO^>%9%Wb1IjS`gK9S?616_I4h6< z-?++1LyhUyy{&bbx^D4@{(D@;N^wlUSbjxYY(F)%Z}jAA-R)NuUhta`!f%3U4|b7= zH8Ai!hbf0kC48AaT@GYGbkn0*OE(zYm7B-=-Q?H}+uq*zKDTE3=J?msOa|FaGk$3e zNvBIYR`G?&^*O*`zpIz7UM}l5AU?kDTe_%^+y4=tki2fss=@hQUHqy)#n)5$HZ zTVG1>pgNlgq7;S0M)WH|Xt)SLXVb+9xffc6qYriWlX0vUl-M|x&sgeHb02S;>iqXZ zmC|B|$Ld$O#|40y#G4kKJ9}#UCYK13amDRghPddH4}S^;mhPH0#qEawSzlEk?AvJ! z37Jw`N+^f}mbm{iIfhMqh#ukt5i8C_Ra0CX^^J+D;fp1HJG*Y-_v2%vG%mnUv+o0SEW;S z2j}q6cTxp(;aT&2N1^ur+z+c7$W)p8|AvZgLQET71w8MfHebhRem=>~#eAQ^PhXb*-Tn zd2Xf|Mm-YZjd2O)j50>oof=Y|);~NI+jx5EoAAy5;{x#AhRE|IF@*r+`+6q!gFh%) z3ER&yWvNkn==#)%zW}Y}Q9{|otr@y>e_|Nh!xCXXp(!%$V>0gkPlECamx~iC{h*?( z;?%Sxy@XS7M->=84Vr<5UdxIN0O)vc*@E?@{NQu4SRtql3P9q_eGnEZD3h7BYBJRp z1hKgg?e!~v+ZS&a=bFDL3^Kl@M@QdZJ!A3E=vU@q<$7_)rE;bh=PitDN@xRG||&D~+-|9#DyzvaNGKEJH*x{-VUwN&63 zR0+viKW7jyhah;PzAa)&w)gXgj2K7Zq~4W46TF~qZjsTui#_B)8t4_Z+unYWClBf8 zMDIUwiSpWE`E_>e`zOvo*R_gy()y^|qIpG}YgZaxXmRg5LF>Ol?QREh=SjAwNRGlC z>KL4FZ~AcuazT_kI@+@Xdsmu5ZgTZe5V>W zwmT0%ns<@Tho!g(7i=8V=$sFn+uYGCQvEo*TEN>$p-v^u!DlqIewBMRHvQ0+?%3IC6(uMDed?YiE8fFdcW6TV) zk$tnNhsG24Q7uTjw0Vvq3qqldnF~W&bG)w~f(rrJ}@;`)b5$B;m9e^UY!p4Br z&|G4&H@6>^bdgC#wU2s`{K`eD!1Y#>t{Wx!y#gO4+ z(D}XmO5A;=Akp!G`fUFA?6WqMZ?|;eU*%I1zmjS~3Lchu~u!}U?^iK>8pFfH}fwv@M@Y#Nz) zU?GD+!bW6~&dbTM+=i)Q0lm*H!zRDsC3Y@Fw`-Dj7M7w`jsadCbF#TewclFwY(~H! zLcE?(#mW=X9_M1Lv`H5A8yo95Q!8D{Vuw#YpO0Zsb=i4^sCBE54!Wn0xE#Df+t|>T zmi_}#2AlsS-b@4MMM#)16|rOdZE)~PWuzBqmrp_&r%Ab1sJEgW%5)DSRb}O+;^h<= zB3mhAl{H8Jmb{ovh(}0<)JCwAkdR^6H;|;gt8=;Gab!S>mW{LDcSGhyef^BV-DM+) zrmDY&Ftkg)iJMyEZB5)UL58upTHloD{lMhSJU4R${c_empOu6E#L<6R_kGZD)1`{ zvltkXpi~YB7wU$e#ug-U99Z@KlB8H0KFx1*^m6Cnv2}AQx)+5D;h9p?}Ce7HL1_?Ao;+mmH z3w|KZ8({A+S@vLEUM8e*bqg+?x>Ddg9ZiN5ko_rs2KTdK8FEokk*7LP`d+AN_*nDF zKBPG~zNSCRtw>Nkl`Aj{DJUujwXMI}=ssJtvcrN{+7`JsX(i}X^bv9VqbT5Kt1ZvY zoY=xqlg0dfiQa)kepb0|ud+tNJk2m+V)(h$6*TmtXx(Bwx5$Co2Ecgcv6Xe)(j8Y< zH%C!lFP9)-%&5o5nS5PfAo_@Gw-r6`kd8vHvYT|>4kd#A6d=#97Rtb43al5^EAcq1 z#I^rY;Ol#xdQ(gm@2y@HeGAse&}()X+{>IS#e;>=dtW&9H@v-ph=96$GOQ&k(9_H@C`yzElIWaIHa`O^12vcjT&^5 zKI3YxLC7F7vO;gXSIa4;8NS(fvjG7D1(=ZJ^b?7fR-F;E>DDXcc% z$Rng>eZs-HblYk})W_vhHZp!oMlpqHSBwBi8ZCHI%M##`#a>aMD88$sgA#avR!B-I zayEaVIJhmVqFhzT;gO$&oUBpP`bbS~{9P>V; zmVBXt18@;mL^9I=bg2Pog^XFO4_*>NQ-YYSoxEnHLGt@-zPIBJa}&2gKqiA{K}G)K zB12a=4A^iOM&n~;!;r{I(fR^KEP;nm=tYJK_d;iqWYl9lhykwpl-&0QZS|$3!d5Ri zo;yEGNR122Do~_6x3&#=2!7BTJEjjkd5T}W$(Kh*JF$mLmMTz|^qvj?*YBT(t_tdB z6z?uez?