From 7dd5f5a44efce374fdd5d4b9269fd612dde9530f Mon Sep 17 00:00:00 2001 From: queue-miscreant Date: Sun, 29 Jun 2025 23:53:02 -0500 Subject: [PATCH] revisions and images to stereo.1 --- posts/stereo/1/index.qmd | 716 ++++++++++++++++++++++--------- posts/stereo/1/stereo_circle.png | Bin 0 -> 196771 bytes posts/stereo/1/stereo_sphere.png | Bin 0 -> 120577 bytes 3 files changed, 509 insertions(+), 207 deletions(-) create mode 100644 posts/stereo/1/stereo_circle.png create mode 100644 posts/stereo/1/stereo_sphere.png diff --git a/posts/stereo/1/index.qmd b/posts/stereo/1/index.qmd index d23e2f0..de9a4ea 100644 --- a/posts/stereo/1/index.qmd +++ b/posts/stereo/1/index.qmd @@ -1,218 +1,379 @@ --- +title: "Algebraic Rotations and Stereography" +description: | + How do you rotate in 2D and 3D without standard trigonometry? format: html: html-math-method: katex +jupyter: python3 +date: "2021-09-26" +date-modified: "2025-06-28" +categories: + - geometry + - symmetry --- + -Algebraic Rotations and Stereography -==================================== - -Expressing rotation mathematically can be rather challenging, even in two dimensional space. Typically the subject is approached from complicated-looking rotation matrices, with the occasional accompanying comment about complex numbers. The challenge only increases when examining three dimensional space, where everyone has different ideas about the best implementations. In what follows, I attempt to provide a derivation of 2D and 3D rotations based in intuition and without the use of trigonometry. +Expressing rotation mathematically can be rather challenging, even in two dimensional space. +Typically, the subject is approached from complicated-looking rotation matrices, + with the occasional accompanying comment about complex numbers. +The challenge only increases when examining three dimensional space, + where everyone has different ideas about the best implementations. +In what follows, I attempt to provide a derivation of 2D and 3D rotations based in intuition + and without the use of trigonometry. Complex Numbers: 2D Rotations ----------------------------- -Multiplication between complex numbers is frequently analyzed as a combination of scaling (a ratio of two scales) and rotation (a point on the complex unit circle). However, the machinery used in these analyses usually expresses complex numbers in a polar form involving the complex exponential, concepts which leverage knowledge of trigonometry and some calculus. In fact, they obfuscate the algebraic properties of complex numbers when neither concept is truly necessary to understand points on the complex unit circle, or complex number multiplication in general. +As points in the plane, multiplication between complex numbers is frequently analyzed + as a combination of scaling (a ratio of two scales) and rotation (a point on the complex unit circle). +However, the machinery used in these analyses usually expresses complex numbers in a polar form + involving the complex exponential. +This leverages prior knowledge of trigonometry and some calculus, and in fact obfuscates + the algebraic properties of complex numbers. +Neither concept is truly necessary to understand points on the complex unit circle, + or complex number multiplication in general. ### A review of complex multiplication -A complex number $z = a + bi$ multiplies with another complex number $w = c + di$ in the obvious way: by distributing over addition. +A complex number $z = a + bi$ multiplies with another complex number + $w = c + di$ in the obvious way: by distributing over addition. $$ -zw = (a+bi)(c+di) = ac + bci + adi + bdi^2 = (ac -\ bd) + i(ad + bc) +zw = (a + bi)(c + di) = ac + bci + adi + bdi^2 = (ac - bd) + i(ad + bc) $$ -*z* also has associated to it a conjugate $z^* = a -\ bi$. The product $zz^*$ is the *norm* $a^2 + b^2$, a positive real quantity whose square root is typically called the *magnitude* of the complex number. Taking the square root is frequently unnecessary, as many of the properties of this quantity do not depend on this normalization. One such property is that for two complex numbers *z* and *w*, the norm of the product is the product of the norm. +*z* also has associated to it a conjugate $z^* = a - bi$. +The product $zz^*$ is the *norm* $a^2 + b^2$, a positive real quantity whose square root + is typically called the *magnitude* of the complex number. +Taking the square root is frequently unnecessary, as many of the properties of + this quantity do not depend on this normalization. + +One such property is that for two complex numbers *z* and *w*, + the norm of the product is the product of the norm. $$ \begin{align*} -(zw)(zw)^* &= (ac -\ bd)^2 + (ad + bc)^2 \\ -&= a^2c^2 -\ 2abcd + b^2d^2 + a^2d^2 + 2abcd + b^2c^2 \\ -&= a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2 = a^2(c^2 + d^2) + b^2(c^2 + d^2) \\ -&= (a^2 + b^2)(c^2 + d^2) + (zw)(zw)^* &= (ac - bd)^2 + (ad + bc)^2 + \\ + &= a^2c^2 - 2abcd + b^2d^2 + a^2d^2 + 2abcd + b^2c^2 + \\ + &= a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2 + = a^2(c^2 + d^2) + b^2(c^2 + d^2) + \\ + &= (a^2 + b^2)(c^2 + d^2) \end{align*} $$ -Conjugation also distributes over multiplication, and complex numbers possess multiplicative inverses. Also, the norm of the multiplicative inverse is the inverse of the norm. +Conjugation also distributes over multiplication, and complex numbers possess multiplicative inverses. +Also, the norm of the multiplicative inverse is the inverse of the norm. $$ \begin{gather*} -z^*w^* = (a -\ bi)(c -\ di) = ac -\ bci -\ adi + bdi^2 \\ -= (ac -\ bd) -\ i(ad + bc) = (zw)^* \\ -{1 \over z} = {z^* \over zz^*} = {a -\ bi \over a^2 + b^2} \\ -\left({1 \over z}\right) -\left({1 \over z}\right)^* -= {1 \over zz^*} = {1 \over a^2 + b^2} \\ + z^*w^* = (a - bi)(c - di) = ac - bci - adi + bdi^2 + \\ + = (ac - bd) - i(ad + bc) = (zw)^{*} + \\ + {1 \over z} = {z^{*} \over z z^{*}} = {a - bi \over a^2 + b^2} + \\[14pt] + \left({1 \over z}\right) + \left({1 \over z}\right)^{*} + = {1 \over zz^{*}} = {1 \over a^2 + b^2} \end{gather*} $$ -A final interesting note about complex multiplication is the product $z^*w$ +A final interesting note about complex multiplication is the product $z^{*} w$ $$ -z^* w = (a -\ bi)(c + di) = ac -\ bci + adi -\ bdi^2 = (ac + bd) + i(ad -\ bc) +z^{*} w = (a - bi)(c + di) = ac - bci + adi - bdi^2 = (ac + bd) + i(ad - bc) $$ -The real part is the same as the dot product $(a, c) \cdot (b, d)$ and the imaginary part looks like the determinant of $\begin{pmatrix}a & b \\ c & d\end{pmatrix}$. This shows the inherent value of complex arithmetic, as both of these quantities have important interpretations in vector algebra. +The real part is the same as the dot product $(a, c) \cdot (b, d)$ and the imaginary part + looks like the determinant of $\begin{pmatrix}a & b \\ c & d\end{pmatrix}$. +This shows the inherent value of complex arithmetic, as both of these quantities + have important interpretations in vector algebra. ### Onto the Circle -If $zz^* = a^2 + b^2 = 1$, then *z* lies on the complex unit circle. Since the norm is 1, a general complex number *w* has the same norm as the product *zw*. Thus, multiplication by *z* results in the rotation that maps 1 to *z*. But how do you get such a point on the unit circle? +If $zz^{*} = a^2 + b^2 = 1$, then *z* lies on the complex unit circle. +Since the norm is 1, a general complex number *w* has the same norm as its product with *z*, *zw*. +Specifically, if *w* is 1, multiplication by *z* can be seen as the rotation that maps 1 to *z*. +But how do you describe a point on the unit circle? -Simple. There are four complex numbers directly related to any complex number *w* that are guaranteed to share its norm: $w, -w, w^*$, and $-w^*$. Therefore, dividing any of these numbers by any other of these numbers results in a complex number on the unit circle. Division by -*w* is boring and just results in -1. However, division by $w^*$ turns out to be important: +Simple. +For any complex *w*, there are three other complex numbers that are guaranteed + to share its norm: $-w, w^{*}$, and $-w^{*}$. +Dividing any one of these numbers by another results in a complex number on the unit circle. +Dividing *w* by -*w* is boring, since that just results in -1. +However, division by $w^*$ turns out to be important: $$ \begin{align*} -z &= {w \over w^*} = -\left( {a + bi \over a -\ bi} \right) \left( {a + bi \over a + bi} \right) = 1 \\[8pt] -&= {(a^2 -\ b^2) + (2ab)i \over a^2 + b^2} + z &= {w \over w^*} = + \left( {c + di \over c - di} \right) + \left( {c + di \over c + di} \right) = 1 + \\[8pt] + &= {(c^2 - d^2) + (2cd)i \over c^2 + d^2} \end{align*} $$ -Dividing the numerator and denominator of this expression through by $a^2$ yields an expression in $t = b/a$, where t can be interpreted as the slope of the line joining 0 and *w*. +Dividing the numerator and denominator of this expression through by $c^2$ yields an expression + in $t = d/c$, where t can be interpreted as the slope of the line joining 0 and *w*. +Slopes range from $-\infty$ to $\infty$, which means that the variable *t* does as well. $$ \begin{align*} -{(a^2 -\ b^2) + (2ab)i \over a^2 + b^2} -&= {1/a^2 \over 1/a^2} \cdot {(a^2 -\ b^2) + (2ab)i \over a^2 + b^2} \\ -&= {(1 -\ b^2/a^2) + (2b/a)i \over 1 + b^2/a^2} -= {(1 -\ t^2) + (2t)i \over 1 + t^2} \\ -&= {1 -\ t^2 \over 1 + t^2} + i{2t \over 1 + t^2} = z(t) + {(c^2 - d^2) + (2cd)i \over c^2 + d^2} + &= {1/c^2 \over 1/c^2} \cdot {(c^2 - d^2) + (2cd)i \over c^2 + d^2} + \\ + &= {(1 - d^2/c^2) + (2d/c)i \over 1 + d^2/c^2} + = {(1 - t^2) + (2t)i \over 1 + t^2} + \\ + &= {1 - t^2 \over 1 + t^2} + i{2t \over 1 + t^2} = z(t) \end{align*} $$ -Dividing the numerator and denominator of this expression through by $a^2$ yields an expression in $t = b/a$, where *t* can be interpreted as the slope of the line joining 0 and *w*. +This gives us a point *z* on the unit circle. +Its reciprocal is: $$ -\begin{align*} -{(a^2 -\ b^2) + (2ab)i \over a^2 + b^2} -&= {1/a^2 \over 1/a^2} \cdot {(a^2 -\ b^2) + (2ab)i \over a^2 + b^2} \\ -&= {(1 -\ b^2/a^2) + (2b/a)i \over 1 + b^2/a^2} -= {(1 -\ t^2) + (2t)i \over 1 + t^2} \\ -&= {1 -\ t^2 \over 1 + t^2} + i{2t \over 1 + t^2} = z(t) -\end{align*} +{1 \over z} = {z^{*} \over zz^{*}} = z^{*} $$ -Slopes range from $-\infty$ to $\infty$, which means that the variable *t* does as well. Moreover, if *z* is on the unit circle, then its reciprocal is: +Applying the same operation to *z* as we did to *w* gives us $z / z^{*} = z^2$, + or as an action on points, the rotation from 1 to $z^2$. -$$ -{1 \over z} = {z^* \over zz^*} = z^* -$$ - -In other words, for points already on the unit circle, $z / z^* = z^2$ describes the rotation from 1 to $z^2$. This demonstrates the decomposition of the rotation into two parts. For a general complex number *w* which may not lie on the unit circle, multiplication by this number dilates the complex plane as well rotating 1 toward the direction of *w*. Then, division by $w^*$ undoes the dilation and performs the rotation again. The proper description of the rotation described by $w/w^*$ is the combination of these half steps. +This demonstrates the decomposition of the rotation into two parts. +For a general complex number *w* which may not lie on the unit circle, multiplication by + this number dilates the complex plane as well rotating 1 toward the direction of *w*. +Then, division by $w^{*}$ undoes the dilation and performs the rotation again. +General (i.e., non-unit) rotations *must* occur in pairs. ### Two Halves, Twice Over -Plugging in some values for t reveals something else: $z(0) = 1 + 0i$, $z(1) = 0 + 1i$, and $z(-1) = 0 -\ 1i$. This shows that the semicircle in the right half-plane exists where $t \in (-1, 1)$. The other half of the