%)<#6s$L&o{bR{Mjr*@-6bT#x@8R9 zF)#68sw_Rzm*U!tm^ObCEALe+8U#YQLB_xU_22%dxjui$P4=iB{MVS;|Blx}@J^C2 zywLK^*}C3Hb+6ijx6|daUSQ$3H>}GN<9kt2uO$~5c-Qc5hC7P(hWpfrPEYrE;XT{b zG_tlXS9Zsug&qJM^>!5}Ic03{*T`E!M?0h58&I>ZA;g`jmb z`Yj6Wg-{Mo*W&7_tMQRt4aF^$y$1=@uy;bbzu&Y5P{P<-(@3S$| ztBj8IgyA{gt#G$TL6|B-Wj)Fic8709$7*@i`ZkX0o?exF4-&?J z7o$2kX-?sLGi4#N;OEpPN+K`E zYCJ}NX;V%mua<-GJ%u5Quq6CFk=?F%Mdz*KRmFv>rj_5prli-U>@UZDbU(w-v}l*2 zKIxe#0d~X$m9ZjTu`Sit#n9NH**YjURlA?Ny|)-lWbc-eI&c7t;ysXdp>?QG-3yQ~ z3Ep0l?(WBp_P%ia__3KqkCQWyKs=fckC|>TPCOEHpB@`E&XD6I7LXY}%mQS`Ed(|i z)CjPhGg%B{^L&X1VKba2PJ4G;+3PV@P+=A$gPcA*#G@PwHF-3uOyG-S#ke@DiwGB< zKR;=P<&YVV4rY;{mH37y#NsWjj|gSA6hT4pTL1pb zn;7`C@mbxX$T%P1TLt1hb>(x|Osw&G*l)Yga`M zGIn!Zs{N40>HgT^51W>wu4Y&Kz?#`gWMwMXq-^om# zw@GC8W^ir3Y{UMbw9``wiirl~xXR)p`CI^Pw5kO}*{n)C!oth>TN@ zll5!-P|cH<7jWtYfaM+(qCWEM>-|83^7RK~F@5n>Jlmg#eBH(gtE<1T6I+5%&y5!a zjldb7KwTI!SgoMJA`5GzshZ`gg3^@|AIJ=0*;_)MxkoGbi%DGFD6g!Ih!AGsy!mTH z+R&OSq438KJCn?1KzdGeHA#z|kOzr-qCzPp_H+*Gu>i*W^3%omtlazUc5$bBBG(ee zO`@T=p6)Q(Yt4-6e?Id8X{EWs`q2H)`F`cP2r{z#q4B!vx=~spOK0cw6fhtI6jQb7 zqj86avz7Jlvt?|{TmyW{RXx5Bbq1-#DBnMjG)#S(OC{js{+=ynbPRoSymz43(yIQ& zn*&eS@4>on%urY|WNNJSx^u*PUg=9(1)d$cD}>wb z>Z1hH`=+6aZD^%|eV3^R<*3K>_QmJH^6WY`F~|SBRET1{by4}cTz#ak+TFfRn;D*B z5}A|YO2E0eSd@nYG?AttzYA@=qzxWkaE3;Q9b!2qY)n)!N!*Sel9`+wv4)NT=Y@7N z#u*Y`UOsJ~;=dQs6`MzFJ@riA!Ud;T{r9(+U)2gPj40dk>6^2FD<-ZLJv^oJtzZ?5 z6l7<{%mv<)a-r9{0-jbg2CnM6SNJffjdK*RL!b=RAw*_nb;>GZ2NNWX>tY=3ppkJ` zM})zn4)uYQmk7- z0AkNlrUT}?cWby*Hckk!edtV$n_>zHMk(iqbo}~b21xx-u7t);2B`tQNM`h}O6~Sl zWdB$muQ7Mq7WTtZSg_=BFk^fjD_COsA*HE*cU-H$jJKvRNXzz)>g9}tmAz^swXs0+@wiRA#b<$$uO z2km`terQx}(=ZT5e(ctaN~($qZ{9fNPpG$~Nes5Ji=nz<OS%8Juw5X z#l*xZylw~b<7HxSx)V=j%6x_HZ6#@)>$B2~>@_l&KetN1YLU!MC0qBVTsSW4V>b5($ps#B_=#C(nA-Qz~FUR z7S(0d3EcN@L}5th4CL|HPZ_CKRjNFyy)?$+%q4TH$-(p2Rw4cv2PZ&aKE5J4H#@%w z`+vl2iX`p6W~_a0A@|58MlUDS8&L}1elIkV7#Q+jbB^L8$smXb=S7W%Uc8l+Q&!cm zt0xcx6@!)u)eGx4_F2gM?{QGT003g1YQDDKN5PK9nmO^nmqM{UAU9aAUOR;Z)G}+; z5=7&31Eka?ZYww_%A78{?3cdxM7~n*e>no5e$J!yu#`VeecnIAmzG%8&CNwaAM)N= zCB*oX-(!#1ze*D%tH-Bv3)Ci(f_6%Yl<_Sxhb31W@6EEaMeL$MEsD|6Wuy(K4VXX& zY_M~Nm<=>tRJSuDajs<>?Yt!^72gv*nVzcCV#(d({XmY6X8fK0tPyBT{DfjR;JBHw zV}k4EJM!mbiW(Y#_?8+oXAb-rW09@49^WeYt&#=SN~k&dvIGm!=Xia8xIH5M{U{{M z^9wY|RA=eKBeL=sjaR<1UCE3CK=JFOgRP13FCu4fu0e;1B=|h$F~P%o?AC3BZkKc$wJNAR)?82XR%)cZr!3W;s{I=`|)YrxUP_5 zdZsa3jRw5k%`c(nPuPv8`DL9_vyZAB_fA0cJ za|9a%D0LZbGbAQDH>6iOV{jr)h4Sq$+jeJnx3p)yO$ z7^~`2FFh{MZ-PyYufrX9nS?Z3x;glLsC0W-)Fgw>Ka31#?^`5v;4z(U7CCp_?J(U&){0%{t#ZY>IstRkfwQeRXd>V9oIyWk^7&=%r zx;1|X4j25gguv%B-BdEU(KGv86PvUD9Qwum~&4C#-hEhy!S*ppqsy^qqcQAWjy{Y>hk!icT)?B`4R@RWIx`V24GS9#$3rIiiF|E&YS8IU6WGdDDxkQD9 zFyy~V_kmKgA+;Qk$@347n8gjfv|4QSvVgwQ6$jjAsT55*5KwkUzB|u{)tqOxBC;Cn zLY}{O>ON#|{O2Y7OqD_7ZGfmiy2u(oiyW;&8_}#ZyK&EL%Xe0G4psK@Jdt=RVZut* zLZ!|tZ!hlRQ8N8N*-Cm7d<`{WD0D8bKofDFvJ&LY{&^`|A(aN1&q!jSpeo?of8I=| z9e5DsCX`s`;?c2iqwxrwZNn`GJ44+844^$Dn$$|8Gpe{41CUNjj}dahKF#)C3ch|P*HvH+0ZjR-q(J9AWtwe^1E&d_IxdKxFk@d zJkUHYJy97J>bCM6bC?G+cqQ_H7{r8X$DH+Do}YZhVg@Ywu>ni*n| zvy+9WnYkPfe)OibNtVr1VqY@UOEK^gYnMIs(n(HRW|W@5P54y@vAzB}iV^81s_bSn zo*!eS1}$t9wEz74PIw~}R@P?GNn@o??{dWAFlTzm$;Vav=u37R0Sc1WzSDR8b2d!i zcFhYsL?qp-3lE8fHd!j_zHxwp3ZKch)YO$P2EGlDk#1?RU4z*}2C=h#X1V$)H%Rr) zMQyY(#HiH%%uc-Ab%ZMTUlXaSqDlI@m9A(0qfk3Bije@-@`FFL_n4WT8h+?1DW^%? z^JNO71+GY@H1x7>qX$x`p(c+g4@=((Y;uFDhZs2uUS zDP36y#E>MVsJKcDqnH;$;;IJM@qRaI*>047JY(#6U#H>G4!FA=TKN7%pQadcU$PDQ z_2Bdn6V{wC&%?F$6LZ*3LA{GIlmw1hqFc#wunI3r{t&dv;6x6!Ht^{E}4XkV~nMS+qUz?KAC z2q>H7?xGG_GVfv8aDxbtL8!EeiE5$~S-J%oZ^zQA9=J?Rqcl}r$*Mf;jvcsjOKcBt zsj$u$u-!a@R8^Dz4oOqb5n2Oew9o>u*~bbEzeA}gKpThL0e3V1VlGv!6Kc@3Bg~W8 z25G=&FHF6aoteP@tLBqkLewwA#%!H*R-!yJGNd~d7oRk(b_)ZmOUglwMtWJ5p1w2N z$oB`!5(5#%OtD=W(;_>6e5@3k@z+S@3=}yX8xC4ykSfgLVXIc7sut2F; z&)<26^j;#?Hz}!Qe9lGT&NPw#wUg`Ze17#%d(pChVguIe^pWc|OpdX9CXJ-C$mr5$ zXA9jS(=p&0$IFz4dB&F@ECMXjyV0}EgK-8ccvRJ2kfS+##hzsft2`ROuR@IEpqRg* z??b)abTNQn$|T2|075A{ewD?IF+9kpvbf2n`UW(xI-q+UbHgVvfJP~&f@#ri&V`DY z8Tf;t!faf4+SP^WIJqYDF|jP0@&GQ-=ev@Gds1OGedG{8x0;2JrlF`+VJKK{z$hO5^f03Ezf~x+so|BObu-uS^Ew>B?j7A?1}MGq3&oR;oB`T$r#C=qR1FfmHl*0?^7o znH2|bL|o-y-WL&=bT7#gWRUUX9uNPnS5%;7_;b(qvxj2dT=tWWR{)*~RPbtIInngD z(dYc>CaR*ks|Q^CGsUSBrNoC?q0l*q*DSmSL#XiS){vDiwD#u9?p$2MR0Ha*m_f~% zPn;ft*!@;#E5~BB()#KhW=S76gLBG~_E1bjc981O&8k ziRBOJc}E)UZ4+?ro!WIqqQOujyB++h9tT1tnQr*}6Rtg+Q`;x7OZR9F!*1SG-5dUdY!U)gB-kS zk)Jutu=&+BYa`$O`;vq7VJz)D*CP@*dNg| zFl4rUyv@0ot_}&qI_dm_!phONH+yMa1g{kI;=2QD?ol~BmIA^7+JmfaBj6n*!5N{Y=Jpp7+uQGq{V$dvxy zn3Go7+OoyrFu%Z$O87Q8e;=GysCi^NBIxYT3@}Q^&Nevl?L9~@&U&3ctrNqUBy@_ZP6#xGt*mF_M<9J{|{+~Tm?>Kq_ zu!Ye%I{CvcmZiSm!SYG^(n~pt~*H4n5C-ky@I2Kp+Mv zf^x8+J4t@$P0Gx?XJDP2(v!g~7FtD;sr2#oeJ3VxIcNx*t-%171Nl1knq;g-R;4a) zUNO59C(Twk<-$lHJ(IcR7!$hrg)Ihd>}Z&wCnl`8I3zjQ;9S@&f;4|{HzhUj>eAlQ&^AT0NdLyc z#tLAm45!>VK=_u|COUfA-_K(Mocs)}D!bQ%9FeP*q(ueu14$gC+|C7|l~&Y^Bu4{&7e7lTiVpxS9<#jZ2p?gz>q4Ocw6XPeqPd{| z>8`9^+6$J27^ZALl%D!cB3y9L|x`+F;ocIW<`fyie)v;r8* zUUS2X{5eviGq|v}tEm6N4$3f-1}VR!ks<8$oEqMNDPgrrETvSp=`_C{kVKmI2QiRH_&fl`#U!&6jIvOS zPyFIfmvXrj1+RoSht?2`L9sQ+5y!o~7=C-iK$EDuw6;PQKSl_G6sbCLPc%0Vb8B#G zlpXNdMN|fl^GttuM8ng@{j1OjyVBmmh*S<=xA*x$8Q6=VFJK!Z6xgw(>8xb4G$H~2VCMr5U3rqV&l%|83WUb*mapEL{1yjhDfnKp~{2j;&>ssjxEhBLl+8Rz68tpGe1;bA_gl1&J-Dq|Ua-%0R(ATetF4n?2VsSv*ZL zER=Q>c@rE_pu*;-&@v)8|62roc43yhjhJ^2J9}KQsQZAeC`xq6__pM6P{5C`+YvVr zmzVAftBRkW6FnKyrIi`@5OXAl#>_lS1;0*gl2D2j|Fy|!