circle comes from *t* with magnitude greater than 1. The point where $z(t) = -1$ does not properly exist unless it is allowed that $t = \pm \infty$. +Plugging in -1, 0, and 1 for *t* reveals some interesting behavior: + $z(0) = 1 + 0i$, $z(1) = 0 + 1i$, and $z(-1) = 0 - 1i$. +Assuming continuity, this shows that $t \in (-1, 1)$ plots the semicircle in the right half-plane. +The other half of the circle comes from *t* with magnitude greater than 1, + and the point where $z(t) = -1$ exists if we admit the extra point $t = \pm \infty$. -Is it possible to get the other half into the nicer interval? No problem, just double the rotation. +Is it possible to get the other half into a nicer interval? +No problem, just double the rotation. $$ \begin{align*} -z(t)^2 &= (\Re[z]^2 -\ \Im[z]^2) + i(2\Re[z]\Im[z]) \\[8pt] -&= {(1 -\ t^2)^2 -\ (2t)^2 \over (1 + t^2)^2} + i{2(1 -\ t^2)(2t) \over (1 + t^2)^2} \\[8pt] -&= {1 -\ 6t^2 + t^4 \over 1 + 2t^2 + t^4} -+i {4t -\ 4t^3 \over 1 + 2t^2 + t^4} \\ + z(t)^2 &= (\Re[z]^2 - \Im[z]^2) + i(2\Re[z]\Im[z]) + \\[8pt] + &= {(1 - t^2)^2 - (2t)^2 \over (1 + t^2)^2} + i{2(1 - t^2)(2t) \over (1 + t^2)^2} + \\[8pt] + &= {1 - 6t^2 + t^4 \over 1 + 2t^2 + t^4} + + i {4t - 4t^3 \over 1 + 2t^2 + t^4} \end{align*} $$ -Now the entire circle fits in the interval $t \in (-1, 1)$, and $z(-1)^2 = z(1)^2 = -1$. This action of squaring *z* means that as *t* ranges from $-\infty$ to $\infty$, the point $z^2$ loops around the circle twice, since the rotation *z* is applied twice. +Now $z(-1)^2 = z(1)^2 = -1$ and the entire circle fits in the interval \[-1, 1\]. +This action of squaring *z* means that as *t* ranges from $-\infty$ to $\infty$, the point + $z^2$ loops around the circle twice, since the unit rotation *z* is applied twice. -I'd now like to go on a brief tangent and compare these expressions to their transcendental trigonometric counterparts. Graphing the real and imaginary parts separately shows how much they resemble $\cos(\pi t)$ and $\sin(\pi t)$ around 0. -:::: {layout-ncol = "2"} -::: {} -![]() -::: +### Plotting Transcendence -::: {} -![]() -::: -:::: +Let's go on a brief tangent and compare these expressions to their + transcendental trigonometric counterparts. +Graphing the real and imaginary parts separately shows how much they resemble + $\cos(\pi t)$ and $\sin(\pi t)$ around 0[^1]. -Incidentally, an approximation of a function as the ratio of two polynomials is called a [Padé approximant](https://en.wikipedia.org/wiki/Pad%C3%A9_approximant). Specifically, the real part (which approximates cosine) has order \[4/4\] and the imaginary part (which approximates sine) has order \[3/4\]. Ideally, the zeroes of the real part should occur at $t = \pm 1/2$, since $\cos(\pm \pi/2) = 0$. Instead, they occur at +[^1]: An approximation of a function as the ratio of two polynomials is called a + [Padé approximant](https://en.wikipedia.org/wiki/Pad%C3%A9_approximant). + Specifically, the real part (which approximates cosine) has order \[4/4\] and the imaginary part + (which approximates sine) has order \[3/4\]. + +```{python} +#| echo: false +#| layout-ncol: 2 + +import matplotlib.pyplot as plt +import sympy +from sympy.abc import t + +z = (1 + sympy.I * t) / (1 - sympy.I * t) + +sympy.plot( + sympy.re(z**2), + sympy.im(z**2), + (t, -2, 2), + ylim=(-2, 2), + label=[ + r"$\Re \left [ \left ( \frac{1 + it}{1 - it} \right )^2 \right ]$", + r"$\Im \left [ \left ( \frac{1 + it}{1 - it} \right )^2 \right ]$", + ], + legend=True, + xlabel=False, + ylabel=False, +) + +sympy.plot( + sympy.re(z**2) - sympy.cos(sympy.pi * t), + sympy.im(z**2) - sympy.sin(sympy.pi * t), + (t, -2, 2), + ylim=(-2, 2), + label=[ + r"Cosine error", + r"Sine error", + ], + legend=True, + xlabel=False, + ylabel=False, +) +``` + +Ideally, the zeroes of the real part should occur at $t = \pm 1/2$, since $\cos(\pm \pi/2) = 0$. +Instead, they occur at $$ -0 = 1 -\ 6t^2 + t^4 = (t^2 -\ 2t -\ 1)(t^2 + 2t -\ 1) -\implies t = \pm {1 \over \delta_s} = \pm(\sqrt 2 -\ 1) \approx \pm0.414 +\begin{align*} + 0 &= 1 - 6t^2 + t^4 + = (t^2 - 2t - 1)(t^2 + 2t - 1) + \\ + &\implies t = \pm {1 \over \delta_s} = \pm(\sqrt 2 - 1) \approx \pm 0.414 +\end{align*} $$ -With a bit of polynomial interpolation, this can be rectified. A cubic interpolation is given by: +With a bit of polynomial interpolation, this can be rectified. +A cubic interpolation between the expected and actual values is given by: $$ \begin{gather*} -P(x) = ax^3 + bx^2 + cx + d \\ -\begin{pmatrix} -1 & 0 & 0 & 0 \\ -1 & 1/2 & 1/4 & 1/8 \\ -1 & -1/2 & 1/4 & -1/8 \\ -1 & 1 & 1 & 1 \\ -\end{pmatrix} \begin{pmatrix} -d \\ c \\ b \\ a -\end{pmatrix} = \begin{pmatrix} -0 \\ \sqrt 2 -\ 1 \\ -\sqrt 2 + 1 \\ 1 -\end{pmatrix} \\ -\implies \begin{pmatrix} -d \\ c \\ b \\ a - \end{pmatrix} = \begin{pmatrix} -0 \\ -3 + 8\sqrt 2/3 \\ 0 \\ 4 -\ 8\sqrt 2/3 \end{pmatrix} -\implies P(x) \approx 0.229 x^3 + 0.771x + P(x) = ax^3 + bx^2 + cx + d + \\ + \begin{pmatrix} + 1 & 0 & 0 & 0 \\ + 1 & 1/2 & 1/4 & 1/8 \\ + 1 & -1/2 & 1/4 & -1/8 \\ + 1 & 1 & 1 & 1 + \end{pmatrix} \begin{pmatrix} + d \\ + c \\ + b \\ + a + \end{pmatrix} = \begin{pmatrix} + 0 \\ + \sqrt 2 - 1 \\ + -\sqrt 2 + 1 \\ + 1 + \end{pmatrix} + \\ + \implies \begin{pmatrix} + d \\ + c \\ + b \\ + a + \end{pmatrix} = \begin{pmatrix} + 0 \\ + -3 + 8\sqrt 2/3 \\ + 0 \\ + 4 - 8\sqrt 2/3 + \end{pmatrix} + \implies P(x) \approx 0.229 x^3 + 0.771x \end{gather*} $$ -:::: {layout-ncol = "2"} ::: {} -![]() +```{python} +#| echo: false +#| layout-ncol: 2 + +interpolate = (-3 + 8 * sympy.sqrt(2)/3) * t + (4 - 8 * sympy.sqrt(2)/3) * t**3 + +sympy.plot( + sympy.re(z**2).subs(t, interpolate), + sympy.im(z**2).subs(t, interpolate), + (t, -2, 2), + ylim=(-2, 2), + label=[ + r"$\Re \left [ z(P(t))^2 \right ]$", + r"$\Im \left [ z(P(t))^2 \right ]$", + ], + legend=True, + xlabel=False, + ylabel=False, +) + +sympy.plot( + sympy.re(z**2).subs(t, interpolate) - sympy.cos(sympy.pi * t), + sympy.im(z**2).subs(t, interpolate) - sympy.sin(sympy.pi * t), + (t, -2, 2), + ylim=(-2, 2), + label=[ + r"Cosine error", + r"Sine error", + ], + legend=True, + xlabel=False, + ylabel=False, +) +``` + +The error over the interval \[-1, 1\] in these approximations is around 1% (RMS). ::: -::: {} -![]() -::: -The error over the interval [-1, 1] in these approximations is around 1% (RMS). -:::: +Notably, this interpolating polynomial is entirely odd, which gives it some symmetry about 0. +Along with being a very good approximation, it has the feature that a rotation by an + *n*^th^ of a turn is about $z(P(1/n))^2$. +The approximation be improved further by taking *z* to higher powers and deriving a higher-order + interpolating polynomial. -Notably, this interpolating polynomial is entirely odd, which gives it some symmetry about 0. Along with being a very good approximation, it has the feature that a rotation by an *n*^th^ of a turn is about $z(P(1/n))^2$. The approximation be improved further by taking *z* to higher powers and deriving another interpolating polynomial. +It is impossible to shrink this error to 0 because the derivative of the imaginary part at + $t = 1$ would be π. +But the imaginary part is a rational expression, so its derivative is also a rational expression. +Since π is transcendental, there must always be some error[^2]. -It is impossible to shrink this error to 0 because the derivative of the imaginary part at $t = 1$ would be $\pi$ with no error. But the imaginary part is a rational expression (technically with the interpolating polynomial, a ratio of two irrational numbers), so its derivative is also a rational expression. Since $\pi$ is transcendental, there must always be some error. +[^2]: Even with the interpolating polynomial, the quantity is a ratio of two algebraic numbers, + which is also algebraic and not transcendental. -Even though it is arguably easier to interpret, there probably isn't a definite benefit to this approximation. For example, +Even though it is arguably easier to calculate, there probably isn't a definite benefit to this approximation. +For example, -- Padé approximants can be calculated directly from the power series for sine and cosine. +- Other accurate approximants for sine and cosine can be calculated directly from their power series. - There are no inverse functions like `acos` or `asin` to complement these approximations. - - This isn't that bad, since I have refrained from describing rotations with an angle. Even so, the inverse functions have their use cases. + - This isn't that bad, since I have refrained from describing rotations with an angle + (i.e., the quantity returned by these functions). + Even so, the inverse functions have their use cases. - Trigonometric functions can be hardware-accelerated (at least in some FPUs). -- If no such hardware exists, approximations of `sin` and `cos` can be calculated by software beforehand and stored in a lookup table (which is also probably involved at some stage of the FPU). +- If no such hardware exists, approximations of `sin` and `cos` can be calculated by software beforehand + and stored in a lookup table (which is also probably involved at some stage of the FPU). -Elaborating on the latter two points, using a lookup table means evaluation happens in roughly constant time. A best-case analysis of the above approximation, given some value *t* is +Elaborating on the latter two points, using a lookup table means evaluation happens in roughly constant time. +A best-case analysis of the above approximation, given some value *t* is... -$$ -\begin{matrix} -\text{Expression} & \text{Additions} & \text{Multiplications} & \text{Divisions} \\ \hline -p = t \cdot (0.228763834 \cdot t \cdot t + 0.771236166) & -1 & 3 \\[4pt] -q = p \cdot p & -& 1 \\[4pt] -r = 1 + q & -1 \\[4pt] -c = {1 -\ q \over r} & -1 & & 1 \\[4pt] -s = {2 \cdot p \over r} & -2 & 1 & 1 \\[4pt] -real = c \cdot c -\ s \cdot s & -1 & 2 \\[4pt] -imag = 2 \cdot c \cdot s & -& 2 \\ -\hline -\Sigma & -6 & 9 & 2 \\ -\end{matrix} -$$ -Or 17 FLOPs. On a more optimistic note, a Monte Carlo test of the above approximation on my computer yields promising results when compared with the GCC `libmath` implementations of sin and cos (also tested with `cexp`). +| Expression | Additions | Multiplications | Divisions | +|-----------------------------------------------------------|-----------|-----------------|-----------| +| $p = t \cdot (0.228763834 \cdot t \cdot t + 0.771236166)$ | 1 | 3 | | +| $q = p \cdot p$ | | 1 | | +| $r = 1 + q$ | 1 | | | +| $c = { 1 - q \over r}$ | 1 | | 1 | +| $s = { p + p \over r}$ | 1 | | 1 | +| real = $c \cdot c - s \cdot s$ | 1 | 2 | | +| imag = $c \cdot s + c \cdot s$ | 1 | 1 | | +| Total | 6 | 7 | 2 | + +...or 15 FLOPs. + +On a more optimistic note, a Monte Carlo test of the above approximation on my computer yields + promising results when compared with GCC's `libm` implementations of `sin` and `cos` + (also tested with `cexp`). ```{} Timing for 100000 math.h sin and cos: 5409619ns @@ -234,172 +395,313 @@ Squared error in sines: For the source which I used to generate this output, see the repository linked below. -Even though results can be inaccurate, this exercise in the algebraic manipulation of complex numbers is fairly interesting since it requires no calculus to define, unlike sine, cosine, and their Padé approximants (and to a degree, $\pi$). +Even though results can be inaccurate, this exercise in the algebraic manipulation + of complex numbers is fairly interesting since it requires no calculus to define, + unlike sine, cosine, and their Padé approximants (and to a degree, π). From Circles to Spheres ----------------------- -The expression for complex points on the unit circle coincides with the stereographic projection of a circle. This method is achieved by selecting a point on the circle, fixing *t* along a line (such as the *y*-axis), and letting *t* range over all possible values. +The expression for complex points on the unit circle coincides with the stereographic projection of a circle. +This method is achieved by selecting a point on the circle, fixing *t* along a line + (such as the *y*-axis), and letting *t* range over all possible values. -![]() +![ + 2D stereographic projection +](./stereo_circle.png) -The equations of the line and circle appear in the diagram above. Through much algebra, expressions for *x* and *y* in *t* can be formed. +The equations of the line and circle appear in the diagram above. +Through much algebra, expressions for *x* and *y* as functions of *t* can be formed. + $$ \begin{align*} -y &= t(x + 1) \\ -1 &= x^2 + y^2 = x^2 + (tx + t)^2 \\ -&= x^2 + t^2x^2 + 2t^2 x + t^2 \\ -{1 \over t^2 + 1} -\ {t^2 \over t^2 + 1} &= -x^2 + {t^2 \over t^2 + 1} 2x \\ -{1 -\ t^2 \over t^2 + 1} + \left( {t^2 \over t^2 + 1} \right)^2 &= -\left(x + {t^2 \over t^2 + 1} \right)^2 + {t^2 \over t^2 + 1} \\ -{1 -\ t^4 \over (t^2 + 1)^2} + {t^4 \over (t^2 + 1)^2} &= -\left(x + {t^2 \over t^2 + 1} \right)^2 \\ -{1 \over (t^2 + 1)^2} &= -\left(x + {t^2 \over t^2 + 1} \right)^2 \\ -{1 \over t^2 + 1} &= -x + {t^2 \over t^2 + 1} \\ -x &= {1 -\ t^2 \over 1 + t^2} \\ -y &= t(x + 1) = -t\left( {1 -\ t^2 \over 1 + t^2} + {1 + t^2 \over 1 + t^2} \right) \\ -&= {2t \over 1 + t^2} + y &= t(x + 1) + \\ + 1 &= x^2 + y^2 = x^2 + (tx + t)^2 + \\ + &= x^2 + t^2x^2 + 2t^2 x + t^2 + \\[14pt] + {1 \over t^2 + 1} -\ {t^2 \over t^2 + 1} + &= x^2 + {t^2 \over t^2 + 1} 2x + \\ + {1 -\ t^2 \over t^2 + 1} + \left( {t^2 \over t^2 + 1} \right)^2 + &= \left(x + {t^2 \over t^2 + 1} \right)^2 + {t^2 \over t^2 + 1} + \\ + {1 -\ t^4 \over (t^2 + 1)^2} + {t^4 \over (t^2 + 1)^2} + &= \left(x + {t^2 \over t^2 + 1} \right)^2 + \\ + {1 \over (t^2 + 1)^2} + &= \left(x + {t^2 \over t^2 + 1} \right)^2 + \\ + {1 \over t^2 + 1} + &= x + {t^2 \over t^2 + 1} + \\ + x &= {1 -\ t^2 \over 1 + t^2} + \\ + y &= t(x + 1) + = t\left( {1 -\ t^2 \over 1 + t^2} + {1 + t^2 \over 1 + t^2} \right) + \\ + &= {2t \over 1 + t^2} \end{align*} $$ -These are exactly the same expressions which appear in the real and imaginary components of the ratio between $1 + ti$ and its conjugate. Compared to the algebra using complex numbers, this is quite a bit more work. Therefore, one might also ask whether, given a proper arithmetic setting, the projection of a sphere might be obtained in the same manner as the circle with respect to complex numbers. +These are exactly the same expressions which appear in the real and imaginary components + of the ratio between $1 + ti$ and its conjugate. +Compared to the algebra using complex numbers, this is quite a bit more work. +One might ask whether, given a proper arithmetic setting, this can be extended to three dimensions. +In other words, we want to find the projection of a sphere using some new number system + analogously to the circle with respect to complex numbers. -::: {} -![]() -What we are not doing: intersecting the sphere with a line through a pole and a point in the xy plane -::: +![ + What we are *not* doing: intersecting the sphere with a line through a pole and a point in the xy plane +](./stereo_sphere.png) ### Algebraic Projection -The simplest thing to do is try it out. Let's say an extended number $h = 1 + si + tj$ has a conjugate of $h^* = 1 -\ si -\ tj$. It's a bit of an assumption to be able to take the reciprocal of the latter (we don't know whether *i* and *j* create a field or division ring), but following our noses: +The simplest thing to do is try it out. +Let's say an extended number $h = 1 + si + tj$ has a conjugate of $h^{*} = 1 - si - tj$. +Then, following our noses[^3]: + +[^3]: We don't know whether *i* and *j* form a + [field](https://en.wikipedia.org/wiki/Field_%28mathematics%29) + or [division ring](https://en.wikipedia.org/wiki/Division_ring)), + so it's a bit of an assumption for division to be possible. + We'll ignore that. $$ \begin{gather*} -{h \over h^*} = {1 + si + tj \over 1 -\ si -\ tj} = -\left({1 + si + tj \over 1 -\ si -\ tj}\right) -\left({1 + si + tj \over 1 + si + tj}\right) = \\[8pt] { -1 + si + tj + si + s^2i^2 + stij + tj + stji + t^2j^2 -\over -1 -\ si -\ tj + si -\ s^2 i^2 -\ stij + tj -\ stji -\ t^2j^2 -} + {h \over h^{*}} = {1 + si + tj \over 1 - si - tj} + = \left({1 + si + tj \over 1 - si - tj}\right) + \left({1 + si + tj \over 1 + si + tj}\right) + \\[8pt] + = { + 1 + si + tj + si + s^2i^2 + stij + tj + stji + t^2j^2 + \over 1 - si - tj + si - s^2 i^2 - stij + tj - stji - t^2j^2 + } \end{gather*} $$ -While there is some cancellation in the denominator, both products are rather messy. To get more cancellation, we apply some nice algebraic properties between *i* and *j*. For the $stij$ terms to cancel, we let i and j be *anticommutative*, meaning that $ij = -ji$. So that the denominator is totally real (and therefore can be guaranteed to divide), we also apply the constraint that $i^2$ and $j^2$ are both real. Then the expression becomes +While there is some cancellation in the denominator, both products are rather messy. +To get more cancellation, we can add some nice algebraic properties between *i* and *j*. +If we let i and j be *anticommutative* (meaning that $ij = -ji$) then $stij$ cancels with $stji$. +So that the denominator is totally real (and therefore can be guaranteed to divide), + we can also assert that $i^2$ and $j^2$ are both real. +Then the expression becomes $$ -{1 + si + tj \over 1 -\ si -\ tj} = -{1 + s^2i^2 + t^2j^2 \over 1 -\ s^2 i^2 -\ t^2j^2} + -i{2s \over 1 -\ s^2 i^2 -\ t^2j^2} + -j{2t \over 1 -\ s^2 i^2 -\ t^2j^2} +{1 + si + tj \over 1 - si - tj} + = {1 + s^2i^2 + t^2j^2 \over 1 - s^2 i^2 - t^2 j^2} + + i{2s \over 1 - s^2 i^2 - t^2 j^2} + + j{2t \over 1 - s^2 i^2 - t^2 j^2} $$ -If it is chosen that $i^2 = j^2 = -1$, this produces the correct equations ([Wikipedia](https://en.wikipedia.org/wiki/Stereographic_projection#First_formulation)) parametrizing the unit sphere. One can also check that the squares of the real, *i*, and *j* components sum to 1. +If it is chosen that $i^2 = j^2 = -1$, this produces the correct equations parametrizing the unit sphere + (see [Wikipedia](https://en.wikipedia.org/wiki/Stereographic_projection#First_formulation)). + +$$ +{h \over h^{*}} = {1 - s^2 - t^2 \over 1 + s^2 + t^2} + + i{2s \over 1 + s^2 + t^2} + + j{2t \over 1 + s^2 + t^2} +$$ + +One can also check that this makes the squares of the real, *i*, and *j* components sum to 1. If both *i* and *j* anticommute, then their product also anticommutes with both *i* and *j*. $$ -\textcolor{red}{ij}j = -j\textcolor{red}{ij} ~,~ -i\textcolor{red}{ij} = -\textcolor{red}{ij}i +\textcolor{red}{ij}j = -j\textcolor{red}{ij} + ~,~ i\textcolor{red}{ij} = -\textcolor{red}{ij}i $$ -Calling this product *k* and noticing that $k^2 = (ij)(ij) = -ijji = i^2 = -1$, this completely characterizes the [quaternions](https://en.wikipedia.org/wiki/Quaternion). +Calling this product *k* and noticing that $k^2 = (ij)(ij) = -ijji = i^2 = -1$ + completely characterizes the [quaternions](https://en.wikipedia.org/wiki/Quaternion). -Choosing different values for $i^2$ and $j^2$ yield different shapes than a sphere. If you know a little group theory, you might know there are only two nonabelian (noncommutative) groups of order 8: the [quaternion group](https://en.wikipedia.org/wiki/Quaternion_group) and the [dihedral group of degree 4](https://en.wikipedia.org/wiki/Examples_of_groups#dihedral_group_of_order_8). In the latter group, *j* and *k* are both imaginary, but square to 1 (*i* still squares to -1). I'm being a bit careless with the meanings of "1" and "-1" here, but these objects come from the additive structure of the algebra, rather than the multiplicative. -Changing the sign of one (or both) of the imaginary squares in the expression $h/h^*$ above switches the multiplicative structure from quaternions to the dihedral group. In this group, picking $i^2 = -j^2 = -1$ parametrizes a hyperboloid of one sheet, and picking $i^2 = j^2 = 1$ parametrizes a hyperboloid of two sheets. +### Other projections + +Choosing different values for $i^2$ and $j^2$ yield different shapes than a sphere. +If you know a little group theory, you might know there are only two nonabelian + (noncommutative) groups of order 8: + +- the [quaternion group](https://en.wikipedia.org/wiki/Quaternion_group) +- and the [ + dihedral group of degree 4 + ](https://en.wikipedia.org/wiki/Examples_of_groups#dihedral_group_of_order_8). + +In the latter group, *j* and *k* are both imaginary, but square to 1 (*i* still squares to -1)[^4] . + +[^4]: I'm being a bit careless with the meanings of "1" and "-1" here. + Properly, these are the group identity and another group element which commutes with all others. + +Changing the sign of one (or both) of the imaginary squares in the expression $h / h^{*}$ above + switches the multiplicative structure from quaternions to the dihedral group. +In this group, picking $i^2 = -j^2 = -1$ parametrizes a hyperboloid of one sheet, + and picking $i^2 = j^2 = 1$ parametrizes a hyperboloid of two sheets. Quaternions and Rotation ------------------------ -Complex numbers are useful for describing 2D rotations and elegantly describe the stereographic projection of a circle. Consequently, since quaternions elegantly describe the stereographic projection of a sphere, they are useful for 3D rotations. +We've already established that complex numbers are useful for describing 2D rotations. +They also elegantly describe the stereographic projection of a circle. +Consequently, since quaternions elegantly describe the stereographic projection of a sphere, + they are useful for 3D rotations. -Since the imaginary units *i*, *j*, and *k* are anticommutative, a general quaternion does not commute with other quaternions like complex numbers do. This embodies a difficulty with 3D rotations in general: unlike 2D rotations, they do not commute. +Since the imaginary units *i*, *j*, and *k* are anticommutative, a general quaternion does not + commute with other quaternions like complex numbers do. +This embodies a difficulty with 3D rotations in general: unlike 2D rotations, they do not commute. -Only three of the four components in a quaternion are necessary to describe a point in 3D space. The three imaginary axes are symmetric in some way (i.e., they all square to -1), so we use the *ijk* subspace. Quaternions in this subspace are called *vectors*. Another reason for using the *ijk* subspace comes from considering a point $u = ai + bj + ck$ on the unit sphere ($a^2 + b^2 + c^2 = 1$). Then the square of this point is: +Only three of the four components in a quaternion are necessary to describe a point in 2D space. +The *ijk* subspace is ideal since the three imaginary axes are symmetric (i.e., they all square to -1). +Quaternions in this subspace are called *vectors*. +Another reason for using the *ijk* subspace comes from considering a point + $u = ai + bj + ck$ on the unit sphere ($a^2 + b^2 + c^2 = 1$). +Then the square of this point is: $$ \begin{align*} -u^2 &= (ai + bj + ck)(ai + bj + ck) \\ -&= a^2i^2 + abij + acik + abji + b^2j^2 + bcjk + acki + bckj + c^2k^2 \\ -&= (a^2 + b^2 + c^2)(-1) + ab(ij + ji) + ac(ik + ki) + bc(jk + kj) \\ -&= -1 + 0 + 0 + 0 + u^2 &= (ai + bj + ck)(ai + bj + ck) + \\ + &= a^2i^2 + abij + acik + abji + b^2j^2 + bcjk + acki + bckj + c^2k^2 + \\ + &= (a^2 + b^2 + c^2)(-1) + ab(ij + ji) + ac(ik + ki) + bc(jk + kj) + \\ + &= -1 + 0 + 0 + 0 \end{align*} $$ -This property means that *u* behaves similarly to a typical imaginary unit. If we form pseudo-complex numbers of the form $a + b u$, then ${1 + tu \over 1 -\ tu} = \alpha + \beta u$ specifies *some kind of rotation* in