*$;wf>gp3#)qxm+f0hiS zpTxh1@ali%F58jZKLv=j#HHk0++RNd8m5}k?JW+@<3ObgAT+Y!=O|%<23lGY#uG4E zK@aQVL&-<7=dtPiKLdN);{lZ>F%feeb_m}?fqg+8Jt|m|r5?b^d{jSKCKMm~%klIu z;U`{A4S%5TMXh=Ve7070l39zI1{wgEptMIF@kOv>TrW$AdG5{W^XJV>eW<>g+^Nru z5ydmrZ^2MC`bDR6ZxS%xei8Q7AXRdU(= z3V~jrR_BB)#20juGUR05EVCTZMpGJ9ff5qd@zvD$$8N0lgLk{=>E%Ztz)D^H-Q4;i z3pus@hx4E;!7b+ztC!KUSvf4I2Mp^*X6?+d7l{#c^@9FMHpQEmC`Mv=wZ|Qq&A^>7 zPQ$8&eMUjX^j>Dzg_@C+DEvmqRGQSWtYp+42 zS86lUE__wLMgxT3e#C4t^V`p3nlOq4fnBFFY+QdrLPT`Zc>%&OpNBsVe%abrNxNAL zEJtHyeuhQhuzNDrv{r)RXwJKINS=W(IzvS_rGQk_dkokXv`{)aj(tr6J2m+-f&9Ol zYG?1Sw`Yu@x+%;qbdGxj+6^f`9N?GVUlXEZgn~5*1Y_9nkn^+7f=5X<8&7j zj^qoIUjxgrGAjlKiN#{9T=e-GwH<%+3qJ2ku}XOAb`dm+!rZD6#I&xz~*W;SGa2N2{4OeLKCp3{fZ87 zeAho#d9L;wBR$R|@kf66up1Yosu5vb1fm4*#cAG)jEhf$xJ#Ic_^r+fvqW4=&`QM^ z4_`%I4}2<8_*9V~LQ?oZZa`A?9K&Aoww~@kpz}DSUO*(tdc21Syy5pUfT2oBHQT<} zvokx)G`qiSJ@ruU(|^F#6{7*Ky8xv8%09{UF4>GI@mRk$C_JvuQVFS!&9D$@skE#$ zs-r#_BQRL@Rx007MW+;_<*_cE{*CkN)9oEx{DuiYDGf=@H`HU~ z&`dhfmpZ3k%lI~IQC3veMn<0J)lMnB+ZXjD*J;!z#exP~SxBhzZve$uG)F27BcX2? zFPhG1*&pn^Ey=K<4~*pc=f90p-&xzl`#I){%T|Duo}R#2W9F-{>VGdI3DL)^X!3C5BvyX9am)zfO|5UyM-q$wQON&sTyWqUfva~z;QifMcc~yD-&jE z8IqNQsQoD%xIsUx<+bU*tA96R-^s7Y<{8v>@zT)``c&CF8%uHkV$fBBhOzANI`^%$ zHAbZ!=FTjP_f8bS;KjXY=3Gpfg9&`4d3gV&u#(%jas;f5x8>4IUT78dI53p`R9C-- zOSc31W{G{#^^ilrsVGNq?FIb}BXe^WN6jAaQ5u^tn=H$v!X&^ zma;DjX0@Nj+#uQl_F!Fvu~7lRn8fM+*R4 zsoH}>KZq78QEHVRx{aWU-kEcS+~&78Csy`yi@E;$PiO1|UxYIm z*NZGG;Ke=XSbX=4jgMmyl^0h=PI$`QUNe&;I#k_IZwA$_bt@S9CdN#2BQd{={SuoS%+ETU7avkTAO&F!I?zn#>3YI4)moiJ$3l z`rc*#3srplqo)xlc?Kv~>X@dh>R@!MXF!7znl39;tb7mxN3ee-uZL_!R<16FbktMj z8~4~_BG{B}u)b}AlwLJg8mBHsQ0;_yyq}?F9Sb$hAOoXhp<2v!Z2oKxNR_u_%vpX1 z(RG#FD0?>3WJDU5lgp|iZOIijqxN|#sH^z-@RzBj9~q%+X4$$=^i8tVTi>)gHOVU{ z$^AZyivfjDYcN{VIdgQJi9pCb!}y-+TH*1bc4d_q>PfyqH&&(Uh>)3uEOM1s6c4Yn zaaCL>=;|>ie`~=z05jJWkFv47s`vzESwZ}l0JLyHv1!wD+`zCi#YdrP8Xw=~c%Q*Z zn%%QQr&Ov?)?Dovh*S66^irpf7m?mazqxTAnZ znTcY}GdB8WNFW%^a_OBnJT}h$JRN~nu%hd8)q#e@5|1Qe{@CctOkv^0CdB|_Ii8d7 zFN_?VNXmhO;NEUDkh1JTlc?M0+x%TOnBsV-J^b)Xk}7x=fS7aUHNZ*#Wa0=2SI|x| z#io=@z&xP4BL6i%PfA-} zi4I6LAmEYQho?u_PR_Org?Vyb?y4K8y6o}FDp<2wQKeK?$ZE`_i2#dEDyKs9HSDyl zKN3CBI|cRj9l#J()xZkltmCPGW1A{?X8ZvCZpaz1)8Bx$?uiruuj%#Q5?7y@dipyY z!KygpirqKz;;sZ8`TgcbaPHdJoNbr+7U8DlILU)*>4&O9 z{vLA?xv%0rGqj6y0JtYh8XQ(agHCU3Q~8N{ z;#_)YtQ7E1m-`q__sqbY<_bi#ognNW13lT{C8H1$IrM`7E)#4=&ze6&GH~BQJKT<2 z-^<}@t#;&jkPsRxUt|a(aXkT;20Kd!3(VA-MLC`Zs_xlXfM!*z@OX1xCJKcd#QvJq z%Ug_(O;z<4DK@+5Z~@qUS4D3Uh&Gp>w*eVf_wTmfqyIhXLMZ=JAwDdzq%};4%`$Xe zEvAfQ)4`*`0o^uk0dMzT_}`k&+l>5)L;2?G8{-2c8wXO$W-r=4#R%q