terms of the parameter t. Identically as with complex numbers, the inverse rotation is the conjugate $1 -\ tu \over 1 + tu$. +This property means that *u* behaves similarly to a typical imaginary unit. +If we form pseudo-complex numbers of the form $a + b u$, then ${1 + tu \over 1 - tu} = \alpha + \beta u$ + specifies *some kind* of rotation in terms of the parameter *t*. +As with complex numbers, the inverse rotation is the conjugate $1 - tu \over 1 + tu$. -Another useful feature of quaternion algebra deals with symmetry transformations of the imaginary units. If an imaginary unit (one of *i*, *j*, *k*) is left-multiplied by a quaternion $q$ and right-multiplied by its conjugate $q^*$, then the result is still imaginary. In other words, if p is a vector, then $qpq^*$ is also a vector since *i*, *j*, and *k* form a basis and multiplication distributes over addition. I will not demonstrate this fact, as it requires a large amount of algebra. +Another useful feature of quaternion algebra involves symmetry transformations of the imaginary units. +If an imaginary unit (one of *i*, *j*, *k*) is left-multiplied by a quaternion $q$ + and right-multiplied by its conjugate $q^{*}$, then the result is still imaginary. +In other words, if *p* is a vector, then $qpq^{*}$ is also a vector since + *i*, *j*, and *k* form a basis and multiplication distributes over addition. +I will not demonstrate this fact, as it requires a large amount of algebra. -These two features combine to characterize a transformation for a vector quaternion. For a vector *p*, if $q_u(t)$ is a "rotation" as above for a point *u* on the unit sphere, then another vector (the image of *p*) can be described by +These two features combine to characterize a transformation for a vector quaternion. +For a vector *p*, if $q_u(t)$ is a "rotation" as above for a point *u* on the unit sphere, + then another vector (the image of *p*) can be described by $$ \begin{gather*} -qpq^* = qpq^{-1} -= \left({1 + tu \over 1 -\ tu}\right) p \left({1 -\ tu \over 1 + tu}\right) -= (\alpha + \beta u)p(\alpha -\ \beta u) \\[4pt] -= (\alpha + \beta u)(\alpha p -\ \beta pu) -= \alpha^2 p -\ \alpha \beta pu + \alpha \beta up -\ \beta^2 upu + qpq^* = qpq^{-1} + = \left({1 + tu \over 1 - tu}\right) p \left({1 - tu \over 1 + tu}\right) + = (\alpha + \beta u)p(\alpha - \beta u) + \\[4pt] + = (\alpha + \beta u)(\alpha p - \beta pu) + = \alpha^2 p - \alpha \beta pu + \alpha \beta up - \beta^2 upu \end{gather*} $$ -Testing a Transformation ------------------------- +### Testing a Transformation -If this transformation is a rotation, then it should recreate the 2D case which can be described more simply by complex numbers. For example, if $u = k$ and $p = xi + yj$, then this can be expanded as: +3D space contains 2D subspaces. +If this transformation is a rotation, then a 2D subspace will be affected in a way + which can be described more simply by complex numbers. +For example, if $u = k$ and $p = xi + yj$, then this can be expanded as: $$ \begin{align*} -qpq^{-1} &= (\alpha + \beta k)(xi + yj)(\alpha -\ \beta k) \vphantom{\over} \\ -&= \alpha^2(xi + yj) -\ \alpha \beta (xi + yj)k + \alpha \beta k(xi + yj) -\ \beta^2 k(xi + yj)k -\vphantom{\over} \\ -&= \alpha^2(xi + yj) -\ \alpha \beta(-xj + yi) + \alpha \beta(xj -\ yi) -\ \beta^2(xi + yj) -\vphantom{\over} \\ -&= (\alpha^2 -\ \beta^2)(xi + yj) + 2\alpha \beta(xj - yi) -\vphantom{\over} \\ -&= [(\alpha^2 -\ \beta^2)x -\ 2\alpha \beta y]i + [(\alpha^2 -\ \beta^2)y + 2\alpha \beta x]j + qpq^{-1} &= (\alpha + \beta k)(xi + yj)(\alpha - \beta k) + \\[10pt] + &= \alpha^2(xi + yj) - \alpha \beta (xi + yj)k + \alpha \beta k(xi + yj) - \beta^2 k(xi + yj)k + \vphantom{\over} + \\[10pt] + &= \alpha^2(xi + yj) - \alpha \beta(-xj + yi) + \alpha \beta(xj - yi) - \beta^2(xi + yj) + \\[10pt] + &= (\alpha^2 - \beta^2)(xi + yj) + 2\alpha \beta(xj - yi) + \\[10pt] + &= [(\alpha^2 - \beta^2)x - 2\alpha \beta y]i + [(\alpha^2 - \beta^2)y + 2\alpha \beta x]j \end{align*} $$ -If *p* is rewritten as a vector (in the linear algebra sense), then this final expression can be rewritten as a linear transformation of *p*: +If *p* is rewritten as a vector (in the linear algebra sense), then this final expression + can be rewritten as a linear transformation of *p*: $$ -\begin{pmatrix} -(\alpha^2 -\ \beta^2)x -\ 2 \alpha \beta y \\ -(\alpha^2 -\ \beta^2)y + 2 \alpha \beta x -\end{pmatrix} = -\begin{pmatrix} -\alpha^2 -\ \beta^2 & -2\alpha \beta \\ -2\alpha \beta & \alpha^2 -\ \beta^2 -\end{pmatrix} -\begin{pmatrix} x \\ y \end{pmatrix} +\begin{align*} + \begin{pmatrix} + (\alpha^2 - \beta^2)x - 2 \alpha \beta y \\ + (\alpha^2 - \beta^2)y + 2 \alpha \beta x + \end{pmatrix} + &= \begin{pmatrix} + \alpha^2 - \beta^2 & -2\alpha \beta \\ + 2\alpha \beta & \alpha^2 - \beta^2 + \end{pmatrix} + \begin{pmatrix} + x \\ + y + \end{pmatrix} + \\ + &= \begin{pmatrix} + \alpha & -\beta \\ + \beta & \alpha + \end{pmatrix}^2 + \begin{pmatrix} + x \\ + y + \end{pmatrix} +\end{align*} $$ -The matrix which appears above is the square of the matrix $\begin{pmatrix}\alpha & -\beta \\ \beta & \alpha \end{pmatrix}$. This is isomorphic to the complex number $\alpha + \beta i$. Since $\alpha$ and $\beta$ were chosen so to lie on the (pseudo-) complex unit circle, this means that the vector (*x*, *y*) is rotated by $\alpha + \beta i$ twice. This also demonstrates that u specifies the axis of rotation, or equivalently, the plane of a great circle. This means that the "some kind of rotation" specified by $q = {1 + tu \over 1 -\ tu}$ is a rotation around the great circle normal to *u*. +The complex number $\alpha + \beta i$ is isomorphic to the matrix on the second line[^5]. +Since $\alpha$ and $\beta$ were chosen so to lie on "a" complex unit circle, + this means that the vector (*x*, *y*) is rotated by $\alpha + \beta i$ twice. +This also demonstrates that *u* specifies the axis of rotation, or equivalently, + the plane of a great circle. +This means that the "some kind of rotation" specified by *q* is a rotation around + the great circle normal to *u*. -The double rotation resembles the half-steps of rotation in the complex numbers, where $1 + ti$ performs a dilation, ${1 \over 1 -\ ti}$ reverses it, and together they describe a rotation. Since quaternions do not commute, sandwiching *p* between *q* and its conjugate makes the algebra simpler. The product of a vector with itself should be totally real, as shown above (and equal to the negative of the norm of *p*, the sum of the squares of its components). The rotated *p* shares the same norm as *p*, so it should equal $p^2$. Indeed, this is the case, as +[^5]: Observe this by comparing the entries of the square of the matrix and the square of the complex number. + +The double rotation resembles the half-steps in the complex numbers, + where $1 + ti$ performs a dilation, ${1 \over 1 - ti}$ reverses it, and together they describe a rotation. +The form $qpq^{-1}$ is similar to this -- the $q$ on the left performs some transformation which is (partially) + undone by the $q^{-1}$ on the right. +In this case, since *q*'s conjugate is its inverse and quaternions do not commute, the only thing to do without + the transformation being trivial is to sandwich *p* between them. + +As shown above, the product of a vector with itself should be totally real + and equal to the negative of the norm of *p*, the sum of the squares of its components. +The rotated *p* shares the same norm as *p*, so it should equal $p^2$. +Indeed, this is the case, as $$ (qpq^{-1})^2 = (qpq^{-1})(qpq^{-1}) = q p p q^{-1} = p^2 q q^{-1} = p^2 $$ -As a final remark, due to rotation through quaternions being doubled, the interpolating polynomial used above to smooth out double rotations can also be used here. That is, $q_u(P(t))pq_u^{-1}(P(t))$ rotates *p* by (approximately) the fraction of a turn specified by t through the great circle which intersects the plane normal to *u*. +As a final remark, due to rotation through quaternions being doubled, the interpolating polynomial + used above to smooth out double rotations can also be used here. +That is, $q_u(P(t))pq_u^{-1}(P(t))$ rotates *p* by (approximately) the fraction of a turn specified + by *t* through the great circle which intersects the plane normal to *u*. Closing ------- -It is difficult to find a treatment of rotations which does not hesitate to use the complex exponential $e^{ix} = \cos(x) + i \sin(x)$. The true criterion for rotations is simply that a point lies on the unit circle. Perhaps this contributes to why understanding the 3D situation with quaternions is challenging for many. Past the barrier to entry, I believe them to be rather intuitive. I have outlined some futher benefits of this approach in this post. +It is difficult to find a treatment of rotations which does not hesitate + to use the complex exponential $e^{ix} = \cos(x) + i \sin(x)$. +The true criterion for rotations is simply that a point lies on the unit circle. +Perhaps this contributes to why understanding the 3D situation with quaternions is challenging for many. +Past the barrier to entry, I believe them to be rather intuitive. +I have outlined some futher benefits of this approach in this post. -As a disclaimer, this post was inspired by [this video](https://www.youtube.com/watch?v=d4EgbgTm0Bg) by 3blue1brown on YouTube (at least subconsciously; I had not seen the video in years before checking that I wasn't just plagiarizing it). It *also* uses stereographic projections of the circle and sphere to describe rotations in the complex plane and quaternion vector space. However, I feel like it fails to provide an algebraic motivation for quaternions, or even stereography in the first place. Hopefully, my remarks on the algebraic approach can be used to augment the information in the video. +As a disclaimer, this post was (at least subconsciously) inspired by + [this video](https://www.youtube.com/watch?v=d4EgbgTm0Bg) by 3blue1brown on YouTube + (though I had not seen the video in years before checking that I wasn't just plagiarizing it). +It *also* uses stereographic projections of the circle and sphere to describe rotations + in the complex plane and quaternion vector space. +However, I feel like it fails to provide an algebraic motivation for quaternions, + or even stereography in the first place. +Hopefully, my remarks on the algebraic approach can be used to augment the information in the video. -Diagrams created with GeoGebra. Repository with approximations (as well as GeoGebra files) available [here](https://github.com/queue-miscreant/approx-trig). +Diagrams created with GeoGebra and Matplotlib. +Repository with approximations (as well as GeoGebra files) available [here](https://github.com/queue-miscreant/approx-trig). diff --git a/posts/stereo/1/stereo_circle.png b/posts/stereo/1/stereo_circle.png new file mode 100644 index 0000000000000000000000000000000000000000..fc967b26faa67a2caadd2dcf54214036718856f4 GIT binary patch literal 196771 zcmdqJ2UJsSw=Im_*IogosEDF;=^(`dYEVFW2kBA*(hU%>qadK5v``c&(xn6lkf0(> zN~DI4N(TWYgh;<@2g`fT8UGmf|HpsN9ry0>eJ>Gqc6s*mtTor1bL~f0RWEMea&QY1 z6VrCoB}EM;rVZWj|CP-f;Wvcsrx)SJde?I(t>Fck z?8*HtLf|?RyA5CH^ttnzE;^N{-8mWnP_)aHLxwE@oH;-O-aJUjTY-PuX z+9Nmf>AXSd&72(yi{I<;(wRD!ZKLfhExBC{)%T^g+NGLg*V3_Jo!s!j#<8|lLPR9N zJSUPsj9*zC=8dS88H%(JDI9c@;ka-1y0Njbj&eCV*-q?Wnoc_Wm5?TY+M}YPlB$!Q zs>N%Sg{BVGM@L3}D(R(V)uE-$SkrnO?cLn8?w>p2>aD4%$;%v=)@m2k=U4?}Xa=t@{h=4)<30L%lhoLh&oJh>oFxY)a{NVOEQhaTl_sC2C{OgTe0>;HH z84`h*USaFFW8;|KH&(r_WVw_G6E75>PDXW)ELnt_VeiU6j1emRen-NoH^Y-ejg87X zOt$YjTU}aHgOXeR*)KC$)Gy|@>=V|R=mR$zhcROv`{IA7ttsg;{^pObMy(Q$qv+qu zcaA?fzoRkNs#c`%`7nOsuw`#$5ZnF-FIArAxgoQJau6T+!Q z1@)!MS3(t?