E7AWfpN?nMrXuQGzb${ zJ%^W$6SOi}b7_UI`5eSFVU4+NVjcW?{&j(aV|hy95_NlS0jCET4zq@XaX4RQ>vTwx z^2!sb4nIkvR1)BJ`**{h?lIsKqdDp>NEdJKJ&E5H6|&aBGE$emEguz9ES?CeILXUn zBys~-IW@}gR2wc=m-3LY_3NiA!>XPSJ?Jn{=aKl;^i$N|a6(Oal_ zm#nkaAO<>`PB|{sDhflAld7pXbcOkdbnIjpu~U4ndMh5~HI&kYgJAHDaE}*QJBy4)|1k< zK#Z(-tH5@eBHd+A0`)e}?q9#FjkrxRxkR4Ceezi$6@br$-g{Y5OSqt_OeGT|f;B9^ z{Em(Y6j$GZhXO!7&wtoFRZM0`_z9ejAZ!eY3wEH~jyHm_9NpD*6!)>#A}*P|b0Y%8 z$f*KpZzLU|{8fqF7?C~=#6)-E#R&=I(#tj?KbZ!)>R7=ZAu?W}MX&T)*C0yYK*Y?` zgli2QYvZXL9M8^i;D7N!Z5Jh5S)^m4e2txX+jFc)dCr=`_)HJIwELObQk0y8mniCG zCh~Qfs~r!`UDji%wM;cWNLX^+7$20twwozlIe}2-yf*b`2SO=IMn(+D_4$rcW4xxXO8Sn3ggdH za}<}%Z>w;0bs+%0eRDmXHFcCqpyzj@Dc93qlf1RAu%M<+n@!xKmqG4@92&4_!EMcZ zFiv$9k7}mlNy*R{md`2h;1&Ge4XeVw0u-x8s+*p*Q!|Envp9IqDVgJC-ZyMq5L=o> zsb{LA+R@%7#Gr(IoTH-R@V%X5$MGStw7CWp8piea8z#(mY!y)QIU*Ei*)5ikUc=GM z3>cCFNIr+dyAI2t5Q=p|!4xPCCT5|H@@|y|oKg&rj4462Z-?!s*EyAf!}6X}T8(jxM=s+YxNkSp2r= zl$7uyX~+V+<1Jnt)Au1?!2Z;IkORR09NhyK3LE2x;4-yhIXVhNfJZyNzNavN0D55P zqB8r(YE*Wee9s?tlE)$2!92|yt=b%Y=g^mlA)yJS3nDrJJN9BPzVBa?8i+s&(r~Mb zE|MlrPCCwpivwM=zzLYLM9gvT-r2J*#v+}htWlhzj^w46NaU~{XnLa7x)*9e74nv6 zgmn*4x`v}z`>f}`p4B{+W^if{apxAA#(vfbHSjX=Y#l~#qO7VCdyRwr)U}z0O<^7{ zO<3!V_qjr`90+j-+wdn47FfUx`u@v#RyBsgMnl?Sv>F0)^PZB?GvaV4$DlLjmDa7u zMqV@>?ud5f?adq=+ZW7Y%s!mOduYOYy^HCwS^VQi?P!lxs3l*#>+pyrj#FcIcG}d= z-J8+-%;EpRBbH+@EH`zyjeO~K<^v)^^+z{w&@dlUNF}fBnEwinbBYSO_7v9Xd-)19h6+i&!p)S3+0mnOt6CklJ* z^7n`4*jDXfbgf0y!GOr*^Z=E4Kjk#t0Kw0mUL*x?N|OQ_!h!p8SlwSf$R?NkkLWa` z>+YQKR+51^2@_(f>fC3&urAwiY3npvW`bV~1gyTl12x{81%3Nw96P(eMt;YHB8H9#)j7=$3rT)6*X} z)c&j(?yZjCdGa`Lo9w8fXwrSWVza&8bGReoPvo}G%G&huE2AG;M)tF6L;OT-XtsUt zAMnfH)p2lM2q-s|J?z7}^L>o{5D2ox19QBJiew4dDsT7V@;=8cOz-pK zkHYu}pGZanuUwaD+y0~0nR=bm{S0Jntw*Oj_md~8O@4=y`}wl{>0*B(Z~UYW#h9WW zub=|^o5!JL066>%ag4%Uv!3RkCXg=mAAE(rJ|MD_c8vkx*88?h_B1%Z+|0wq+Ug2(!5jN21L)6WPQUI~7T z*qEPBv^#$Mfr(3-UPH4(g!_Y@Z^MP2h8DKjUoFGQ^A23ZBl(q8UGlZBU(0Z|6g0Ff z?hVGy5`d;Cj5s$K!@=$3WSGW%qOm9JwV1pBzZ|Gy4b*sq-qjtys8jMz=ld|xC{|W9 zQhooL<0GmB85u1juD|QVuVI6>tpAnw3}b7J&EyM`cj*=c_-1Cq?i`Fzw+Bx%7dGtEWx!sO?LDPW@cnm zMZ4kmY$TM+xlk{+T06Yl%}=~M$U-M>Guuf?xkyVhu)OPEg)e*A1WVvFC%d*J5cD)S zH&f@;c>ZGAuPIrM#5fgSA$@$$zJ)6RH3FlS?lbKgLcie_6c?JC(nAW|lPa%}p*QSL*5c#SW_N z7BobFi=eONMi}v*cT4(nUcHGiLXo!B;;wn>s<)25AWW&o6ToI>r)hpJeC8@60L-Ms z_7zq&Fzf8@uP+FUoGiy3cLX^QwxMk|0~S#2_*nMv&(iQ>yL!7>tm$y#!qzld-xwab z@jY5@Ei1&Ml-s2ISAKh@qDz8QO_WMFDG%RKbzTrQzeyETNfDb)89N@2<+IL~xSIU$ zN`c2XK=IM>S)1=6#V%}ft>XPi1D+LjO$HnsIEfyxh1ynqW3ZgwFoa-w%b&;c>Zzya zaKFH`I1vJo9d1OlCP84TOPD05gX}3WY3bd2ePgWpI)Yo>Fnv2s%l4F=E60SNB#2&dz{vir-At8yO>pdv zZXcD6+5d3?N;h4fylG(lxQ)8hH#$ocug(r`B#PTjv%rlds0$5Q(-C00THUQ3TX9?M zySKZ9fp}z{HkW^Agk_oE<~mCblV#iWRE28+E^M4}jb{d51)UAfT$e+)$*N4G&GSi} zsI8yH$xL`CrI$0Gy%f2=7~q!eZvXY|evsf`+?)p^uLxEJnIE6Nnb|(GV3NVp&+3Rr zrzhTRCr9rU@6Ua548JOQibEUqC zb0OKfS_l@Y4A_Iy3X{Bz)Bu&`#&jAsn9| zpZD+~Avr|9i+R-cXK6AA?UBdcUUrecL5le7w`!?xg(3czW#t}@_2W-FV}kMV8okpC zvL8=Bf^R1Y5cGM8vxPVPk*N3aY$@|jOa&d-c?szI`rh9M%iPfl>lsE2M7deyh|gd} zN5?Uzgev=b!%>P>XcQHz>n`nXHKN=XiiL55G4hVx>=Zd2@+v>ydif)4-0O2c;P37a zE;Si4ilL5z)pz>!9?l@U#}yUB-`*rwSUT$^C`>i_)VW~_oCjhcbJc=^@eqjDExQBT zy|3R^_sFdW5p0=_IA&*NE>K`1zJa6JLBp;NbK#ZEj=O4vv(U>Z+DfetbYQS(+j|sq zQQd&H4Y%!~ccq5$i9Dl#ZLIkDeP@1KyKqruVTVV$m3`k|KVS+?F|-wIE*g z+YdhVTCZ8l{_!=7M!w3f|EMqjOR+oOzej9*e_Z=l)0%WatG(f>vE1xt1l2IIcIt56 z`sMY!pYSDXk?06Ql1@tqV})-~amah{&|q&joS1d$={kb2Y9I}{>oNxoe(G}0hZPZW&g!ro7Mh4zT$*O27tfO~dqtns&xrK(PSgQ>C8#3#e!tD4S~&eX97*$-UeFx(hXaBqd`TwBfJN;1<7kNq6bZ@_ zwgw7W0P>xAd8cDK=v8%0n_?G0nZG~>+=#*kezqn%t5{O*axr~}=c??}WILmg4i~4g zS_bX;P#@5qoV46Tn)ctyj8~9@3Vk<{k%UB6Eyuy=TD0f6*}nVC(D~HK&yeBpdr#F= z^mREB5-{hh?5nozq8s3i&Lx#1U0U%-yG}k00glG0rF!Y}2^JyTFUw`u_Tu%f?uoF3U3T>BPIUp?Mjb?DC%k8_vXe1cET> z{QNjEhyS5WZxZ$ohe$?nRDf_lOOE)6yme!J(+2@PcE!|rC3-4(oEL|}`Xgnby%9${ znrT(N==x4ws=F%W2t!{!?cfZh*}7?_j$AyLOT!uapy62qo!Mgzfd3DsthZzxST65Q z01Vz@20{K{y`Pf+^|6*F=AK^m>T{6TX}}yzBa|tw<>JrjrtR5HM3*@*WR4nH@yH2Z zJ3{cFyEKj?Sf9C9=kd`1XRT_oqp}|=;91%*84Kqx3))alY4s9 z^eW@l4ez0kRMZIiIEZ8RdtXOH2lE!cl>!{l&Dv7a+mrogDQF+#QRQBdC4ngY-(N%u z{M2F`7wgLFcs=^#mH2x|)nSVas$n(!NUaYSe=1T;eq-!&1yxQX+W7K9Bjkhi>_Be%Fs3t!JJY(d}0A1g^;fzqsM7(AV8y zQ%1nMQeB^VcLISBB=&E$?=}Q1wN*&jAWb7&{_y;JO_`#q3Lf^y0tyMk+9SiAflx*{?e5 z>%Jf9fbX{%XF8wdM7_`#KPtiElc!6F@1zNdQ@4JgVZ3U1U~QF6W>|dVe5_u8`Ig(v zhYt&a4{f@{;b!V)`}?owq;9b+Kzg6~T9o5XJZuAlpY02JOz(MEE*YNzzZC*;%n@m# zLE`s_^y!liOETePdd+KsEwNmON|@hi4>p)DjyqL%=N^;09~U3A5my%JS?jyRkjNZA zo(aY)pyg(O>-n)gN1;T_@EoT&O$52pJ8jgNKBa5<^FMD-M+1mzKZ94#_z{Tcu=B!P zRl$Brx1D(L|JUA?zeCx+{kv5qRG#uQwxaYz_$IQ`Lbhbzw?`7PFN3j752YxBge;An zEHjdQgePmrl4ZuOs4QblWgpvnPQAzR{tfSOeDA{#_YZTqulu^r<#T?{^FFVwekFO_ zK98x^QfZ$1D^rFrS%HsZzM#o-%x>7D>F4q zlC-<=pPD#LfZ_O+bKe!5mgmy{81-~%ac1~1E3n_+$un+R*D~lU?^KaEPq1?4e!QXm zlvpL;@45H>%D-sW-IK(cqR>w9+k>yKCM(%bkhT;f=;;XDe!Tf`dDvXED96ZGD566>37T zKU6oyO69pBqOUqd6dCi+5|#SlP@}w-z8uJR=ZR5aQQ4^YC4L1{lzhTjY2^NVjJhPp z1y*h@(Kji08#cdIUb6NH zFw`+|eQ!&2t*iosCvV}O1Bsxt(eavCTY*V5hF8?o%3OeXdT1&+|`!<#pMlQ$YU!o)IN^(36wP{JZ%^@|V`+9x*4ivblQ zaIRJ8*=C>_NqDltCDwQT08ZZjwNcZqD}g4)LR+6$j5~er{kd8*Q66NZr=ihv3OpAW zQbDy|<-1IneWh?