*=^7lLibhWG>K`4az}M-DZd)4dJ%?gQo;4}?h^Cnc6J{JN~OasC`6rcs!d0nw&@iW zm6My-x|j6Sp$U}h+Bi}ED2g3^-vcwJgs|s>7}p2Ks4}s^cMc1e_?3{VU5E68jcc8m zt8zLg3ObfflZWeT;CInM+gOw9aM95k>8&ERP6hK^A;T*36S8D4!PZf?E1k9DogTYH zvU?o)ww)Kpsf5i=mlo7}54o2ZQwdrol!CiYF!k2W4uY#=6E{fGievmT=)x<{zG~iV z`>t;xR%>9nMT)aYI<|D!#AoJ_tw%LZ^dgJL7=UwQ9{;w$Zb+a@%NLRA_I!{xMY3LKU^N4y}^i_|buA z5;$w5Fq9)<>oNa6jnpx+wbs6)SjebE-yYW+t{v1&HtwBolc6SubYx7_54nqMi?Zop z$%;Mq^2`uTziUQ9xEk9c{)kZV&8k%4{Xe-No zE6uICrc2TB?kg)}>DfBb$@7cD3fZD$SxtJkYe=y4P^5nP1RXEw5G6_MDQyiOcD9bi zWC`)R@J=!2{V3Y{*Hd~%CbS4!_s-1bMF&Zb2wTA?fzHTGf|3qA&gL$8yV$$JwpUXw@mTz!*Ec!L+Q9 zYniGfKm1jE^V%@d^};S`V^I zvCiu#iJ5+N7$I6Xxb5-~;c@QR)>=%jgOy3D)>yq??ideMel{m$6lP?r`b7>rW!5OD z*%(V}l^Kq4ot+n5FqdWw8YR0`DlcYO-#QLX1<@)>lFc<$HVeJ!2-PTDFSblJ8ws?I zM{8XKpHuMYUQsgos=>tl0Y(&+Y&J^kE0``Wcs?DEX&%IZ6O-vysj6a8p*ZViMx8ELT4OBEPIz-Y0qk{!e+ZwqU*Z+9G_ly zhp3$ZqnO_65{s!YKjj%UTp6j24yTshm8Po7{`f##_V!$w%q)oVwKm10JgB8+wX&W| z20?!&S%*!Wp`I@9^SX)EyfPfeijTRBnltJelB0H4rnKT?7%3=@JCFDT#uA3LdvEQg z1;!*ZKH6%htv{QTw3vmSYtn*n#@M#K`Lg5J$6IS8x{*+fY{G9Dp^ou+WBUyxb|Twb zCbr4dPfSd#*BGIa@y~S*MM!`|wrjT-A(rv^zwh8>t#&7a`$@i1Dw^;B_XjE+LxmC| z9ShTix507=s4!11xO4akH-MT8ubvVlQaT)XRWvbi5d;WTtrH&mt8$c+G=^qj-f$1* z7Qmye%CR*C6r`lijpE&xOZ0@$1dI8-@Hc#vQb`Y_XC%J(UC9>MR$hlE{OG+db|q`S zE&1kFB&b!>m#&}(rF8*iNDsOk3*<(%*x?5jeEXtEl7MF*%Qwa4*gw@oQlk%oaI#GA z9u^)A)Jad`MqROUwLVJSa{t^A`x6IIvN0QE|C#$%=<-O+B*~(Yr47H`aEKt0oSZCT zTH8jIt*r}8cum>Kj7QBz4G(E#sRVXTOKpN^V_(=6I{Vl-eWCCfnX#C>ey8ET^COg7 zJvx~Xa~Te)5`UTCjVXf#Huw*cBv+r{Pns8T>X0gu3RTh}=wG;aQMBx6 z+l0q4RFVeD!oniT9w+!~q2=ho;?g7-Nu*xZ5VWVts#Tab<_kf*elOh8-X2*KrUq*W zz#lB5tku{Q6ciLy+B}Jg`?J>Cb6?kwy2%jP-`wnM7SUBs3N7w&6ts7>u(z~SeD&&8 zRHuvDv1iK1tZHb)0}tw4)udbO#9_5HnaNzrX%lA~7_vn~`pMBq{M z>608qVi#aTHaaE)-45Y5v$0V<%-LF+oL5(RB0%fJzB;?GZ!q#@G%qF}LK%CQyu2#RR)R6<+HnpUOKslgFbCYxwR`{9tQhM@ z!yfAATCMPD1M&f*&d*%md4PjM+q@8jD+JuIs`?}% zc4Y2c6=V`+C%G2^z;W7PPS zQb*F9wSZv(zoxfmFD8ZbvqA{glDiDYD_$ge3>;vDh+BysC7EUO>19olq#r?bXyW2@ z?feHG`IllU+j)^#A$;QJr33JD8<93n8Goj!+6X&tC(hM7HFWpd$WsqY^b!r7u;Yf? z(^hw9M4`7=kxF5c{P#8J&U}>V@^pmz1fF7TH>I#bRls{p7%Wj0R`QlV?_7TSS{aVc zbayozZNo!WP{WRCdQI2x(4J@eD3SVBQUv7}zU9q-vr$NY&Zj%p9KW1z_8j@r#@hCiq+P9^H950SDKt?v_s69&RmYpnTcby2ffH(yKC^Zv;!-U7+ z0tpE~oq&)+xofP@XLnr+_4w8fp{mN|o3gk3dC3rhc`U{;g9PIk9UU!_nyJSRhqYO) zo?>F2al?3Z4N$|oCJJQ9nt2^{-Qfu0cPu=Hf-o}>_r=b2!XPrUt~PpI8~zxI%a$yi zKN8qcZ4p?PP8pAubc!P_)3T?iMaCr_w8@vv&y|l6zifAUl5ev-lM{ly@?2SI<;S6w z9LkSf>u-BZbmIHmE1mgK$FXJrh$`#C5?M@czO#&}zrbl|8Rw1;wi+VXJ5sWYqfA{9 z#3M|0bxnoRD$Lsg{)r*WMyNy1b%Q)F+u%Axa97&3o)CL^yXH`Za|Xn~c`imVCQJ7+ z_4!dzH!K9uXyr%MAzju7QCmNzUwHL0CEj=bOvIWALd_?Zxg6W(x?(%+fWnZRZ#8r61YuEOWr@eRu~jGbjY(DE1Pf47CUw7N3@^c`+s<5 zmg(XYqgU~Z13U&L9utq_*Y(-q=Vjt2%|h=Ig*Mgzj&^-<`K^;fPciLG#I3$|s4F}s zyD=|nZ_WA`b@omgMtVv59yP_X-Rc<2pvveWmSfr035b08ko$VtdYpH{)5dQ|C?ieZoYN`uIj~+c9e_oyq z;}C@@@tkUVe}AjZ;zD8Rpn%NGr}L(?sgHxXJERA8p_=aQlz;8_)8Fq?{PJl0*w;Xz zxSZIWoKqaGb*C1Vy2Jz}BZN#zrV53Ud9;D%H4Rm;Rh-8@4h>wj3XHMdRpo;~piQxmJP9 z{CeM`7j()dAiTnFFE?x9B+wd}I?Yg@#}SCD$S2NwQW{|Et6&*kSHsn)EVr^qg|*WJ z)w;{VJ@2+U>To@dLLWL8oeYKGv#EuH2M&xvDFfB)=Cwh=!PcY`upSYDzz#3dzxTq@ zb+Lm;DRch#=C$}PG@!k(UCw2d5mlYA4?jGxg#>^h+s;Ea1AHhIj1V<01P7NqM+sa& z!X+R}YGqG4mxUv-c&%eqFo#`XmlqY+=TPvachn7{fVhZAs5F13>oGDONDX+TBio&B z-bGR^{yF!fgFz1<4UW;gh8WM08!Tt5C#fbrKa`-%2NtHc%Su!;ryWj!ykIbF2N(=ybWD9FFjWT{5`*f8rNmju@ep30h z;!9y}LLuGVkd*kPMwXsa>;$t^r0h!=)C04HW)Pfj9Vu|^k&&a;iOLK-IqwGXyliX= zCf9M4*OYf3Umx9lVWM!n`e=ykE~~Y$f8;N4dZ1<89n#j7CZ{roHs?beVca$L%Lw*; z`_6xr6}Y=qu;>hn(T#T|E0e@2Z1!Zylzflh%F^-p`$#%H+?VUu%mN>T6-f{~#>mUx z$Ziy4PmU2F5FznxVzd4Yce&u`$d|V9A$Z`4=kNTE8-UP~n0X?g#j#MO6FHEu)GC*L%_^~h8}(8;Dk`t{a=hWTc(C(FZux2QKnV>oTvfDm}k zl`>623UXYpwa#j6K+ORNwir@zQb=EoAIXJIjTcN9WYzywl!p^5AlpOCjI{mV$78VU z8FbOVf2TgB=VqLZ2CjdB)FdWu+e|I({hWWDOvj=`yoo>tY4OrJ>pvC?bu*oKt{ml* zRbj3U)elW+pOQ6x|CS9Q1QEQ(JDuWu7qD;-F3$LkyO zG`z8lE0M@(h@V;j^k!*t$f(R9w(LXzRB;~%U4{xE4*~$u!J0{vahY|Ho{4j6I&D#s zOUvkYE^$DS4QH9AuT})Iy0})1E59g0>0pcya8KaRk@16BgB0Bt!Uv5I7PHhQuIoj9 z=hm84MhEzdVSMJZ6_~LRA3Ggk8u=z^j4t>$i%s0OBAQHCpp5IObH*Q!Co{D;-~69T^NzLWf5Uj{&re z>be}7=oxl|Ivby!VkC&mA9id)DyKljbbD#k9zbCb)5q)hm;(v5vXYehtbL+ECT}e%|5+biz%&{WWRUIuWG3QYVf1sMfk1_GHzVpn zX>XqMnj0m;(hPLNgO~7-p(<_B*|k125h#f3Vj`3wF`P=0EiV!kVTa#b>Bnx9^w!Ws zqqgwm)UQ$!6M;~4oCx4X-9J}A4+b_B$OzU4M2S4$Hv{_hKn0o%8O7f>izG-$_Ob;% zsKIkh9B_hy1GNW4lGIGu;Q)8EV2V+eoMPZJQSK%e|yE9p>fCbZ-sVr0Al1i=uw)6 zld1PWo8u<{(enf|dD7n?)4D0n+u$*9fRhG-aQ0y`Rkp%8W&v4RQLbll>t*Tp9!@Pl z9R(a|Wu0rkd4u@h+kl`1@nMd|65`*-xwp;%aeg|OmD%fAR^H5;9D?L5LW z#UWaG5H_9gOI``Bn?1L>2j9Le))tbCVhYAG6#!&vW@#20^B!RW7~B7L?(SbJ=6`~9 z{Ql~MMkqIS2{>O6%wP&^zEf9m&+N7EHejWI=o>2FK8e~B)|p&rzvPAOlYD&zpm(T? zK8`z&I#hJ9To`1QebG7jXmHeQ%-;V2+F-K8UZCk?v?_ zh>~@sqx7ka413TEaK0-IG7TBO9;Pi)9_#m(QCC#~`nL21&(*4UoI%_I2|n2?w~Zmo z$dZ#lNJxfNB0Ilrg_gYP+B_1W{Uvt^U7-zZ4-&djGo*^RSor(xujRp0U zjAVMYS{7yPePk7wfutm+^1C{ar4$M-u7e1tL;< zCN9jG=Umso?L~xDz!*fFUV5t*uyJ-_@MLjr+UeS1oj{QQT{p26Sda`v6re!*1d6ct3!;$)0e8>l6#5{X~cm_Y-zQ(`J=SYjpP_hN^N z%i-G)LoFH3dI|=C62BQlR8putcS=PQE)r6}+CfKp+KeEu_$SU&5A}&A^l|<{7intZ2ije2bQULk2~hkRn;&jZt+I+b zjc}N>dgDT7?6}FR!N}(ic&OcSRcTI_llDYWcqC8qGY1~W6L?M<$LmD~)#Z5+VTojk zGW0h9qfYZnU3Y-p282G1LZLbPeiHq8e0x$Cd^ z@umza>k!|WqrhACH3f5==6>{74Kc~)M$Lr9FDg<@{fNF$U=zot{z@yK-EV?_K}=pg z%O)P{k?lwRE5Iy#A9)pGS063jnQzACC7kk?g*4SHhwFg_sK6>q@FtlfF%C z(q$o{Rv@!L=lH3=WAmU1NICcZAjvVPs{yl2V@>0RiDQvK%+g78Vlfb#z&wOv3x-o{ zW%`4croxg_L%BznqQD$M^z)@F(VE+44rbQ1jpMJAX%?LJVb&=^8DqF0(woxo%!T)O z9KK)_t=}rO)IFH#lnE0nvc9v|!Gs4AaX9u%=Sidxh{vlqiK^kH^PckQPy(&cZAcx2 z3xfDev=qk?92y_ECvO8S#7WW#KZuEenqquwV9ZB`gy!Uh(_ac`rPy&6GSzJ?HD&B0Uv|sxi|maH zQBuem^ zvGQ(S3&b5nX@VTf*Z*%C`U~>^D-HdT-+$83{~HR*^gc}QhY$B0i8P%|(=w9h&M;r^ zSSg-Zw@|^7Zz9AAv{Ts3{P0&sjkOlED$*3t?a_kVz*QnT+H9iS)H%JDp`WB|NF|*! zve}YS0-e+)x%gd{G_Npjbx^VKxaaPsML6I8e(^lF0bqjDRwQZuTkj=wW;Ea|qLA$P zk>M#ITRm!>tNj)8bNPogV7@^KnykQqD`eGW54NtB_Nn!<`<9n83hgDQn$Jz{? zT6g+>zuU{k(VVR>>8K|AL($l|V!zD%$g734T0}ozdcpVpe?wW?xlqaN9BVsDBU3?XbsNttwCgE$CwjN_X0;C1MvNalH1|;T^hEv@!uyEi z-&tV?FZk{HR+j0s*eRcjK%d9`C;}c*BV9MUZF;a)MgGo{KQa03*_X|uBMqmgTIwbH zGC*{xzu67mGFoGZuU1N&S6ZT6JfG9;zq_B=T7DHV@;DZc9w&Z(zg3j85O`YTNzV5x zEL((44bB_?4YnHrBNx+qz1_>VOO8;=mT8ZxfV907VeAowxS^Vb?kxR#?}qa`#s?Gm6c7x;ZwA@{S25r0C;|*y)qjj$7cr$ z7GDChNAMVJKBjfmCxzsc!*t(eYP`LVj}efeTG7ega@HVyK-wU|oy!8p-r#(H^{R)U zH1X++Kt#=b@WpGN(cMMr_H7xBLcTu&A+H@c&`21LOGhYLAkuN=V6?uxr)H*(doN~qG$By1>4-nOh=1z@$ErX%d!?nvMnQh@ zdpRP0fvhsJTYpgS~aP2C{ZGn`6;gdXHy(D0j#BDbm#VW6_3B$0CdpK%{Grf*OB3UJJC(hlD>GDMevvwAb1@I(b@Fjm6mQY46WU$+35v4nYym3+p@^p|V-I5#fqn zwu0^PU6=rkMU>OC3B_aEnx<_)@|k1TiP+AV0jzdl#DL?e(Nfj0$}2xZR$d=k`B}9< z{IX1eCo})aU%q7_v{fqj*uVZKG0pYtuY!oQBWFqT|^nsyIAj zbh1q{`-4wA?nuvj$G~q742UKaA-}oHU`oxOl3*4x$*2fqp)dQry!vDq6Pk!~EJlH; z(G6~F@KqTuz7uo{e^O_rsaIZe%|BYt$41$h5+=0w!V%Ux|&m|TCCF+EQ zg<&OkA*MM|i~$d7Pm=9?+6LvaCb8$-h=;+@tqdOsd5coUQYOrf&+6D~;@2T$%=!V=1y(TD%6uZlhCR zr3A4~K!la2?3Ep^1nU?|6S*Zb3(p(=f&n9E02w2jVff%Y))n-$Iod4?#S-O9F|G zQC)1|(yt+XW|6@6n;N03KOh|feyBt_`|o!#g3sxlF#xv2RCdloZDkLpot?7ZZy|WT zr^J)q=^%D6TW0c2`Hp7k;h0x@Ri(~0jpOJ;?&$F{IQGKgnfbFU4_C+->jWMN~Wfs1o{kEKtd$2io)Bpp{6bi1AU(pGq790sOaiN4tFh3 z8(}|K{5d%}b!c!L`9IyM%H5h!&*uZDuC zy86~t55X-b)HGVpo5@SB?n38W}!M}Me2&{9y z1!`$71Pxes*_3*_yz2eqbzL9svIQsyPCma;xMGy`UmB+u^Z>W95clb%x)zrMkt z<>l^P5TSs#iSrsei5OWB0pQzzaY5Arc+5CVE{UeM|F)|zIl zc5~B%NFC-5)gqmk^%4A)Ld=2Koe#hexBfO*r!eYZ1Eb1T}1o8~8-~AJKyd;fNveBaC54Rs1lvxZ&)ll6ZaS6>wF<8wTYeVvh5q zDA|i-{uDF$Xm5HaP^Ed#F$=j01SEcrB2`vP%QJ?p_sdq(krII_Egu@GgVOKunJSqPbbmlFaF_3LIw3!5Gr& zSct#zb&Osp|<8X+`ACUk-V!`tz z1BqURBxLzy6&8N;FZ&r-_Nmx?e5N(qS6kN)@&VY5{m{z&lY$tOrIyI%fa zyC^41)eocRh{PRv6Icqob^Sp(fNucuQnlRR7YyJ5gERc5cyaXrPry_GZi|_xAwG(> z(G54d5vGB%Sn}x6qYnP<$bnqD3ee547--PSL6%Ywe6B1ro{`4@c8v*2u103^zknUs zx@@D<3^F+xYX7Zu){qE`e^j#JeV4o{oca6wCYW7bUi}29(8SnxZV(CdYhH_#{laQT z!GgY>&W!@Q9rz&Oe`l@W>~Ft$0fL-?76!v{O1AE<^{`lh6B#PfRFl&_1nU&XjWK3KttgTR*~;OCtr4Hf}tZp3HluTWnvp1R}rbPQ;3Dbec1~;YDHmRy z>UXY<5TfkYHF^nG=Ds7H&F4?4@%Ahzk)yL+P883w1!IVH-j)5qveTC`4e-j4K3Yr^ z$~hMP76j~x&~!3cN>$A?F44&@o&NZ^io^NCZUa0d!bh_;H8lj@A1~hj;l9`{!80mH z?|#MRRH_ax{jX5R=;ta%nEDcWsd4nzdi)J$_c!tUkq|x~23c#8NH^)ZQNDeimhC6k z?+ip#Q&NOUT3&<97f`-Xp22Lp+G7atk0rg!BAlc zy~ndDU}C?ZU!Me#6x_zP(aIl(8LV{BcHLLnXl8Kxv|5Xsy1~y_zj1#Jya!+=;Y(*3+kYq z4r1bJnB22F5(+>9dhl|Ts}WiYnw_$kC6|S_iSC@~$fytS4uVkv5p>)6upIkXkT%fs z54?LJ?VqG}$1_h5P>-g%mbf~=r8c9Kplw>Dq#7qG6l{@K0i6PZuYOA!t8xyE4RF;g zkC^-GTo9eJ**;Ikvn^`a<>S}o*j2AE4Pj!y6VU5Wmjr%lgn95YpeaE@0J$T4K?9@T zB@Y-E2_Li%d(~!^W4&V?n~5gb;I&B81Dkbav<=Z?hW?pIJQfzcCCpLWGZ-@uPmJF zblqW(kFKc~N9_T@GmM<&Vo{!308B5G-~v&DK|-4Ju1Js}6*p5Jc{hg=xirIkJUi7VZMT@q@w7mFgEL<)FM?D9XK`;Z_8r__?E6|aovf&ujV)7L;K<8ah=A zR>#2c3^2hbO3>5evefwNE)0RF0*n_Ws@3Qt7*2poMyw~fAfhuSS$`cvLcf3RtQl)` zu;_SQUgR`Zh3K zw%{HvrZ$|W&uvHnIG(GMX^>P1EUv2_hsn;rp_~b6Ek%+FQpPX%C@&?3sWzo)r|0|3 zO-pC&Sh)M=s8UP_M~B${5NRQ=Bj!gDRN<-!!vKYkf`9AFLx1xXyPX8Cc%q;yAKcA!XdV?{9>&8=3T@VdGAIWyKtS`nj^BYNRg<>v;Z zvv%qK%_n)#&}O$ZPn(}DEX#y6g{kcCoenP?LD1--rN%=*nbn!yfAcrP)!jJ};5J31 zk5#fcwSZz|EjtO`!90Z6j&-g)FpVv6*mQu15Dv)pAe6gtWs$rxGC!V8fu{v~BNkD? z;t?+68}BwiVeP7S#Cq$We06OA$dMLA9rB(e90<{WbM3bL;+LJ{GtFwccmu1vrNe)( z#Bv5qlh=W&12-)wKM;aO?`#$PgcLhZpYDdCf>ay1_0PzhiT|(Q5Ke-CLvg3xQg}kH zt2hO@?shdbg{Azq4Ec=4BG%x*^db#YE4{SaW~9#?7c z?njbw3&Mf{H3`5*>eDK&f+OGRvlws7M6fTG-h=dhoqPE`+QO%g@>_?3LTO~p>ph#I z6~K-w6}&M21=^_X@Q}OrE2$5egFc>cLW8{u{2@`DTgu&ew_mfF36q&IP^rYc8ZVE%(Y*T}fuTJ*OK znt;(S>5-`UEhU?C|Dut8%)`&zz<)8 zXe~-%6zG{PS<(9q4JYU8SN#e>0=3T8;^eSz(DG`R*8u&BZQ!5!-Jj@N`$8i%66u)| z3WQF74W#u$V_8&9Ly!S5Cv9gaT`W)p1UM1~nR}e8IEX24dN7^`fM&&;S8VxJLTL3d z3{h0QYzowJB6w&G6^Q?B2D>(b&?|ily>vGy`f2iGR!&eeN@0PLru@SbBkbR5cJ)tW zxpp1#p95=MOlva)&mBb1NQ>ac!3fhVkZGC*9@(+S{0S_=Za|DVmMwW;=_P$V!z?jC ziamuox1IqIBz#Z5QiQJNLl4OPG8YAa=wogHkQj=dfN{D$%X9s5ckQxv!Y9M zzm-DYrEyd8&2C)p%yDCn4lAT!1%J!Xn{(_}{#^ZyPpD=sgw$LfG+kCAE3A|<3mO$s z`jOrZV`!<7fzBtey9^g8v;U$6AeP>^+VRHhE)u1Y9u;$Q^X#g+cm-4F?0JbqYcHaF z)&8&7D*oQYdtjTAK@^aqwP=cRiUR!v3Wn)$tY;iFEeyYr*|zS_Eo{q2n797^{`m?a z-&6gkXkNx}`&oiTpVvYUgWrzy@?S+iT*uoph=`Mq)c3$^Kz%P5;r{Vt%81j-tP{eA z*O|GqUig!USWh4?m4F<#41?oYX#ps<7c@Bgj$A94z-D`07?-zf0z~;8H zMCU_=5;-;bnQ1(J(>x6S0d&hC#o(6m8^L@PZ_Ix;xSq-St(E}N;Z#!3r&s`4jihr1 z%LG&+49r^ZKlAKx#D7sd_VejnM+6AyJ!03{RLcA(L%Uc3sOXz(@SIti@-v!{XGkx{_1;`k# zX$2tx(JcXOLDx&@)D*UB8jK`u0HJ35p>xO8=*ai^pFk);-!t<50(f}`yc;CRHu_iN zEEHCto+lS{OYXd=o|u}N3hxtvy=|kdv(!2@4O5ySl5Dy27OK_bU^sov;L}y?pc@Aj z8ab;3f8M7A;h&KZ!P*T?H312vs&a=`c*jJyRP5;Gv$KVAD7dnZM!3B|WXnK=1iH4c z3lhe00%GJJA|Q?YKqJH9rTPo==@wv0#qPM4(tN5W)uTj!Os%Vo6q8-;@XsSX>~H7B z#dLg>-5QQ3*q7T0TCF-N=^TGDdFdh|H+H2wZVR6^Nc=}?%5(<9E|Im3qWEbL2s428quYNNDTt;I>dT1-NfhCy7H zo!oG0wy~!XIX_(2>wJTKZ&_i!Y~h4mLtfWJ^~aCzfm%{GHtyjf4f*XnAhI4Nm;*O>lyDq5 za>Qh(a!bknpbJOemzNWRRg#)VU!2(T{{8#X$y&$4@@v9}g@tz=533npZdrF$%Yivi z>AHg#(PV@qd@$&S6#M4w+xNTNfi|qjE63Mw+~~!Ddw1}Bk{Zpo}KaA7cUMU!6*~g9TpR787CowtYw|2UrqWnPP;)cI%hE+T$(@`CpN50 zu+W^6-7OxzN4kMp6_XN2=bBaWd`w+DIeZ}K0+U*n0#}1*W52Arw3?g4t)DTv+S(hK zHt*OmJKz0jb)wLA(BHm2V`g#kOo^)@JT}@*(WoouX79HR7Z{K+O!r#PADF4}WjP z^`Mg7o|$ob77^j?uy^^VY2vIk8>>%-xTE?|Z3eanUC+CFNCqev1X} z%^Tqiy_~hcC~n@iO%aPF?mWu9CuD=?@5|uYGXzWa=Rla+RU@NsIVv}92y19)e1|%% zh$5tW=&*7NF6XnV;_uC*#AR?xQ**QW)vKR#RIXh+92y$>#;%nY{{B-~hO6&CTy#ch zDZBUVx3eZDaa9u5c?Upmx?pF=%XRc9mX+hF)4z`!>oMLY;LuxoKw4TFp6(OwRBg7q z?{3XehbXT=ey}1jZ6=zpPW#!i( z$=VWBKWEo=PFYr{ zCd<1Ct}o$rBCJQ$r^@e~-u-KPddQhzB;`HJKRekI2oE7-VxB$~0@}^BcXu`jM_qwC zcug0n&fTUTUNTc2knncUrIW081LAgGr_E;$63|XHm|N}Rl5b-ut)yF%1Ydi!V;7rC+gsFmzMSxOKFY;~%zu94;(cq@teIr(Y=WJY1N&tmo{yd4;<}L8 zfZh(9vHXF3O1E3>?nBGQ{JphIxcVVq=hCH{0p(wqz7O2Db8wh}uvcMzJK@AR)e|Yr z|KRF3>WBCI@G7^%uf6r8oqfk9cuM<}enk45KCiy7I+x$gR4-Gf$VhO+P3Fi3&h*wX z)hh;%RpdsANvcyc5&c7n!3c*Tf43Z zaH;9@GhYhjc2ha;SA&7%@HUKkzJ>I}O8=5W+GI6f!j@bv3w!zRERYNtgC}0*>wS4f zirnWC=fy55F8+@+8UCO+R63ONh+qCu9i|@ASS{ajI8`wu38H4JSA(YMX?2T}0%WxJ z`G$3eGnl!|VbLCW z!>4Cy&12ndyI5J<2XDbxmVdbg8K=Wx(q&gYDs+8b$2ZzPX`~Y}v8s9wOx;s$k47|8 zn$Lz?Mb=xh23^Qr(A=q^o^vu_ZCDLAw*+lqA3><4gs09r?@3@ffPoszJ$qh-TWI$0 z-fd`z4LI>Euz~MZWV_<9tT^ZHg@V)5r#>r4s|8hE7uzyQ{&GWj*!^jb0kL?lczkPLG)=343M2EWU-MwYq?zG z=H~;8eC;vF6f^OBoWwL#nsqh14|Wt7w#bAztH(cob5z;nBtQQLpfax-7;O1W?%xNE z!4&+bPgfHY6Azy}`Omv|?_z^5k4vjr8Y|bjcJ)4?MpMp}%Jt>T6pFJ3RSHfqDXCv8 z>@pK(y~iyjeqh7;^_%&M#%W$J!yNp}*T5*xbS$pl|MXKU*L`LS%>`s+Jag+|WI_&} zj#Y*HZpLEo?ycmLuOio>G-1ee&fH#=Bg1=PM_R&(HysY|rvsF=9JpLfsDY0Qm*BaT z^z4B5V#QE4jO82|qXBGr!u?1(duz+-0mWFGvDh74eU|G#49hn5@86vxUUnH}&lsw) zAL$kC0AEt8vR_lL3`nV2HfUPxr4_IF${41H>Z`Zb5`E`2MXlD=5Qe9b;`D1$eW09^ zaa}qoD0sokOC}&7fN62=V6ty9AhmlB9+-okuSak>1~{i=pQcka#^BK9HJw2!ZVmRn z)H{VrF0e-DK56|ujJBH z)Y)kO?AE%A!R)sy%zv~ye*N(1(&fwLMb7<@xOS)hd*9c^#WLSI@mn|TV82yweU}@B zE(iaQ-C!F>Y0oq=JW;s3SsKgUsf)~;Q9 zP3)kz%szN(W5*mM*n&Cb0^ltqFN%vhElOUV_csR=5GiW2!%Zd@AWuT@FJy8_n7I?6 z((6|-syw-Qc{yN|>Mrx^vnW}!ZsRpLm)@IeYpM<^9;{rw6?Mt0`!;~_==`~JYr*73 zY5uZn_wJ{a)wz#FZ5pmYj(q+4_4jr`5s^J$ZFviR|9kS-`Fuj~>D{)Q$XAgWmEiat zc`3_JT-h8Of)AjYof^FXVC~X*7gyIGApa+nmUdg<9zNWhVSwL)LZO~;|098`_usuo zUH2Dm;BJSWfgfO|O-U&~495(rA(N|sN4S%lD-wb}cm8}1&_vukJV&{?*E3zi8({Zy z?Z!O%HHXe-=Bfs=x@C6~PRMcWfT?J!sII;n!Eyfy^d08suk&x*{q)lBp}sLU zZ3Rc}2d^nSv$p_5a{N}7<8}nX9e7>EV5Gr<^yto=wIS%W>()Je_UxW^y3P?UuJ>>d zbo+vBu`<&oHz&ft{r2O*`Lkc4=hbH@wl8)xkC64D1*odh-krJpB?@bpUi2(KzF?8gwwL>$b&6~{3%mijrbX-j=ERMn@Koxv1#)b zhmcQcd!ndDf-DCQ9=s+Jb+5D|b79Xb z4*^znI7q~t_C!|h!=NAuS ziQUq>_Zs^Y-~7P^)9#e>S4A`X;7|iUgYZ9md;TC*+eCMsKj#UP81VR~}Js)ay z0Lqj1eU>v3F}nKtk6__GW;~E*sAK@2G(6MVw?njSwn4=*E@(UgMhn@Rha4S z#_e`A9$wxw!@d&`!!=sl+RUeViBfJOPZqp7!;Ah0V_yPIW!v|=rD!xa$+#0L&5>k? zwxmfUq!20|Gnr*56q%dLR8oMst?Jn>$u|IXOi% zPj1$7d>+wdkhw(T%o$)O`Tgq}+il+eDEU-{L4+g+U*6@G=fTj#!OG75_rcVZGmoSd z1<%@YLVKV6FD599W z%_IyvKZXo0nu$?;w$rBbNMaqwCTdhS(oPY?^EV(wc>3Z+v0)}EFGI)+ABvlKYoU+SgGzHpI19Cf8ey_nkSP?OZb}u6!H6%7z>DN>MOJB~n&* zb~_3=ng0Wcz(&TiDnZ+w?RH9(T}E%AB8`$bqpA4}_>z;8(;(Hw#lg|;zL0WHV_ITn z@SLr6Q&o5|GDS{~t`<+U4tdCdfro8vZR3XO%~CZK9aDDdojFtUeBU)LMR`TVC0n*^ zv6}k*&qUqy@7|8>Ia_aCA0DhU;DG}hu*WUNoCIIF%}(jVk)V}srJq@$ zfM-{nPJMsv_EGl|L*%4LSH_HY&_>$VUgAWm^a;JVmql^5QIsb!U_g* z5dm^loHxiJ zZUV^;<nK_+Q($SWx> zw%O*0id$4v^dMSG+?4htbT3OmZLTKmH;`#k>RK+eJ`r5{jv`bU6^oXff$a$o?%sWu zxu!Rngx3ucuZwj0F-jhoJo~zlu@aLM>du|POD1$LAegP&d4Y2I%fq%g?L&tS`7OGN zx*9Lh)FylBY%v@|Rs#*yytHueysqM{;#-dgp3+Z1Gu zQ1k|o_4WDpw<~@LL~Wr~5flwdVw50eyS^##`sfq>$)TpQ^FH2^2c82HApC3_CQF3$3p@YF_bhMH$ zuUY_u*<~!X&I(YY>>rhNY3KoD2L@bGHdTn?d)wT6mN~ynBx+~$^}!Dw+{6=#di$0G zMFrZ23p;HmC+`U@+o%*sJAT~XWwv)AD0Oyr3V{4CvX7dtKu=!i!;T7}=vRF*P!JNB zCa$m@J$lp%9UqGvXVg3M91MY+Mn#nlS3z7P`xt$^EyNjq`0Ox31=K7zLgm-bF)LfWjQ!hP<_1b2S3 z?9w~$I>7X#+xBvReE0b9L7}>)#x5fWPii8(pIp!`gT;RKv?ft7PIrV)e27-QLy;~m z-DlZsyS6p){QK)j?{dlfFROgXjat3B4aPZnEv;hncu;9%hzY79y#_6 zX6;?PbScHf@Wbn~$#3)vm{7qkqGZ@|GO~w=kgOJ>)OVZ9WnxfKUY_A_0Jk?j&_vT4 z_i;^k?-rO>zQZ`vwc^`A??B@OWMi#EbAv<9QY$&~&`m~1FNPLo)AAK7tYN=AIYEj| z6kn@QT>AL>wsA+(WRAbA(g&fiPTYj+{ti7BN=!lm38z@RR&z5>Kafct&EopoPzB+p zucTbS+VlwuDgjEv#>rWr@`^1)FYeW=56HIGogdi|Yl8+}9Dj8E-MhV6lkI*4!I_~4 zLC7$yR8E{wJaJ-`*qUR0%VyD>Gf)Ud)i?1Y%ZU?d0`$-!TibVT3 z3Mp@!N~t%Sgd)R>Xy~}+GCw+yGy~db;v1(#X#8n8el9LA z@o0TSiia{T5(p~{A$VN$2|9Jb#*`|=%=o} zSxuwKB%;m6Tv3I~moI02b|@+-Az;wDeHLM?&o)xsiyp0GXLqX3O5Xs63xLSPd`0+y zn-eYW{FLDb?tdTX&PEVxA|B9++js6*x8^Y{RNG9juX8N0*U$udtAIJW`hT znNrZ7N)0ylzbAEcc;RLWEV#*<=Az_+=}X_fePdg@w!5Im=VJ>&bUKv~+yid1@-K3H zn=po|3Fjyv!cS-e91A*ZY#cM~g1n8vqIvLX$Y23v&Cg8(=TM$tZedVVR3z-{^5xE5 zO8YRg8wM_EI#0X&OC2=_y}o16oC$DJqkti?w^1-Jq`gcR?1Z?r9yd!_*o zGFkjczXqp(erw*fhf;Q1E|-V-A~Cs5dHXo0fY%~e7xMohtWJRSmBwZ@7Wh+wErPIf z5jaX6bzt%8EH5ezwUR`e-jK0X!PH2|)BIF2y5ex1zu*J)H(;_o3HT;boOmwymew=Qmnn zsGW3V`7^dkJovn1Tzd70z*@U$bah_aob=Ngn@W70A3WcOB=g%jJ2;EFTLP?n*=gRt z-zSq}lJ@fiO7K7YXD>IpHPzFnJ#;w5se9+s zj+Qwcepcz)JwfbK0vk6nBKf4Fu*VJpgo+&|pv-|RkN=WTig~{b6!aFI+tVHFrmuT? z0&0+*pSdyv$MB!@6A=Wi#f}{u%ihLvv%t0cs;jFEBITWaZ(+XR!oWtY5hB5%! zMcUJGS{a8Z4C2Xa9CN;BY1LU&<=exqf?Fh1rxkd=`}hokU$0QRGn~}n_irWjGY?o|TliV|B&PY0qUc8x_xZh5oS~o(y#rD*S9eCa1 zu>DsW2I@|`LlohWZhCku$$N*5?x91BB)k3jb@qIQZERBt?F=^IZ6N@cg0ixF%a$!e zfIsi|+*fK!8!M&h{SMl3j?Dgsm>O%{G3CrOTF_Xv+svh~I-TjLXR|QQu0$Jp=;+bq z*o~;SuOlxZI zI$WmpDw*&}(`Ty1k1P;I<0(M&&Z=}8hL+v<^~((9ATzRLd`@Cl777$YD99e}zanfa zrSmc^JJUvYY%cpbp@cs=ZTX+l8b{{~HS7BpS3)KuDVhFxHU=LS%`1S9ELr)Q12X>q zC97FuLA!dl@jr^1uR32xZ#WD1+&bav_$1~#qRm%V{k`06R+4Po+*>*q*YuAgDk#+I zN~~Lnh=l|`CY2w%R%`+41>9B)+mP zu##VvhbT!=>HCny3vXv1x0;He`0R)tAK*G zJhYV*ir)NG9U&XdThPspz}A;p)%fy{>CSc1U8OHx2!j|x+r*W8xvcM0Zp2iTP5Ehv zg#_zXX6v$IGww}&Ira(3GX$l6SQro2+O=uvccQaZtSKsikAOi52@6wYWpy3RnoqTy z=b&qT`j40QuiS=ZloaUWTFKiXt$bVi=RcOlPLKlC0f+?dXIbn7czm6tl>jN1DWYOx zGz*LEWZ9wxFq#`gQ_hg$R|*KtjbX&p_hbCLPO(CTKdY-RQ4 zU$juLJJuncnTct6>1plAMw9)ZEt?xk_g-8?v zSjplav zWmOy8845_xVAF=-jo?JsgcixZWniu=)RNF$gON^og%lcM1oG~TRe>GHx4IB3V8 zj(qf}SGQy?rB0VK!eF zxx5kuVhGeV`UN+hCM2BfxxJ6pnM=S~gTkd(G3&b!S`*TR{`heouoT|deEP*Z$MR($k?vetZ&V(Z4+|zl7i~#8KzUL8jf{TY@eE894?kzf3(}x; z-n_xWdyCZXT4@%%pFVwpRbqw$8q_OF6s387qWf(BngKlwq?*_*X5QO#U<63^_Z-*E zk|7up(#nQ%K}zv%NoUN%Vh$wt;H?;$qaV*FGzIqzBZYjb@87j3?WsW#mQeXj;uC~C zdIa+8I!ofE7+H!n!q7trb8d9JKUz4GE(^1(p1Z-yA4q^TU`FZg^RnfUazTVO0&>t4 zbpG>Oe;Bn$Pr>i{n_c*1m=ECxKHc5i^ha5ON^LDYA=%s8JK&}O(byumcod+_O53(y zf!0aad(Bj%f43fPmA^VOQZk8cwt|9l`tqPn`@z5UUE=`MbXxC>LxNk@qy7NFoH8|q zi8Fziu%JKOn(qk9t+s0}pmW|iUVzp4So0xw?s)$G{d>)liN}w*NdZs!@wtq`mg@R@ zCgjrk2itW%jC7QYp!0i@lvJ6Wpy$H>Q#`b6ot&FA8T55LLV7)&A+M&9FjNu4){aTDbW0c{l$T==FVS__)DxqtW z68MKZ(yt+q?)vAOkYGP2C%bPg zcqFm&>1>2uLpmf^2mIsdn>Tbln0rD}68qV+XCdFDH|!w%-(Tq_poFY{ginMBZWf}b z!;XRP_rcA8ZZ(8_cBXnW`#3l0SN|qq8MmT27@Qw!%3M2?H5NEst`nlN(Ls{uYp*S4 z$T(voPhxbsXL0f2tC&6G2&R=XznjF*x80(9`1T5=PrA>A|e279RFbzT6PVzjY(+Dk;EW)3P zE(b$M65OB~50%I}khTepn*=50On>g&)=!^5Tca4ExVve+G6vjLg20X|rAF|n=olu~ z2Sa*pcOgC#CZVakZ@+_S_fhcwaxzB6_L?F}bWw`s%8>s1{U%aq4 zIjc;iZX<}?N0n^M#>b6gq!7s?mT3|4=CI2AZxtdOd4c-PGhg7{y4RvdGw;}kG&^>z zB3nG&X-t?D_hGWG+!Wx)2O&Cpch1cSARFTEw{5O>w17X8HFomk$xH`piG7#9tizPV z3Z09rEG&b6_632mSAb@dv}%)+jt(O-2M%O5sm!CpB;6elFePj^^3af>HVO+D-wfdl zSkc?p`jY2CtcCK6baGxa~(YpfM`g8Cujn-~;{|F*5+2e#%r_hy>Si_{6 zLIZRIy{-Y8%a0Wm1jkLxJ~RL>4S@XK1ijoq8J9m~N9NrbxD-+?Cxh}1#I>S^#u~u# zQor|rmHL3aHuCM*4gxY$C~-9ngNK-Wv2Q?!4l*Y+XV|SEwJ8LVRuh9dL2{?{^n$*8 zIS%EfLC@ExWFcbU(3hW8J~PL`bs|3Az}|E^{{q9o0Kza6egQBMQLv~^TqwHc^RWWB zMti^Bywt_B#d+5lNAM+g-kqPP+@>2_46xPEtrQ#>%JO8Dn_&Z%;BuUdPa1))V1>>! z#x!RAX)txfm_=4DLQsLAn~kiOMNPEl z@|V2pOIEOL*wBCHiic0kJ_4zu2Y-Xn6exr`&~!;U44%)7e!7q#L(wTlMU4z$j!iv?jXzS8fa$V*?G|`Jz#IraD~2Xe1{A2cjdDV_hm45c0|{Zpyo?GO zaIy4>oqk2vuXLB|S47B&ZrkRKravva^rB6oj5Gq}-~r&fxP1JD;mqWSBRm;a=tPZV zS3u&}4p2bS{?|GnGM-S7=;ME{vM^O%i3V}Iz^`7;jARPi`wxe%%YeB5`aQ)!-P!-L z5Hi3`2yJrcK1(J_^z-NXKR?}zZ9`&-`&s2*K?CI{>R*xLY0N;q~LhT*l8vHvahJ|2A5tka_c+RCcEa2d~jo9IKV@&Rbw(Cq=^gf_F&b187#IzXAEQpSpG z#muNee1KEx>eZLeJ@^a_%=T8`Rzz}tU+gS)%NinDDpBQBRl>n6Z{5RMku_#oiRwfY-PYsLmKDmKdqYs&pvo>UfQ&fS}_V}fE`C#7K6{V5Wcev;;%x44(pEMRlkst!D;dF8|bL2UYnoJoi9MO zu?sm;XwxR5;TX2Ard6*27J-oTt2uiE8cryz(dDA6F9bsEJRp7D=i`P2U>ed50D7Rk zWq6O?L>vAT^%;r#WYvRe1%qIKJtM=*?F0Y{Lc^@bBcys{TbmQt$6yI@=?qk8i;D)1u4H%A}Td zmiB*Boo^czZ#fA`Z})wl@9I>&1LBDkgP==L@qThDoA4%TSFybkXP_CsEhL{<$LMG? zab90v&_krZ7Mj2LJt){I(oW$G8C|h@oR1i3Lo1-5>2u3Qsr2^kTPpyfMzZHkK>(5h zc+EC#FU$y|xR>)oan1KkuJiw?S(gqUBhnotnkWQH=oAY`fetKK!aWDdGz7(BU_GP) z!E;{3c4f8}c9*nH>4QIJ&MhD!>~)rks#b$P_Txma)pdz_H={(&o0Itdb(rA6prtS# znU*Q)vfQsSdu~Ch`!5<2TjJxhE(Idvn9oaWy`crxjt6h2FzE3Ps_eB&+rn(`EvVZ$ z{&JZC>xI%d>=dYJiO^LLV|9$*$Y6=`Sx~lTmaH%}f;ju^eeb~)aW%^Uu)#qcormM$ zntYZ0l43=&)2cr}FZ1k8`<*5W2mXTQh|IFFTT7c(hx&xQEWVVYo!z_^HlXqQVK1wC z**G}hc^Zz>o23gXFRe$^KY0B3N)M4lRX}2)OB^7KnL9^|c&jCbHPWLq4sTI{ZZ?6^ zp1ywlx~V@%NcrJT{Y9|1u<`Q`Sxo<)1CsfFisG$xeR#V68bU}s`{#a-bwut@>2XO5 z6B7=b2w$FVB8E5QJbQKY?%0>hd(gEKMgawIJIDoqcWR;Cj^^gu;7DNrwS@#*aB=s0 zzoF*h7e#c?>3{Qsg%`B-e9IyA6P7;eTL$U(b9>#BS5klr6UJBU>|3H#dn^JSlhin zPcSQkY8x{XX{v!~oC>?QO{LQkHqOu ztqF4adX1X}`C)a+-rnBdvt9Oq`TY9zD$pd3WN#UOtc_mzXSl!YJnN(g)jRTNh23M#Y9()R? zYnHKiqOnZ3@9SfK|GnwjK55;dYr0b@7toLEG&4YpK*s`?DqETCUcPiGn}$^#HjPL< zU8k_LH~H_fE!3xRrhF#5BvMpDrWIU88qFkD{EbP1pb+SieUe6+W}#AJ^&Oq+oFxK6 zsa@6i8EHdLw%l42S|%)(7(*)(-rX&p`;l&m0lk2?{o=&;&LR7B&??o$$R>-MLdsv9 zDxez)1^@&3Pa9wa%3Rp9$2&L|OFJ#C!@2aN{#m?aiQS|_jDwWV)jRBLk#KWp(h6&5 zwr`3LpnGUa64w~QMDvm_m-rg!vbum1)%{GivfYYGN*iUDSK)Ncg);(>nvm>hsG5*g zZla#c$ZeSsjsqOfL6mSn6h<&TbQQE~;g7pb7NGbkZ9nJP1^Y<LCS?!6zVnxxD7M`O_+ zlZOupdmgCb2J^TzCsEo7c5V!TK6e_I{Qg1ce&jm8eI}7GFN@ENKFBRZ3lMVq_H|Sq zR4DIC*g5~v`{$p{P*0P3D=DDftQZ!$kgza+_Kk;^W;2WH4v=zu}2yVcy2=-muXy-c8PLno-AQJp@!_2_tQtJOe{xbwBT zn{zfFA=kln?li3xqbVs7;~2H?1W`KBkz!c7jvhOvibAU^xfC_p8;Ijcc>^}FfGi5z zp09j94`Ym)fViM(RXlkza9aL{3PvqFJm9b$RnJX8!W6c#Hx^W?`+}&=&JPIJ1x%xq zbf3#A@#P)97_X4Bl!Kf5768{N`umrmqP?N1>$C)d(1D!yrYYJ4RYOsJ0dxMfvYo}@ zkE>&3=lolXCl(wMa_!fzU-m=lk!UT6rw#Xqqk*;y}Z^bt5+qd@pdjfkLg0%rD z$3?&(YVZt{y`Qn!%%I^Wr|NP8Ne2+=`e!{0pR^BNETuj*CT6MJRAo>w42IzN!J7P))TWN0 zfVG|+)`!#rl2~W6wfy`+_-SEbA-P)Wd>&nQ=JXRiAfdwnI6;-O;PfMc5=?tt2KF5$ z0``zxg4;mXMb>cDOBF+OXMl$_Le0m<#t6s`q8~8rs;rK1=jX)Y0ih8QN1#=P$)Z6l zy`->E0PQ10l`?Fb*hAbe&_$IQ(ID!`DnOeBJa6TV)SIgTr5}R96Mf{ef|6ji0}p0p^cETLG%>gfWnW00>Y|YO7+ekb>rX-J#ec^o* z(EgDpN4gW7BvN9(BWrjOkb#}%4SUG~q*aUKF%ydhu$z#Gh(L^SN;NS|Ya}WO67q=N zD#c_qH1Ey=+M^E0Hud%O-~;mjkjbR>x8%xUw3Wx*yIc_FmDAVFExLikO8Vn*I@&gPqY!nfrM5xv#if5eULnYSWj*uF%tqo zvU0JIHo{?nrD%EOZy>bDBrqeKz-{(C^SiQ;0)TH4jQ#^<|En4tKEV%3;et4sutb>e zv=r-#uMz8FEetDw?b+c>B$^oN=r+9brepV83B-d!A3G>eA~6Juw3t|7uzp(!D3j$h zc9maDW*_dN7iLUxp?BhI1iF6ZEM6mk9-KY~>0~>vcE_M|VzLP`$KIf0Eu_d_xso`n z(8_-{lYj%AUN2w1EKCpqXbv<6praWkvrGw_*nD;D1USMh=BVe*uTT(yqe!>;d8=g8 z6yn7X*1-XKqQXrrr$>s9tdQ#BL-R_)8C4A0Md& zgSebQk`~d#5@Q?KbLZ@wGaC|?9mO6=1-uR{)&Q6MuLZlMi?KL4IoTQ=5cvUSlgxOn zOR)mvZ&v?y39ue``Y!CG-+a;r19heEw&vXkR=^fbE`s zK0#syB^<2o5BD^?Zh1{K{qm|@qPN=Z^cET*?7zd$RF9ZZyb8OlB;n44nxOIOgY0B9 z){qfo?0_5H{8jyswwNL*0QJ@zj{0eLwYt{mr_y4qSyUigG>v{^0P@1WSd zI=+O7(%jjWYH)fiaw)nR1dB`+b|;LjX1^`8%r!X1C(DLhEEXy#Zy1Bl_)CQoS5P5R z1ZtMbwybTaANTHs@J5&|X$SD{i)Ytx&>bEaGC>?3CjykJwT^a5R`6ema89@dokNL} zcA3)_OjsCy7#A1E`Jd(|%8(I0Pw@n7oW$wAPm();KN0AJNZSAbuIcs=`y2y&i7aH4 zNCcz=0t%^5e3!J{`O8UKUY*1>oL%bVFw|UxP8J%2di<4h^CIYjP{=Uh>FtbBmbDs!2aUfC9 zxavlpqCf{G2&W&+yFPTQ7qI?b}L-ymSG=fh1p z&C?azphb9he=I`SnK<8#cQI4iVIB@Ms%X@D1-NLkHZ8}S1Pm4TsXNp94@}H3t_02H zB*wr75Udm7f`|fD3|!X03iDfwc!m=?vrvqX01n(SI`eC_bXx3u1VTHh>QG|Y?w3V- z<1|~_M?^M>P9y3-0=CtSWo)IJ>0O#_nv;ECkxGd$8t!^#ek&?nMU>q%6XQWZE|8fY zv((t3Bit*Qp7P(+9HOvQ;&f^BA&5KZX+|^T#!oP*CgJ#aeRTRBA6;=K2>KHYEcs=p zpxKhW8{MVs;AUkGNY{wMg70q35G<0H|1)3&69JxYKgNz-biWw82um zL==OGt-M#dzVzC_;vC_e_5eNDpQ-ofx8tfzrMj^+1RJ;RmKdMfNY_7g2klppaZ8ab zuR2;jM*A(PB9lgoFp4UMTn58lNLSJ~vSHmi^wStc0Ls&Ys2d5t9Xa<~1g4+5rpSyP z1XT{gNeo(9j=KnUhqT5r-bAJlY-UWZ7c&!E@_UZ{k>RM?xMxqYVnF*pfYy{ydvS1Z zWR*K@fquJlylV8vny+rjF(diBf*U>8JQM`DlogINnpx(`O_uBakvLZBb~{`sv0F|yY`v`0 zKzX@~Y-B}wxxW&G&im^DMG9#-I!Xeqv%>UDL-acU?h{)ikdqxT#cLS+e@BQCU+nm7 zld>+9J-{eP8unN#Lpg{oL&`1mYm9lTMSh|rYHRbttPItSR(;i*vu6J^P7?WmMb-N& zM&K7$>txuzZx=v~>T|s=%jpU^1JfSQuvJ6EiCJMct`eYGOSCNicVDpmC zuvp-&zNcd3sfM?B@7Je{C@ic&qSP89kG`@DBZE#%^1zwB!6@#l7=zzD9XX$Px$LnZ z>QLC(ywze?rt>1g`_{#u+ef6tlQ>EH`yDWZ4 zK4pCmA6ZoYGxaSanJu#{M5qd;6C(a@SDzP!KW+4}0!Rf%#5O;0hKu0QW11Z>v|#Q^ z79<#=$QS84X!CdKe^^X@E-%-KG|$bVaTPDi^a2>MWzJvW9Nc7&Mu>Izf#V!TfRGVJ z(G#^5KJPrJXnlwqoDk$-;bv1egS#V$GU|hw-1&)lD0A0dk5=ad0tX_JNZ~cZjDr>^ z2`EaI$7`GmTITC>ghi4V^r{a+5KQE_gkc91X7WQApAmH8xU3hkM0binGEMqryyqL3 zfkBrSTZUTZ&aP3B8RsJNBUfT(6L)~{V&!ENX+GARnbBieAcG0p!?j#7K=U=atqUkz z)=8MH<3FxKtM;<~fH^=h45*&=>blR`p&>l@^weZL$lQb2?}z=@XB{8ph*;S;~w#>4)Y zrx8T;W=KfQN;I7l@4uu!hSUOKOlv z0|})J+Lx2`6C5_(|$qTPxVmVGBN?_(PlUT<>p3MiDrT!Z9O4dtE$*nuRar0 zig$}iScOZ&s-S`UM#LLP%YmTd(W6J?X!{WyMq&LyGdR+HZauL};DIl)cvjVGRUtER zfhe7i9(_e_W_7R?d4NX_lYtV@49p*dWi0@r5zZ0VcB0T|jEDK-&H9eP%E9OIYu679 zfF#o@K&B6*l@XUerVz8R%KT;<%$XjXVy!l`gz$H5YK6%}|S$Bn$-^;x*=CuPS^Q<6=9*VCI z1NPIeci^^QsQz`#OXR^pX^S!LadlMmstU9_NeC_kA>a#oS!{my=%&H+4i@+?7|a{q zF;L+4t2H`~FyuksEL;kxaxrMI02&Tvzaq5`oW<<8k=Rf0W)Pp&Tu~q&f%NK_f3y-q zhloHCJr2MqfSRweGK6uuGdZa^OSWJQ2bH|9}~J z^sHr))-aA|BI^rBw}^a2PGZ}1@8z)v+x4-&h{^nd;k`Yd$(QHiACc z0Nv@46DQ0^a|5^H?t`@)Mlja3j><+|_7J=`_Nzt^_CU-owF5kX9-gytBaYJ8mR6Zf zr()IRZzeSk;QygZkWUi{KccgJE&Rw|>tChyk2re0>!r6CPt~`~4i;%Pno%x3T1EL` zkp}5$a(yeRuH^dbZpLt%j^?;i`8IM6;ut+k@Svb#4-Hp4}^2l zGs6Yxh|~--6XW9d9*g|E-M|@Ah9M1?lb1AUj7uoiNn@mX=lHGHPHF)hH4ixID@<>R zt7PQ9;Yrqs?W(ySW*T8@c4WQcB~JN^Wq02Cx=BWVd@PbZA2qFJv!St8eGH3f=asJG zM7ZWYKi#6Lt=%_fi6#mM8U=v{Pp0CPrR>_uDl{>!`JvJyGyy-LY4ltgqK^yk7+fJtI56zPHNjj%hn99 z=dL@NV0bR2$RKvyZ_H5|Jn9FQ>wO}RF0h{J^%}Cz^k#i4!xt1RfyxrR3)gb*V9$fj zWz@I(d03!Wf9gq79SV(}Dm_!^+tOyW*!4->B?;B&I#Ft9;lJITy<*+!