|LDULctJqURr0Kl|R5GbDD#+T3SFE@&usBb*uylzM@$&xVFs8+0 z9j%Wh5>G8`tv>@&MIvV%gQVAb@i@)s&W;DtcpD}r?{4@OK6TcJNl0|yFoupl`n+vvE5P#)vW{(40c7 z*m;5#bb`P}G!DlX6?kX198)@W=Ilmb!gJHcNCWAb{m3cqH7$c+0^#wZ0_$fKci1U7 z^MDkw=ik|52U9+zUG7w>AzEFh5X=2uE!Lh`T@Xdj-BG4uddF*B{fzXP@%$;#+*|Qt z^$G{3eCg~cRN21ra`NrBq~UFxtZeUxB%gowAb0Zm5_2mm1c;dp5N(uBLld3AHXqCg za$mfyBd%`C)rql`9(T_mPSV}F=li!H9CWh|UQsC29Isb?dr>gBN@}-#7Y0ccs0_ zzI{$7g^@BdRn^|DRjo0S6vq@kn4FM|kD5~7v)}aegXy7i|B(vEmMAj#qnOJ$!7)r8 zjb)0CX12We(drpJ-vAaH|Gn_Dr3qbyC#@1rZq= zoE_(u_q4fc3D#;H`U1_K9g+J~=tC7k&mIfPv%T&M3{{MAbv5v7TD1ZDE=_S?R(B>h zDZWY2$|?HXG+z5|!v2f8g;kZ#t z=e>SZ!sXal^}(9=@J-m}x(#p3*J&+~aKNZ-v7#24+|pu)i=QFA#G;#|+1$T5XTtY` z%b0y1Tct*pfF9%YS_kQ?lyYI9@SS=P#1W2I35yVFD;PF!mD#O)xnw%@m<^wTVELS<#f6i z8R#>eS7B`aI(@yPd9bASY$7v~KzbWFCWA!Tpe!ubnDC|>*36?X_oD4SgsY&eUoM~V zIT?)jd&qi_2@cyykRoURMwYTdbFk@(Tm$=kK-IG(-k9r;LAEnVWw|VYE3klzrEXTQ zQ^}r1wQGb*a}xms84d+~BKMcgPg4k`8zla3Q6~lC6Z0HgkREHGDmj#0RM|r8Ez#xR zbB$@fq+2gtERYGJ)llWJ{8|vZBgwIXIUV903AKhsW@c#Ndn>?UH6}NAZ$)A=TV!Z=#ZxQ^1Y`|Jskm_xi8Jd zy~`jG|7}`JF>u(SI}Td@fXQ)~mr({saSe{j_E{ZU@mQdHejg9K9EQ)|IN^^+YmAk( z)yd;J7bXBu#BnlFo_b#2>SJe((r|)>>vfNveV(7LIQ75!_KpwqEedrucw^*U-N4qK=l={UPYMR%O$MaCA zQ00-z;@Zl!X7&{6)=PI&`9Ux;ysW6(eYG`;uLAL9A+^61_ycTxE!QU36Zne9te|7y z7}C>X=~x;b#*#wM8ZOO~bhBi%vLG}oYdqmUB*t9&?&^Gv04PNwRE8>3DvJ%_^Tw@k zHqjwBuPuFYK){R?#@2WT+Ha&Ei)5z$ZQURxsNAceKuc40+hmvF5DSoWWKcj7Ny`|m5 zHT^FxLQ!=d(Mp*@LU*7y*H8qj8m%W>*jxtV-ZFgxnr*WWG;`S$oxF6{aqatO;hzTb zO~89ync-1OmTbH0TH#(v2dyhK(UKm2adM;WOkD5Juln}(x@^)ujy*2Bk^2>|(yz#c zj4DY>4e95V?(-ZN=q&sU=N_2}Z@k+5i~n>F)?ze^Ux-;0nX(Qzf3{mb{kRDJBOFQv zOC)*{w@8i3WG0mPXkin#QSQZq2-0nB)fs#2vVks@V$?kj=QGQNbZcO3Jz?T1+O8K1%ueOh^?XRteTwKDH%lK4Z9Jk1>a z;d19hYbZk-^Br*w_!6sTXk>K!^Tci?kd0UmtJz4A?4yFAk)@H5;_i~DN8$TtJEaM+ z4|Z;QHXrYOANvEx3T!vVdNG`>?aL6o4UGmjPcC|gra3@@6PpU2-YXlePwV-d?MvUT zXDs#c&&+&`5>>)YV;E^W>-@ohWCk*>Kf3nk`L1x-kUP+#vbZWU^Y7xS)$usrdEn%^ zr8W73{!X)^km|+)3ZuASFWPO)=dem9s-r|J-|nSz1jcF}iXF*>W{*){0+#%((?S>q zQkVIvKiLgXC{#$w4qWF@%uY^DUSc~otpYAzKhaV^JLQDWRz5Ldn?YG4G5QBIp!jcN z3UaffZdF%>#iJb*5JaVUF&oDlMt5L^N^nAeLegR3k>Yx5VbQ3&MF?VHO}gD27_c&w z_E(ZZY=T|g&vp?IfshRI;i4PNx5<|CdA*-aRrTFdMoZL6$6_Y$lWDW*jBe#hI?gUo z%n}{{&6d=J zzBf~Oi<1!nN^zQ~UT0g$zlFIs0@m%F8+mi=TC*wEtSCttoTPWIX!$NAo#34+ZqgKN zbfofLywBR}F>x!CWC>N_^AUGpbJ{$4I@6SGIub;+HcCWF9ddyFnkR^VIvU5SS0C%s(4rPD7gSV=6y#zv|_1(K}C<+jBRy45(Cye!`R~ z)uocQyMYuu0<*!*eoeGtr>%(?7xgffsn_L|c7rv&{jsJJ;+P|$Ir`+Q<(UG>i~LF# zYPWoK*%IUIwC>jUMFZV~G<6m~Uffe&T=3YU#<-y9@WN1IxJDQYCqUunD(KCi_sK{%Xqnmx#lj!x4q^b8yqXp=S3^w0e1Y3zWLk1uIYM}!~AX?E`!|c zNDn?0)dbIOn(0@xaK2a6h!M75eGi71;d5SG9RCA!