{YG)JZQIk# zZog0;i=Mw_tkQQkre=Ot@KH%eK7=+H^YX&Oy#rIO<&hiUt(#5#XN!2^lz=KGIx+3H zNq`mq*!K%c>JqVsefy62{^}MldaOA+!z)%foAuZv!bjq#_Sh>{4n-a#>a-KpRCnAg zs`)^rxXP>3)bbYG1l`Sz+tPkqM=NFku#fDA*|`C5{KH@NR1lE@0`Kp?=Y3u~;i2UJ z9>Y`u*_q)(#D;)csyPY6p#M0{@=Do~)a5)e=&Iv>Y*0LL`;?juZ=;0QW06_N^kbv4^M;ifzOo{gPz(1xe+71Fv%He>Xi``Yn0bQ2TpmiiujejS}e{slIB z?@WB1e_^RqC{601;=9efVNm{lHA%sK7*JxbkG3p;pTJw%O6lpTgR$z%o7OJ(UW8s8 z(_DL~V!Xe!%V|;i%&Fb%1Imn2vGGJy4AVyu(HP_nC4YZ$ zVuLg$l&1H-2wjv~uWk}?_r$Zxr3Z{qQ`BZ@2barX&Zm}y>TK2vt+7{;xt^OcA}4ai zRTl5BlkWY_;S}ckiODCu^JCGFweCSf>luk8YIxGELZS$}1_r~at>(#{b>#p;i zQmJRQ-utAz);6f5L#9>nYL#mCHdW0_o9`Wc+VUYreT$2C@DnN8+kVY5&WPBU z9Qq_|(z1wcF5n?KqQLLMflU~crOs~Jr;S@SSiQeO-SSLbla{TE$3aBm zp)nQ8Zoy(XrLiu{V5PGpLnKBd5N>M0`}n@gw_z>SG=f(B_uNIf#LczRzC6=THKq}w*do-57LV_45j~GZoTUXax_rqf zH#3*`@o1nyju`1Og6aD0IGbEW(>e-TleV z?DNeRfPrhS!N~bqH=A1zltVy&M|(RN4l`8o5UI@P`f5mgQF%Q>|L+J5i>jJhdvde! zUb?gcl>wm+XonBq5dCKuu}60L*B-MU>FmG=8PZI#E=ai!XZKUh&v>IHALzAFJ`Sj3 zChrH^xp+b@4)EQ1=@S>&iJB|B5ok@8WBUdG*=-$2YbnMcfv&VUFj9FagUB(>22dEM zOl?4u?xHex>(+7%PJkQ!gYjO4c#Vx>V#g;BIb8d!X^G-vE#!9-nXV`8z>Ptk$^$Pg z_1951)bFPGdq^oGfI$r4W4@zV3Xsbrk{)PPtkIU;5EVo>Bfc6SErEiF-4A*p$05`0 zo40K%g65Nmdr=*XJWiNP)e-|T4Xi=o%$a)=Z8pH=Cvj@k(^I0S&YoQsaM%;DFmBKX z*g1CZR{L1M$_gzC#OcslO0`PBwoP>D5OcG@qk#10SH$tVMVLy>(4be!9IX)M!3gY> zw>6%83>0k~pduCuyT@-K734&xUIJK?$hC9FfftuJw7A~H9Iq(!4&tc*3Qwu2U5DKl z6L$b14i#*|20^@HU$cfO{3J8t4Fp6W{vZN`<@pH=Xk$ z(`;;Z9}eU>+n;*~wfrIxG8*(cvOLk&lE)4qjHN4zVj?(4QG8Q?G=-HvjYK0;%POgykLum%N`sB>fL}0y8Dihby4~u;e^H<`LL~gA$mk4!e*U7jPQPOb@ zvAEKh245{S3YBj!9V;v;(Hk4k!QrR#7cg*K66H^xIj~Z+E!QyJOHfK`%DH(B9=23I zS#?p`8CGqJV4Dp@S^d6v90h4HxR8+G;8PW)Sm!=70kEIpM5e9yoxy#+1GZAcML_y1 z;EFVKijawU5e<>?Uh0-D%W+|V$n3op+On57UrvU!VUauf{)}(?-io7iO?B+0C4#hDJ&S2sRrMomA@MA6+A+! zJN0Bp=g1gH(hQ)!ovp25(tCi~}BW2g;#ms+oXH2QRufo%VFs1^^fCJ`< zMqFir&ViU36ZDn>0NCMx&t;r*xp&kXd@fOhLixZVg>fsYI&^5GQhW+z1Sy@*XE`Pn zk3&p-SX)~=V8TX(`uFsfd$JQkEUDWtSopOJH7et4lA!}Fq3Aza03|WK93FHu+o8i{ zY8}n4li_2f2*}CtV*vhgoKYbNx_jB*P|&5rj?$?2X_$pTthQ%5#l4@AK?O zY3g-Yg#=&0+%S@(6+s(Q9EWOjF&u^nP{}xp-4}g=b9-&x52G1r$6dXwiY zvsZ)jfV9{%IQJNyJip{}0mOpquU>5-0TW0_to1AzhC%|Sl2RQ#U{b9K-$F1hctIvn z+g}yV=Vf6gig_ZLMfs0jnc{&bPH-MFZUPq$K;>qmMdm8BCu5m%2dw@^(a9Y$fe#03 zJ~B(3n{fW~%NHIvG6TtO<`uSj;X*$`A)q3Tw)X&@G#S4F`qTneIe%0lHwD(S`*w{u z5}1f^9MB!mAR*^-Y-RB0**}`mfVMp!r;hmU$erPUEf>`q9YsMDOAfpZuY-P)7G}&5 zy#vDcMmV7n<&8p-*4nXEiC|e5r$r1EoY>UjJ};AM(R2%A71opLgzT~NIUa3fA_=~S zkk;3v`}CBfrQWksqF-?;2x+NmccG1YvH*H85nl{+<|{DVGc5s+1wiOQ5}|_qeP~xQ zo1jvqk`f0acc4vR_*bPKadlLgNU-aw%dtu6%`qXHA=Sa0!eNlJoMCgQH}D{7zE_k7vJf}fzqMe%@T1-9?1^^xr)Oax%=4w#lCo1dS!MH+|D zK4U|K-5H<-d?ergcU%E!oj}iE&HO|3zz|Usf^STW4M%}bWS?Z}9Z}m8Xh3fEHz!)z z;CuJH!R6MCY!#%w;teWcL}`gsh3r8wZpsiRM7HbURaQ=FbAW%mOFHC(_+-8&8>xW1 z7QkEyY&a5@u=cER#E$?5!x3FPId87x;sFZzCDbl-@(@Qg)P6Pv4f@KIp8cle0N0SA z02l?>n|AV9Wh=1Ke4N|riO0njy)i1Ib;NNP@_qTZns!tRhcS+X@&vk1Ow0r*S%|X1 zvBn;j^fwrxY};4842s)7&3@^~jE*>HfYSO{WYE{AFSN)2BPucW;bBE~^|-T)8(KU< zRhp!5-(=y%%$ELIqETRI^z-$VhXNX5&H8tbD(q!buY=&%8FHU@`4YCDGuwImI-0Z* z1!e^I8$M}w$+*IwkxK5sfasu;_B-Qic&^XT^a~z2Otb4ncL?QO33l|1aFCR3j|ajE zeHI}E4dlE>kAWkciU_^UrCZV(S3Otr1xQ87Qe4Dd`T+T`>~h?Q{7Z@zh7{yq+}(!4 zk)Y0%IDQ~5b^V$(H;@H7&})(%kC2Q*xC3!~5Hsw2o=2aLT4-u$Fl9Dv|1FN!_gZ(EG$&Bj16_%_VDgLZdtK&>fN}2Fz-;-k9 zF~X-bm?jb!Z1}SJmL2YE;{nA0x)3Jid4`pxF!Vym+d$t^>vylB{72>A@gh&_j_O+B>8Zt6 zXA$-pDC<_%_KS?R>O>_KXY;d6-n_wOe6N@qG9n0 z+e2?a#97m&i$VK#%BJ3PDMO4!7RDTWo|4qtH%^U3SDc4yB))5_lSTaK0N>Ll!$P;a*h6bgX-K4&eEQ7u3x)^WG09RNa%f6x_+)MWc=I?kGqgnA?5p=RbJKt@~Y#vX5Go<*i# z1&~H7$zTcbM-Bafkg*6ORI>DXFygDtlqu`fj~)cv7tFH?GKWh^LhC2A$J-uVI?Q0_bR#m*RQ}L4NLpx>Rn48Omm|T zWS;Q8Is-KQY2YcNYLr|VgImpBVKL(ID&$m>p$_lQ19DKv372*la>9D;rj|X40qr9 zeqU>mwt?m5A+1!{vC$pifKG{?RH1K4ah1kdcb4VH_+?N_%+S(6>PbTVJ8kn*=E{-! zs`WwvDP88UnDM(!3ZiC5Ljhn9&Bl`&6IA}J;G=3>#!bzWH*?*3GGS^53=bO%0%cM= zqfA+mArlg*PZqywO zx=|+RgPDY09b@P7t?MkaMv6U#ypKLtAQ2bn3uTm!7I_RVsET@$lHe#j2smq$y7_h-2U9cy$b8qUb-m0fvI$4hF=tj{zD7di;mL$bz zDEh5Qi3tAVC{4Oc?f9I8$a_nmK7pPCJCFVM1`Eu*gW3YapWd0)ZSOJTK*$R!;jE_l z6I9P233>MXM`lfDwg)`Pu+8vs2OP!$8=+-D51S*cnG1f}JcW)Qod7Tlc_W-jfeeMQ zPs^t+b^xK>{pd+m?;_d49%nK~UF3&ildk+!FXlch&B*gj*lJTwq$PW~(LS|i+sT{1 zZ?ZspX}p&^GH$PD&3BWCO5;N4I)^c)WRgb(T@m1Vu)XjwYk!Tr2e?6$>sCLvzwU|C zu}&DtL5gwc27<2~hT|KiieR(b88KVGsSN(Si7-~LT05y#8sSI;#v%nrk-eJ zyv=rQO8n;us8XiZOU}K>h<7UB8hC=GU*T4pWoGx6)kXNSd*4r17ORde$@y}*``=&N@==A)AB^gBpees`W z?a#)0b;m|5Btijhe??_LRLYlA}BR-|B* z7s0NA-AU$$Vw`}F;5obiGcp+KQ%)IT3`gDTo~;vrL>OC_*pb%wBdNJgQ}|RmWLE* zZ=*HhKyX|gjMszA90zA{5@j>Qkr2Q#q6)29hrp3fg|fyv9%@$TrQ@NWtD5 z6~_21J-iUDxg+_TUOjjc<!@qJDRtWrK<(9yAr`w%&mN`1 zC^75a`$~YF^$Ij~Clc$x$vE*x;CwZUT$g@ek;K6SumxSasPlNAT~XXTsX0*>DVJQ|rnJNNTGiH`3462-CZlarjw2A&QJsv;jlu zLvGltw^$j541~k|gwzdSA}wT$DpXdJpwe!@sSG*Qd+c}F)irNjc9-ee(-bHrrlyNHvDv{^_d-!pM072hG?ESRTv3)&J#{$g#k z?oiu4McN_y;p4}T&t^*k=pr;7(FG$N5{X|{TEUbamcbrk)CF)v?2<585XBndi-|rF zYS0q=h9?SsdOnBh6tY9t!B`yNlmw;-oR$;68hTeGy3%u>*w|H{lKf~@M?jjIqm~xFocnxP$y6KBH zZSR5^zYu^+@ZGzevuVffi{+0-yT{H7>#)BAlK^jxSFcQeFTW)?CJc46s za)2<20lnE}ND+fXz7ijuV-YgIxF=ygt7Gs(eF)=;?7SrdifA&#lfW4AyQ#OgVow3v zBNR0eFvGA#OjN+Rz=MCXoCdN$beQ1phR;Tz%f+2&BOqs5iyNA|>*V(ULP5=PU9FV= z0f%Z2@)5nPhu9N2YcKaIkNJ~tj&Tm6K==TsPbDA*?nXi`695q^B;X~)e2zv$0sA1U z5p$T@VqZplK>s((_t+Vr@(e(HKu0$w_OHb?1u)RpXQiY~=TgWgG&*J*fHC+21O$F2 zMIPWF*YYJ$uRwrfQ)6EB?c1V+W5`FS@%I%HXi;NNh|LE2a&Am|46WZn+SRM@U#W9Agi-e+rkzI+;sM&qq73VH3 z{*eInFaZ)^6K-*|+Ni$&`6o{)cyuZZI)307^M1NL9KTX5_mAE=r` z&^x1osx3G)U435nVRy{JOSv?U~MbjT>daL3xQzR1WrQLY8?DZyUQ{v$9y zQQzX)U{U*eJ@JF)&W$Hdf={_xd+)&m!?~HiWYiuEGxkmI@k|uF>A~*8YXmlw)32?Y zu(N_6Ki00m4*`v~074?*RT!3cs{|GhQJR75q1UD@D>2p)z#sZh7=}?xqG-+L{DuAw z>s}GKGMWUO{zU#&^=7du#rvLoS%ATtz6e1E$i}k$n0G}KNq6twy#OR!K9>m#Zik&c0 zF1R)X-nwSW*e zI!u6tRDifdu(nE#ngHOR0yInpJ;3YFI%SD_ShE^zKh)ZQ2D2PC)HRX-&U;+f-4Z)UII9P`q-_&G*a3WYwSz1a;b%-&b*0@O2 z1DQ<<6W%x(0;WH;*sOLHu0-#~fg5{cpWo)Eq}v`jv2(fr$_ziBhMrl~yYaflljaKTGP#6ywT8L`X-@RMB&vtubnX#1gZu{7Kr|vZe2F zgQ}jY;u1Gm2i$%T)~67j%p)tzUcMAKAq1CK0y&V7!O2j+mF) znZ?<^KQDhGJ+sMTan)fvpkK%(CtsfaE>MZTDAmZ;Q8mZNFLD}WOtgZKRA`LntL=Zh zWBh9xZ#PbhNSzzER~%^UTkpB4W;JfnRXrb&*m_5JH^A~|bjRy$*S))UTjBjDP{T|u zsZSk$S1OU2XczDFy^N{2WqUQLt0rOF!5{mdIkza3i>sLI)1oHV{LEq7b;Qg}e8}V# zYXhPG>#9w3bp}?vugS{j@w}DbWHWed$+?h(SBJw-{A+EK^zAH(rgNqnoctV55={TovIWc}?kACzWMaxsu z$a+7lBz4u(NRbdjIhFD;Cp*=#|EBht$A-CpECVY;5$>6Ps^4B{A;Mxe$p0_K-UKYi zwe25$5|KnHN@zl|44KN%MAJ&7iHcMj@l;5Y(nO>|l3Al3qIpzN8c2myq=8ZymP$!l z%@g}~K6&5o`|rJveeCymkF~6|>KX3)y07azf72;;yQVIvX5y=w-e1>%8a0eNj9$Z% z1g`|SnQBrUS95g#cD`$smKifD@98I;{lOEW!3q8go_C4q@eprdzy22sWj`;pnDO!P zw|OF+pVoYH#+J^rHNx2*u2P-|&rG%t0tcLKl3%{TwT?W=c6&5x3>^@@L#9WfnVfL96g;%=gt7Am{XL@>!lkbPXv9a~U8;CD2t5Y&7*67`@W`VB?|F9is!pu#L4>EGfL2BAma+lD zr`(C9xM)yIhiW>Nv;hDnt=oDAp06Py?sIKz@!HWVh*DSYd@hwb4z&!bQWtbE3d z2%azqF=G4spe#x+++z?<5`yUmydUPGwn|+6=%R!B95AexuaN~12Z{HbiYdN`)uQy` zVxJ;o;Q5lw4s4C%SsS$wZ?`KO%Y94xhw8n~46WE862E4OWs=!V8Ge}4PMeC%ri}Og61fxjE8sWreYk3}F5O7(6rId}be264yar z!x1vJ8YXZUbv3}hs9p-fh0I(+yO$h1*-l}@_B3^(>13?u)U|ekJsscEk;Q6an*z_6u4Q8R4L8B^6JrKT6 zaW`f5A#?@w&|U&mv`OExSfiAvYCbNQzqj zMFVJk=+F`*QBL0LGnmxER>FYJLLdH)%kU484t%loZNp{O=5~Fw%1)-T5=PYrTI`xv1SD`9>d8irJl8$&po^Mk725n^m`|j5*1ik>L z`6zDy<2FbX&{!XDU%?xRECPf?EjPk?O0hCAnTGjc4K6I@=b_W%7Zo+DUa{~#a*)SI zs(s3ceg&aBl01e_P7x~Di_iCL!WUXdPl;Xux_aF7GO)tqKeV?ZOB|s?E7jOvirE7W zmO{565am27FmK*DnudnRIBb0bH&c(GY^2Z-GpK>6TRPMX`A-|dYd}GQO0;vG z>09U^Ah|8G#IjMU;F&p-mI8%MV7rvi0-fL(GxgjTVxCTu&p<6>l)4gA+ zcwG4FYJl6PqY6db&(e=_C9_Ai{6`A_!JRN-e8|EF|DwmPzX=t=@st4tSIk$+^a9dw z9`U57&AkC(L`~kE1xGRqZr?6G)@-1ocrL%EP=0c;rM4pb1PO*;++uzrxneQRD5vCi zd<5LO`0}$$5#TfnAF>z2ZHHIM0PMplxV$+qAbvM{A$L-Z1RBp{6d8-c07vi2y$IG9j}c#_;;H$hh`<1gIickSU*xpn=2Gqs=NtuJG+G|J zHI1BzJ?wV<5_iMw-+kWrfIW9l0X||sBUYs(44IpVX(-U1F9Mj}p8JC$=rE#X(Vvgs zMo~dfCsTeL%!$5DykM1S+r_5RwQjL#8n!oh3P0hv9NOoN@H~Z~4^Cu1qU)n6&EC`3 zqBX#y5bu~d0r`Rkz&aK7PSw##rqju;eJCi`55DU;lqrA@(qOf9W*Jo`lVgaV9vZuLXLUvydua6F7)BhW}(G;3t&Gw+$N< zc7flFpcI7<&Tq8`A}^^4!#It5j@G0t>+$Gaq^{dfUK^I{=0!&1w?14$*^OcZr*Hh8 z#M>qKBmPemV$+pWO|Uj3oIaG)k_uL><{o$$097baz{XtW^<9<4LA*?!3_>E|K*L{Q z)zEc7>)SIXWN%XZ)$9LFE{(}{Gmq%(G0nh)%uJFAcVFv_j^$-gQ9?B5US9eX~j*^0rn_SwXmaruYX>T-MS6bMuOuj=iQ<3~ZgA|n15OASBU^1E>`4vHTd z*oS=`T=bJ~&fpA(LqhYNztMPs{_pPvinAA=*Un(eqro&H5J(w_=bf@sdDSQ*;TSh6 zs4@K^tJ8lV0A(T|^qNN|wd_BG9(hq9Gwu1N2nZ*?X1=%QhzUE9LV8e>RoC|yZARG$ zark%fc<;;HgN$pthe50ki#MU%K7s&=r=O0))iPttjJpl1BqMPBOFr>!)f5~k+>sb_ zKs|DJ@$A1}Pxmmj6;SsGfgT;5C!*~xSs6K-hB@VQLL6Kn_2_!I5tb1uZdQ8w>toH> zYu^B@Jmz)7sq)INl`O>sgSj0uA2sH@7i5|ZY-h!LN${S4xD`xB`jd}QgcGzA?aQTGKVyVqp}di1C@C?xDQ?HOqTpHDIU(7^!a`g&!~aE}tA z{S|3LLm()l!EKx<+&r1RH>{dau~?!ifK2dFwQG%H^M(x@(oV+Zf3Pz%?T^ECf(%q= z6f@=}&?li1mu!z?bFj*3qXz;4xZSo~bg09_kln%|8af@_3LtS9o9iW(g5_mH9NXW` z`++}m`AL9g`o@^|=AQF$4AzC{0)_VjF?H)Jg}jgfo!7X-ou`Nj9^zeRbF48aTQF+z zc5u3LIc)vHSr<)F9iu9S3KuF> z6Kvz#iwtv{R&R{>hbfx|V=Le$%)AI}9UB8y{E5b${3?Qc|IOj43>sJ54F-q3y2Udo zRKF*t;;Ut4(zI{m*jUfm2-H>c?5)ff{Xg!(m5Zyx%5TNn`#ua`Zi5Ab<4=;so#x)q zbOY@z0eaXSbTO6rW6_ww)?W~bkx&DRnk{1Pu|l7Na^Lq|p`fmt>@lPY;26dJmQkIf z-|7lZ1#urdH?`4-g*(H0aJlc@{7XKSoZ|Lt{_ufUwc^sPjEEb2U7gf&W9Hz*m9BS& zkP+CKzJ{!S$XBRW`|p7qHPdTwd7Sg+xuc&zz5Ig}E^>9u?DU~IzOU_BgR2>zS_249 zES!;Jz|xgI>vKKMUQ+6$n)mLz3am_y8}iFp>$P0eYrFO))nQjs$qF2e+|w%bBxiYE zv}Wp_J_?pajvUbK5wGi%KtR>t5e;x|i4u}_3_G*#rYX;&ijsVGV`Zy#^WZ;7c4n>0 zj1dY7cPr@p>kib#*dL&2=CmAhhl0GL*S7=BOgkpU`BMx5BEzUa_YL=PMXshD0q-~o zbY8n8CZGpZ@R`0+w=%ywr-|wS1t=VqnuO-fli099fbuB7cI#QmL9M>x#`C`11Jp;h zaeN*;$L=WGcKq|M`bwXtnQ5)Ux0Cb2^x&3I+ITG>Ak_q9FV0;^H~-09gO|$vaAM~S zeJpnVi5tiiM|~bddCdQnE0a$X2ZSVXr`<>6Ejkch0WBBdi7{V+=d?^uK!dTKeZa)d zb=!c%2jqjtcT`PUziXLI+3gifqxrtP15aLYPor4o;7OIaY_@}jyLQ5zY-1l$4 zZgO-xK=jss!KA@;cA&RH1T8}N&zU%H^K2;(8TE=2ckNiUK8hhlW%y3GCu0qhcI zPY+G!B^e+gKi%mYHJQs@Fv z_vt4bFJJ6-5ZRY#CE%5;73ReZKC;MxV)~jj4ib}8-diZ$kb_VhB$G*D;3PdpM}qPq)p6lDmD6||@(6&ENNGP?d$SpMHyTPZA$wk@>}Ti? ziJlL*j6QVIG&xQnIodbx3gD!{z&ZG^-0{KTloW2DV) zSas0FqVpTr7mWxYKrjk0{Yq$o4miOsC;tTxIU5bt=xQ-k=%Vibg#CG4ia?`WL1Z>e zh41NjzFC0>%`_$89cXW-jJWKMP=$YIpwa+#?K83pVe{a|r-Bz+Kpn>)b7>l2jgKH0 z{xwm8sT2cr6sHDKnZANll^{LRA(y}iE8nJORCqKu3~EIRZiY6n-b#!4l0uR}r9rAW zvdRaW0eH?pC{#C4^YjM>X81y(M6eAsvr&r9fh3RZ2(S-yNT{3 zS{4obz|D)#jZmLQdygI=cHj_xy@DUFjnms-8rA3vZt8bt&`Lt|==gQFj@PHzYkX-W z!dX%BQt~eFeXb8cj9n?R40E(P*DcmN2*nZVy{FLpdtR3T{X&mDCJC!th5PfLGqe!3 z4*(y<6E$%iIvNYi7GsOcaq-kb!k`+ZeGqIgrXDJMbR`z!;T zrx-kl=?y|4HBgez%+70zJ&cwe^$ewKcz@H$v{@@miF`DZ1&~+ES8(Bf_LxiPdY_&J z=AhLHP##Uj{s}7-eTWZ4v2g$G0%u{iFpwM3j@Pv2?J*K%=UK$XE5I7ZEq(tj zH-3mrgd2{?MR5FA8i-#{-{7eT=^?5$xE8bbqxHu5dRtfe46_0vK}`E$OA0I2M?e@I zA(-NDih*k2kM;`1iq9zEn&GkrUX^cPZk342Hu*eE#hYe&zm zfE==t+HY%yc}pjC(!8}tj`4J88pGoK-JH7uN%7U0{o!A)YWJ^OS@2uZtZTrQ_y^#b zY>Va=D5@!c4RgYL?-}&n%~A9IVcf@Ty-qC*LuG43U6UXPgdaR%?-?0mDtnZ5oE5`h z;o4DteX^R_+bVP-nFE!f&@MRuH01q!_uz;C9>(b(|2?(5z^BH?%F>dOs7P6hYPDft zlgj%WdExgA`_zWwaDh_H`VgFP3C|4Dv&KAk>_H=eVK`P)7zPF9-ID{F{;fd3{nvFA zeY<7Tr0SOIe66o0f2w4;x0z~!J1gM(PU012&zX}pKy*+G=gWg@Yx5TW*P%FLRQqya z*q)?1Y;$B%%$u@JEdrH0sCZz$lSW0a7vg_K=qCtX*WSv&7Y2y~QLNt+KIiQ>3JYqO z*)!U1UYab~u_;V#UJ+L4Q2))jL2*VxptF78bE%B|DWpvY`|IX<*IYFKwR#qsmYPkU z$mVEO0!F0U702ARv<7oW6JYPyB8cf$>IvMRQieag0hZa5Nh|$)HYzFZBOp;!V|CNp z>eer0KtRK;)#0+d**P*2+B|%$9*m=(UuJP5>fD-?P|6GIWF9 zgu=E1l{`{SBv*m71HovVKci+{NfovO$4Q(Y;$><_vzB;ymz0$F{ThEk%aR%0zmgMb zqGXwA8!v=YU=vs#VDf=LU>+1Fqe}dA52NI)Y@Y_=&=z%vHtLfte!kOCFH%wH>37E4r_{U6YkbH zg561+gYgDk1tAOdtel%1az8Qk13j2l$Yn849$taw|x0IPo^G<=$PU?lS&JeB7OTV37LkS6BSh*U1MhVSUr$)N-QOzil-2NL#JqM)GT4QGlm%=-UW zpdf{mM*#r{@-bfl7?E1% z^#()PmIG^yio2m=4@DZ>0~lsR-}1kBixY7j;3xuw^It)c389coLH}Hoys9@*kx%-I zL{^|`25d}?*D6W}0bmV{0o7r64;sFTlT`q!95~=0SBO#ax&){mxL7UHS=`?;v+3w3 zO9bTfJ?wVE#)e|AvCm8F0&U{LX7WR7A;(0O)04F;sZJ7|5G1M+T2ug>fDgbQbGod6 zqyuckLoR#N4Yz?Z22m5FwVzevRfT>4)k80=*u$Pj=w88|c@VM{iCq9{|Ga}P5M^BE zo?K6a=N$&yFaaBcq~v?jMI&k^!>N7u&0SK!1f;KN6?Nyib_Y>qgc4dpb4P7DM69zZ zzzZ>ks7E0f10;$XXAb)YuVmi}Yp@L=C~JpT$3Q!G6ulz5>XO_-GcCcYApB+eoj1bA z^YLd%e0pm36z?rz4&z7Vi2cEw9&@kj$KL(?{XW01Lpt%X*GHY6=J(u5Tz*^u;=!vv zPm!LKfipozr_@BK+SU6GcMP5?{OI&iTv{EWWs@H=e=HCElqWG=ScH{YHcG`!C}Qn zKV(T+1NT0O>ui^O2uG{Dyon!fhT2^t5c&wUFQy|5|7&-J9*{yBVE*Lsd-6JfJ23nr z=8HjhF$Ig2*UkqoLGhb#(eA!ujUsrV5UR*N5zg?p1X|3F=2Vop>%>l**$5*0d5hOyPfEYw-Fo5m1T*w5@vV*B4;FzAx_8LEL8& zC%+#zIHCis9+g8kDD2cZ2zw`Lb1)P0D(T)1wTp1tO-UC+pEx;*-%4#xv;d?N=oX7P{5@g6GBu380w`Af*+-tZ}Q%!cp-v{kas*srtNb0@+1eN za}o!K2A*VDUL*)9{~BHbVyL812qGb%TojHZf+k#2mVJ@V%@$L-fVi$&W)WyXguLEo z_nb8~XiA8O!s)Sie(+aT6WjzJTpCO%&?YQAyzx1AV234uG@1Q7|Ij zr-z&=omKG__w?