=L-g3w>HVjs~n=xzZk@r&6D#K zP}Dy4eZc?g-XkeEURRw8953xN^l^g@^;R_vuA}ggPMM3DE*m93j%L=XwGU8qTX$uF z$3(vNqC&S2L23QW0jgM?DN0Uq_##s~F?ipF(fr)pT-|Q(wePkA{rwLD*a5mdj-_hC zp|y6c!+Ywennp$te5GNclYL$l#=%K$vui)nkGVJOo&DL-D9eu^Nf*Ss3r2&^-P#*x z3-IR)8oeS5Uts&w`p@G_;4xn@_zL$4J_d%JPvOi?x zVy@(5jQW{t%8#fdud4TtaIpIG(4vD#Y7f0gDNkD6$C~Y<)8daeYUEW!rBde#bDoH4 z(lHRFp1@!#BnPl`IZSVej*#o^5A_b3z1bT2m2N+taw5Z*T0Q%VZR%mJS!x{U%z0TK z+39UTKqWU=MN*-(%WiJHa~6cj*h zhDEs_J%l#2SbYmWnnfZ>py^7wFXdOsnW|gQZ?2f!x`k_RcQF%2P6gnm9DCBQwzst% zM5njom`mGUf^yGg)XkuP=`k#LsFBSN93E96A*FTz$zPny<3p?dC0Q zd{9Jt$Lzhmh^GgS+MfM~bu~01ghfQI%eUGmTIDu0H0a`@5%eiUqGf3oNZ=FCWO3+w z7F9hBrDP8t$W>)Wafj`PDthr3&)b4b!mO-UQQ&8fig4>kSROWy1CLAZMKB2TMpxy;|4hL#|%^XQ66}z4`*z zA>N%wyY4_e7;7t}a=vELYtPXJKa!^S6#lARPB3bzCej{W^3Hw9f!tq7&&<5WG*x^d zYqnsv(p8mHGzaFIxzc*1>({k|SB4xkbLx0TcOeZ%hK7IK)4gop{s$YMg3NQfELku% zCmTJ1V+Kf9NhgZXCd6ykzdhu?l=M77JQ0dn3MTfmm$BsuIx6f%uFS*wEcaaJn62NY z*89M`S>C`}QFTb@8^!aI}S`Wzhz`Uin#95fkIv z%K5~&)pQmNY<~LS{^k=#RM}ef;nK>;yKxT)dQxSNS%6v%hmlBfTbt9$6cIQHkbccA zJ8y`DE(}@9;?K{_6kyAO6s1ai$kx)JT{K|GE+@qW<()-kYQ>0~7WLwf0f=Ak`~k_& z!?7*VmEA<=DDLqfg93ul+yv znMaTG^rW9l3(|L{5VfhEuz1s-AMulmv0KjZiHSDfFM4@-N%}2VGG{k8RO*0Id*saw z{$inRKnokuxjs2L8+3h3Ib6#ov z3n#&{TH?7~p8omH6loo8f~zY#;#d+Ix?6GWQy4f?2PvoCGhe@ceYx5#hsz>b)yyT< zZ{}=o)bCgXGnNi|X3KCgCFVTT_b~1iM#dEhyS1`YGm|xkTsF72Hp*-p14J!WD!@hL z&_$7Hjl8*=}J3@)pXNYY&V z*4bwlt(Yr9teQ;i&dh0VkdS=64*&vU^- zj!sbcufYPMRT|mCT~rsn?0Gg$1A33k;tEv+GT`rH*17!G-%|>R`0R#;aj-NW$NaQx zc1T7o5WJGX*I1U`?d&~-jSfHZ2N##~yU=~f3K%cPX#`2NkVrB_qsz%etHO8@lY6Z= zUM6rup-_g##<}mpSe)O-oF=UdI}emPbe}NlIlX0GU&D_)aGX?e>O|=P5-#dY!RBVE z?GVGmuRCldRZeUdTKYvqMur#aq`5*rzu(W<>@4Xc`YtBxqdxN&UgOR-i}a-LlCGxH8vg07PC6xygbKZWKv0g zixrD6p!}GkmO1t952iWG8=9_R&*W5gN`v1j0E?l9<2ks@lW(ZW!ohcVnFqO_;LW4P zE9ay8h@E$m?@-r$#u4OX$D)Gb%Ag%%sC&Ul?*L`~5QoQZV*u$s@(O~H&E*v9LV(oazMC}*B$1`B z#Q-s-0Cq{Vx5b?+cNu!4n#*F&^5Fb1J+Vilp#C6659AC&2AIpo{{BChi}lz794DXur(IEeigJWj8bHyIjgg6hUzQNwmbQy2 z4*DQJdsx^X1mIw46a!ZP-@yE?rYQw4@k4XYIWob*9G4gum!-ysQHg^htSK2MStygB z9b}I7n&~+WXYf4?z!?hXgt2gh{~FzlrdZ|KZ2wH08>{gv#Kk2h=3zG~v3<3x!R*wa^1)KXm9&f3>#*dSTSeAou1+Ucb?d zfA+8xKrB0d5P%tz=6nCw^71l+g55INVo>UhO%wC9#Hv*ajS2dCdU}6BjDE_ZA0nWc zk6BDK^kb^k$kggzfF&fj4b0j#qEHqc8sUd+0(9T?ux$oZ(NT-s?)04fvMi zFtfIw`NPNij)TDJ3&i$}R(qp&wpK;N#fyzvVK1|8MD-SjEQ?%|VgBxl3sdzjP|(XM z6Pq`56qld3cXWu){28HgZDPI4ugvkIz%p$_x)U}Qu1}jKlE<&KXyxdelYH_+fb@ZE zEkVw6vPl*z6s!IUUNc$VkGQ=xv19d84juV-HggmbBn1w~%&r@+XkHgojSrYRU%Rut zQBYVYKb6LP@%95i8d)UWH*Zb|3gcZdK~PW`@B0Yv)y?lE$e=l9)_ zUH>-(wEWj~g_*+nb=^MzTk`w%CfU+eJSHT<;