}VIV*#Zb21I(y}I6>^KdNSDx&Z}x0*OQw|aZu*aRk(M0VO!b<2`Y z?Bi(90_r!_Z~MstvlZ_dnlIY=MyP_94!Vk&o#Mi?w3^B0;9Vq!T*QIC?lVusA#uU& z@~b|tX~Q#h3SWD|g+oVzT6?fz*F^IGolq?gd||EM4D|5K3+v1JM%K1hP$x#6*cvr3 z`UpJ;iE@$ZGSlu@Q_gC{&b$h5U;sQV9&s`%>uNvo2!_zRN~bm$GNa$6nWY&u7S5PD zMW1zN#44!{h#I>c~I>UG^x>|5xT&wp#VEpVWzx;h&ym)@wi%x@Tr>4X4?)av~ zBdsR&7+cx?L2j<>F^KjEIfCi_yl#YWUv=b`EVEG0xlTMW)yr+nJKT@1bcz%T3}4RN zAI@bH^e_&2zh$AeqOQdj~q7EDmY%;5>=JnlW}-PL6t-0>22HU&YXheBwUF( zbLtcffc`l)Q6m)?#L|3Wm}S1tE2wo7-we$y32G9TqqOUH%nS6ASZP&R*grV>qKbZC zEXP(OTg?=dV9n6EWc$p)bHeXxH?^X4I1SY0Z1%F{%PAG@bRE;C(%{XFWGnSZ^JI74 zE}lznmGN70UOQC^Oe8MbV6qgppdFTXQ$svb++~+{Ghc|dm+r3&t}To|=JWT(McdJ) zAqppH|A?9fC~tzvK{-799JI3Yn*3ZV-S@I-u~rE?ZQg$QASc3%{+@9)x;-Z>-W_TY z!Wn+`-&c+WK3D6FV0ZXE7LwmYCSRtvQT?;WyuCB;$m>s!0zf>vUT1>x=dGR}T-!bu)(nhlff=FB z%e}x1Za45WkZ{#a1afXS#8BB~vKan%IgbJ}J(a}3rN>3y2IS1PRj9hi;Xx^C4W(b7 zw);RjIHd2c`JMKkKWOdVeLZLRAJ=@?<1lJqPS(EWD~Z+(^Aryute*4uFP@4ux$}ht z1rOpRvJjiM30pFZiVy-Igy0N}hIQ}H8Yj48+AO0=`K_Tw)Lb{l^YJNp_;+V2ZLeg? zK=C`}v~R6_So}({mGdWruo34kOuNN5RbU+rH!BZYYBp&}u*KbW)vM z-=Al@p^JA|HLb(#=)%D8L%B_)y7`RUra2}XA=+F>L)~D>GBY&)d@^f)ivHlamiC;? zGWW1VcgEe6b6D^TSIbr(T&uZo=QkJn^Be{)DZCte2I3kXt&V|iUvL@i!9a%73{PQ} zV`|Z_(fy$}DRA!I7x+wYusy}LB{TBS53@o(3Kb0#CGa}nTY#oNgj1r(lo-Ydu(19Y zFu7PLTsoTbbLkX`S7Ps>)5tXls<_spu*D&_*&pJn9bP$E8B2gns=NYX;^~p0_7sPF1RB1j*8kf_n@Dpj1kCF{qaZjf82A`Y9D$JB$-=4 z!HqZB52Xx%B{D<=KlnQuT)Fje9ABF4Z5TC&lMN5+(xo4Leh>M?Dg3^Q^Q-?32Evi> z0!m_3ZltfQ(;AQxi4B&bHZ?Z0jh&MeYISjVYmA=*26cNJ6#B z%+^88hWPe4_PHoM7h59IN6wIL7MO?2Q8$z(WDnuh)z$QO`hxdqgK5 z<3cBA1PGNh8evVKGDo)X0V-npo#;N?HNf!qazJ|qNnX%K1MBzs!Y*0A!H!1yC{)xS z&~vJ~DGeKxFy#Ph+{xeXtDwLU;V$fu=~C!*Y1wj=%fb)na(5Y+8&;@FqyJXzXs z?dnHQJOKVIxoMNp9ise~1~+t-f(@WY0Jr0*^?Fn1{|K}nez_=rFvD16%QF5Ws}Y!h zK8hkAR2^`-P?}%J zK;|dgZXKf3H7E_vH}2fIlcZo0GBP?PQ2RJbuovxf8X<|Cx&7S~I0x2dBf1ws`3o9% z9vre-7@`4ztCC#=X25z4%p-mZpS}K(He|-+3xEU>;-FamxBPk=p(H2<<{nBum*fKE z>H!~p`1QI8yZRRTjG8hGV{09!;M%9wMWeU^l*vT7DV>8lZf6&As!QzKbmi+E;4DGP z8v;9zMUj(&Br*{5u7V?8WZhzZ^$7glXSCp$tarqCj4H=U*@oLtPqHst_+}n)$r>8J zLPKzY23vHKL7`x%C5ingG6V3Blupr#sq#@x&#z$hx+S&% zB4<<_@FFKM_vt6Bj?A0DcBithTQO>0nlyGc8yPjT2#1G{StB7Jz!DR8XnYr@hf%Tz zpl{31&jO)`Rx23Whcb{<;4q9x0zbizEn~=?5N<+@pTp&LWp>3oI zo)GozF*4d@sUjKV3V4>@i!63%B&2G+QP@%5ua1P@}Lh7g-R=#u<{ym47Th zKqh6;cnZp+3?ncY1|_^KB`*RJBQrc`kzSbkObwN><}p@61sonOIl?~vCa(_>zyPyp z6an(@X8e}BOW6cVa3R4Rq&ktniezT!f95C-KIs|SWT+;|RM}4thM3PHnypyU`5fEJ zaont*JU8$W%Z@opO4huF>Z%t3eYMPL#IXQA7g5G$H*2)$_n0!-@lf-VTMcliBV)b#}EJ^X;=VfzhosBnRFp*aaFF8ZRqJ<)Epx(YOF@$CbU}35+w`smA9X`2!)F|4@-(R~DK#%K%wVpb z0S#-zom!rpg6$r7y-Pi0o$x&ev9Uit)Gme-4ELwKe+7)LS5jZus? zhbB$HzZi=d!9XZ(L`I6d#V$|w6@=%oFypD}P#Puufja8|C%9z!QkHRD^1cleQ%JEB zPaAJwx*Q-Mm>bzWbwuespzmkguCT|EpcJFiS%}67yEvuecYeVlL4O1U z=4NGQ>-o9wncjAus(}r=4dsw5!NBl`^v=Smjz9LVnlBvE8M9|zU>@tfJ(>vuGJ$S& z{6^{y6rr!NFK|UI|15lcAdfpkzYnYiBeKXz@4JvJI207R06pXKWF*+F54;rmsSEJ4 zVcG%gav$F&@8$eiTpSFf1->l2w57_xga%llZsTFllt#wc)%RlHDd~@NaBLVOXT6V% zStwRC90XH}NAkHjikaD#=+G%3P_^m)y?dV_EGvgJl_S!}A#~9e{j^t>r;Si`swo~# zlug4Gi}4;^fzy0J_=Z4tjmj={OzfbZmkPDwuRY7(e^Iz4tK%xS-L?`)7327?@vAPp zHPjK5xqlwt?9wUt*etE{7fSp(t4d1$`I82A*0d<*)Q>G>5s4pok>qdv*2*-{KYV&* zOwWr&JHH({ddfmhu|dIcRhP@EY0q|70>xnXV!KVOibreU4l|SfngEZl&RgTwtkN%; z=C}O^&*D#ouXm#@KWxFZ*@q(^eadlI#*P;q{!Z~4SoZNQv!0H$hnfvfaNR{#UEM!S zOe~wT`eCp-3wz<~))-WB4?eDGEPckHesB8lgf|8%o}2%nbm|do{m>8(!!A#i5aE_o zHDCv(xE-8iNKj+pW}033E8}@n?cg~xh|uV#$o#2I- zfeT_}R`6)-@!9m@IH%mPmJ4`@IX4$EJOD6120%dVzwB?Y2b1$kex3o(^|J$_1m;3DZ-&w&jLKT@f z_V3sPSRyPY{g!M2fhXYtW&Zz;c;caeJx0Gpq7nLO^jnA5OZvgQFV45^z=6oCI%K9r zZv|Y!)D{!h^nXlk#5fofm2Z#_RQG;rS_5^&Uq4(kHR`|K4aBGfMH~F1Q}KMHH3UPv z@EN{~8LNLBzSeDN8P^66=1kh<_Zpd=gLAWP0>dbfpr-jk>X}w0#wsrY7#d2yg-U-< z6yiwH>1(}^Qe&lJQ$~kpO3(vIz0rL@^BTJ~;+11`W4KXYYI?9&!U0r%cG-0b-T+Ex zs_Q-d<={Bo1MYa7KdNqJp{TGZ@fMK$T8!%?T>=9KWVuJk6ZK|6H{B%Q2n|=6(Qm&! zgJ=MWKw1=&XPHr(XS*e8H;tn}%}ryU5-)QPu+7~8vzu7{mq&Dy zM#<(LZ1Tg1%6*gLV6yR8%K-9UD zg#f22#moVxov6Hf-i)afnSkG4;rF|H zYlT5A#82*k!|n*!u`$Q0n>vMK#rw0Gwex^OU^g?h5#V_a#+AJVUfI|8tjnx#OHR)iJoU}w;g^K&Q5`55g2+wC_<)K`-K+fL=f^iPWF+-M?-WpE0X2(IY+H0J zc_tLW2-3NmeXLb9x7jt~YTvHG%{qpaSE6_?nfE=5s>L85Aw`*mm$gHI6$!Toj$pdS zCAsTU`nTlPIaTh2q#Z#g6sUAg@!}m+&SY^wTF>4dr2(bfx>J>$Rqaoiww=syKBdMzg1_lL57oIty&Oc`b{pZ)$mWKV)}#!qUCglA0|{?>ZsAf{Oy&NBNZu!eoPi76>E*wQU+->ddASwdHCt3C>)?|q zXiWZQmx+Gt&xVbFW_YdWUu8|x6_A5iPj`kJ)|F7jL1ApvKxtLnSU0X+lRyKCQUW3* zwRhEz0i;oykYSqHVrD+tDH4cKr3-D};SR_3G&~hp34Y%jZq^-RYd8{%C`rMsXl(JX z@pk1e04;=?r4V8di0>JtzyZnV4RMqV+K=M(CnBw8bt)?x&eEXA&t!xdFJ%I4CGw0Yj0+awcd13`jv1 zcqZy%RJ*55n?|rV)xyx4Ni12iq*e#$gecC-vR`#Gh^nI8H8%QwD6JfAA8xp?Ec5DB z8G|K~HGY89KcaRh!);S_fYO=<)Ir3=&kOIXtiu5?kwKTT?HVYH&%y!E8(@EpcTQf= zx|;yABSj1Ld~zG&GJHf8S_T$XX4G^cbvjU=9f!mDTy`$19UQ!B)aU?+z;f4B1~dFP zzaWfqFVK~eT>xjLo#K8D1|UCVo1UReT3Ok>epkUUSpg@;!Jshs&Wgr*$9v)9bl{;t zzF|DT1J=D@_F_2x?>{?ekVJN)Pj9gKZA2dtRlwQ_WEP=P2?M=j!M8RZ(U0;u1fOxM z*U%@>q*oS%c78(7sfrJW)2QnM&E!HwMiHynD+uEW5HZ3tgjXD&f*F`h<1uPWKv^C? zs-h;yLD%T=D!v&9@x*0Ehit|=LJYqq8ynGXLMcLxizkfKE=R34ia3H;wjf#D&YgD8 zfEF|^fFK`(O;2OpN!J=;HRIv@M1#?yLYwf}{XbEIZ%vU85KoshqRj}IE_!ksJ)X{6 zaNJ{u#$<;3c``+_}?l9xL$amVlNw^?=-FJ6F5xu=1xS9<>5y&NXFQ*xW{xy&7*SQQA@KVv^T zTmB`%DgRHhB4!O(n9tW#6HLNGMZNu*GiP)oP%qe}6|lX?BA9f++)p^!(ib$<0^E0c z4k|}>*NJN>7@Xt4d3`mfzClF&nK3k~WQIhiKLt^mRczrK)MU=ci7OuIF@#2xJx(}e z;ik`Mf@5=FnYMxe4o~7u{})hOvT@5DKY?y1VE+jTiTpTS*H2EJ3kCB zc0uAMO}eGgivXrwjy53bWfxp}NW5Uu>UdKMs|ke!!cM+m(BB$s^yuSW4RjAG1T|@M zQX{>TCdBKan5vg!)=DdB`2(3fjg>)l(kkSv{tvo{4G>j~6VOG;ATwMt>;r;;O$3=l zIU}v}oHFWv_LUN0BZ@V^QGX)A)IZzQv2>oWviD=UBLS=%6*+<#E*yd`q&`*e5wK_Oe6g``?PToRV2G)?b646<%^*Re|Zn=GpI=gUi6dH0(Y$ zHfSl^gF|5$Fo0>&MJ$lTuK5#}f7@0%89L->iZ0L4?X&*D^CtAoVe3k}gE`?|ohu^v z0`nxhPKMpm9xS}1SQV^RndJUBe%^~bPYEO`F^1a~9vpMUsQbR|`#PMTj~wFUVmLHu zNJS)Dz3UpFt?=aUi6P9Y|f$8N`pt9y9zn=b;z`~sWMY`fq11|hVbaSSGlDT-EjR7w3? z_uV{2vl=_|+b@L=(|s0rbpYh&l})p4)pl8BqlC@Sj}zmdK`^E@to&LLfCFpXTUk(D z&+A4|bvq{mMdAKXcU^dFRP+Q_Tye!N0p-^=alY_X@s(1+)$M)_UFzVz{(h>ut(0S> zlR4T7RChp8>c*Dv&475Xq`eQgQ`dSNXLA-eFvmEne5`frKVNC+I#=C(<;0JmJj?aB z?h00DS|{!6qmg&0xz9Vek?l)SapF*@TZXc_X;_rDKbV%Ix$^z@FKk7dh;3_6PeV8w zkH85Gzl!_LbE9IO$f|FT+Fpn}d-+O=8JL`L^_8R9s(J-S&jSx-ppr#n!NIt{o8#2r zc)y!ywa)L>{2`rg=sd1$rM??qo8}jg#}+QoVx42d^|gR0C@_nF{YqPOPqXWKc7}oa z6r%(F12SqQKV zNmI~&s5%ho4xz$20MXyxTV}Kc7TQD#g+(_d^7Df1Ty6cGN3q)BPHbDCQ!?g+IW2qFVGErrLq{f4(!&Cj96feN2Ez+#0!o=w2 ziqYI>)h~ukZ5jj!yy)23=2#xy@Uu`&W8Zs5vHkTS!2-=%g(b<`Pm$m5uA54qFNCv+vgMXMRm}z;nEj1JwZ>%4v0FU zVXvcJYsNRAKEphq28% zk6mv>;IjtOU{(ZOl>BIme?fo=Z{ly-SMTPV_sPwr%3#DXGt^q?l%Fg`c6AFiEOLr6!1iu`v19 zGx<+IK@zKZd&8DbQjvST>I7HH>Ub`|km(yWF%RGR%cfc2wlK4`PE7zBgW}l56f+^N zTx~V7m2;d3WAp2Dhc346wAs01%kP+zJCY4Qb|#hN@|T~-W1`AzfomWTI*UaLC;7H@ zm(B%;if)ydb=;K1!NBj~%QIgpR9lDivG2!wYk)Zv&{;R}4HP1F6l~42Cfk0?&hcGS?w(=XN3@2M(H}~4I3zgO zuhQ0_?uJ==&UnopOrW~C>6j>>w0ZT{p(JjRRnF4EnQKA)0!c%_CssM&ORuBa3A6!7 zzMA<6!Rh!+;oN{0(RxYMx&qF96|rd!5t($#ve??4&LgN{kZ!4NOwcSUP^FN$L>4un zd|rF3MFDcNtSSfi;4q^q2u%gdn>$YVuYqNT;Qcu`wg4zP$2-7(P8oYBS?*E+)IsDO z%LBzXovzGm<>8NhF#Ohw~e8;8fgB0;X!RzQNi8*D>p@X}V^3C8RnRUw64D{riA|D@K1N!V0Fe_nXb|{|e zhDRY7n+>tmT4eMez$qL;TDvv(fYy>t6+507Qyw$1C}9naC6(>!Lew~#-h*-AHfZ!@ z?GM~4xZ1^V7gIxKf#khdnc)0OPY!N_#fF%`11@!YLn6T$t@%pPQ0N(;)#7IobBU4O zBZn8D;(JEdqXLi?1;m~!j5VSB9z^IQ;%Z4sc1MAMBF_p9Z<;#g^w!)im|M|$AvfR+ zmCzk00(9gmKGIu>VeDAH>cB%j2pzcXx|;Jhp-b3EqQ|=h zVDRX^qXtjvyXeXQM>UYj7=v} zi6NekOqYY91oWsm`@1Qp9nt|=dOF2~qt|%g-+%oFaJ*-Dj+`L(J0NpZwK)zZ6iC(4 zlq+-L^DQ}4+XFP=O<|zcz`}uqQ(%b>3W+74vsg>*RALEqlgAO}m!3mDpCwCFC*P_1 z@KlXZF8^6b`eg)9)7+6@E(S;++|W~yf^ehX+L}udJ((C&OSZST!rw@!`ep{33I*Y# z9X!`~QB3(Foc{;Wf;CP<1H6uX6_K6qo+6{At)-=cS?%m1x3m0H{BNfwFC{Uh(T*jM zv&N3k%`K%)77scq0TTN^IjDOJ10VbU0`frhZ>Zo(gq_hNQ(&m3CiH|JnP8IGrpWlA zrTNr+3NH4g)248cWK0?(x`1(Zepmy>685o8Kk~ZPZ2t9|S=iKlH2EeL{%MfU;G7OZ z8XZec2#5>dxjI=E$o!8MAo}&%1^i)3q`>Q#Lc=mf2f9icQ_-YC8?XqZ1iK6UcSR6; zLK(T7pm#ga?ur@LWQHRVGLBCT64rXG^&CF#i9;CVly1BOq!ctqAh%)nh=0~5X+DvIxHh5cv19b|M*Gcweg-PtT&RJcWE{DqTZO_L_JO>I3vRNV<Nar(>iU>!p-uzP zBj@mseotDa;)DyVil7JJ(`K`=?mU7Mo=)vsl}|%{N_kih>n8mn{L;g`QDtP zkyQS@5Z!6Ixhkuv8wz^OcOhEXeV!2d@_Qua_akd_R2~dX6P~brMpT7ogkJcg@OvC? zwZidF*=p!=ISjySJOuyyn2yXK`LO2>^lgKLZfdieg3<>?1q;f&DM)c zgu0Au%{`LbSu(eZRu+dhz{0FkU?UK&Qknmu@L7zi}987ocV$Muvhzo|)`s(OuLN7+w*eK|!VjSzVIUjuK(O5H(Z%cFQ~NkBbP6<9 zQk7IdJ}DWnng=|vqEPf>+Qr_X<+G>mL+IL#TEs@}=q$u80p1p><*O&!ue`86gDj?! zPr6aiPhg=hS+QcrOZjdfiT_hwLoK=Ue{mK!PUPNym3Lyxdk8E5j4~%C5Qd3#yRHBm z0nS={+W3UhVx24A|4)&hiY7#UJ^mHrXP*4Oi2UGk-{G?OQk3=w_`z2#bBb)Jo#c2D z4DQp&wph9RiShD&2>*FLj^EEDniSXxjVGEjHu5K!lu}^V3Mad`8LSmn12ISC6wtH- zUITT!!@NFoA$@%ujlEXCY6E!LeZyQZjRiVj}@~2p`=3LtMxcaUoD1 zQOCTNDYHhdYUl3VG{tEh4#{)}q{@(3rhY{JnI$au4y)Cw`+giwz)Z94FAHA-RM^iH zWh|AFg2OMNb7z{9iBd^afMp9!%Ro3!dJb{K_zqcYSk15!f~lgh=AMrOqpuU*3itm| z#4x{2Pi*CtU-X_#gs46u-KHYq-NOuF@=BuuC*2jrMkB4N7!0oGi_qFZWKt2O1BdtB zUC#j44St}A;a{U&s-Y`6ec^(}pki{r1W+yZpd1Hc&=KHK5XQ{018YgA0=vk|U?RKf zB#0l2tYua;cS}27TO3Ytu+LG0k_MnQ&)8rJgg;j(t=S4DZ<>$VVGu3!7JetH&?vG{ z@z^Z@U$LYGBb?ZxTA>>98w}x-{JPszl65%lM;11IJycyYkOs@;8BK>omB zb=*DI;wZPOGu7=S=v$utN(E^-4CzV$t4empF4k|{pdAd{-HGaYA zS(;1|c8{`dl#g-V3sCgDsU88#nE@E_0kdwg;;H)IVYZ5=l+GHaL;?vLYa_!5cq%0w^ws3&H9EQfVYQap&t|17oqH<1Y;*Hqz6>;1+A#KA%n41``G92rR&%4v9FX11aeaud-g0ka$M~5A$4Z%cO91TYWp z92^?#OCn2ychTNFZA24;6vsU2hI zjOF2OD>_j?f4fAyQI9ld~ynlH3ctMk42&Pg}w03 zQb-=`Sr!hH`3iUcJWfa_`#o0lI~Z1M5r_w-GJuvK`mLl}$?t2${kr^W{PhX`0sRjj zzyw!od|ru7mjYhoPe} zO#8LkFx6AIuFgiNS(K5ORFQt-Yl(5eXfFNN>#O!X-4q7aY!kr{r1r~BG0mTk`$t=X z-j{WDi+uy6YrxomKmj(Y;s62-13Memf-jJ@K{)$1VE+`0C>^BV?n?3$(uaY5WfY^3 zrEqoB?)LW0Tc_W;wZyS*?*w!(vl;R6o6n$63oSUM?AzK?Mxo&#M)n7b;5+TlZ0aT} zmKjbfU4Xk(#gUtz4IxCo$KfnIORnQQgbM(PS<qA%8RlRj$pSC0o zrL6jH*9P~AA1wv)l)43GXnwIy(cc&WN9zqc=tt6CRYmbYsB>n&at!EgG~5j*G1ML9 zP1m)3u8J44A!r#*8C1BUSOuNKxOY*l{h3$c%kl5pAEiXwMT@5{$V_d8)`V(TGakJS zRj3if@KBP@aHv2aP!ck=?ot*#7jRm8WAjKdOb)gCX9{ z5SV`B!vFFM$v^P1iM(z3>27Shs_h2W%DdHszpFTcnkG^tQy9c=CgKR#<>U@CoU{BQb?*13D_gcw}X)NsD zoGS~mJRz^78Os*6>ZjuyH=h-6S?9QUQKH-3VfQO9mM)7x14p(jrPBOBw51ThXvs13 zGXu9HdHlv@((D}G2(wo4NW<$-$2A{4M4d)rozMmR?f$QzYUY)T&~}kq_b4nZ#Wn`# zCgA19r^y%c^kJ$;>Eyp=6#o+7(-RaiHMf5OvF+WDu`@8z*v}6>C!5BB$<-Y?3nl{p z7Dh;JjPd5HF40ilp^=2VJK@L90OT{sn(@E4z7Y3}VQMIM>x+V7-D5z&=AcOZ0x__!tpi4gUqD}Uf$0kP~O+(pS4&rZNo*W1+A(S2@ z4%lP!_EcrkmiezI0e+a}U4L}4!DyXDOI-66ohJ^ni4&$&P!OvaNfP#QN#3V@W7Z5C zChdL6Ju^~9bA2ZF{NQC*^|ER@|Kz2=Dm*d zlj;&ZikA-hCEH7eUa(gIA24t80ym)-@hc&bfsSF0>7LS$*3g;o{xAY#SDtdg3xei2 z(d8=1FpO1(WglBTpU2LOGjMw>+)J0WKkQgB7&r^|D!hD{cI{uX&m5)LeZ>9q;YOhG z0kTSysmSG7)N5ml zO=!P`ZEtd05oNYi^S7T#_DaGkZ?TJh*kxEhU{bdE7(OgnoK)RH@kw9BD2t&`*K_e! zQ?2CuC*|C8G@X`}Z~Kh@sz-B|%?H+GBrXB?6VCQE{mI)tLH#q!>nvdQcnK^7nk5Qg z>^9;o;i5%aJW!M`gH6ZUZ#WC^>+R~o^Geh+(!f{Lx?(dUDi_&{H2|O{Jv8Bq5M_>3 zi1XQ)0JB1@1jx`kxV18%fTC1!bnc+*A&fo@Qj`hZ#xmRPSaV#wm}@WC*3iN8R6WJ)9=N!EA4BV}l9l z=L+A!N)X_SS)mqCaS$;OpMtlRNS977j3VXn>Go7jJLCnUMmO zG&6wWf%~mk!41vTGr(5-Vq&eNk_ccK5Pye!Q%C|<)f(>GM-iD;pveB`)ycDPhj9JX zP*g0@xbPYU1i$(fn%fRB5Q!VRK1eAkiQ+$PL&?`u1_UngK7R5eLM61>pc}bOUbdYn4w!vFhyqQcUA9b}bUA8o z5Vy>YFG-0Qsty2qjUSy@7V~wtnl={|Q#;@f1aC6uX(N$4z!#|=4{IUK53whBZLlZ* z2k5pCP85E-BN-i0}#G^PsFQ_!SNUZ^bDJtel(>3pdRM z0`EWy5Vef^5Cl!4Uj}#uW7rI!j$#q(GC=K$US)e9c%;qA;Fm4_c^<~b{|g}MSvnsY z8;ULVE-I?(hF$F(6f6&pyyXgFZG`0oPp9mOe>BO=@}2)SBI9tWKB^ZLM+QjmCpL!F zh?{-<`@4+v9MCJIIH70nZZ;g-78tBauKP~|9?<%b9uj6Pn4_mN(6lg<1MqX}(!j$5 zC0D_N5#No*m2_=KizZx&x=0`{DQG{oL=ZKz?BHsISm*)O;F>$pn$tw;49n7>^g~b0 z;_-HDLmvPP_NDGn0rpY`NTZ}h+#IpK6ovo+GTlAdMRci|4vi1E&tra!-9kW+kV~ad zuTZ06W3!Cr3laB`mzRevF85d{4FbmtvnjQJPN-e%Xoe^<;Adykm?(^Pc#5N!t~JY_ zHVyR@5<^WCfssQWvQbMF%~T3_Q_9(ZH9`+PUpqFQYz&58gUOP%m@df1*42~`K|PgS zc+3VU2LS`|rE~?fC>{({Ur8fi`||*q+3l*8BL+@lmL6@$@G#arYR0f6nq2!ar|GEQ z3u`7!XwZH=0_j6kxhGD5*c=K;!Xrf?CA8{l*V?M<-Imt!^EL*s3~6r+lLWp#%pRq= z?$$O*?~g6@Hb>zw5npb<&3f=$vS-*kq4l9Q@5fa7S9YyYzO}%v(Dg=V5~b0);zWW< zDyP0$O%e*2M{Qe@a*F#w> zv%B((dWvSf%>u9IsVh+AF$a@!?L9>OUZ%POmW?;?h-uPbML$ndoM~Lb}?K=#*GymC=Cfs&b@czAw6<)W4P7-$q$I_qJYNk5f5e|8Y0A z`kHY2*%BueMByor4q}b2SsGJ4odGE~Rxk`HsAhEq)nDGF;_pkZIQk7KKW5eo2zmj9 z5{BM;au0w`<68vSlT7B|+V~bR6cV7LlwxGQTiJWOY#SO=EzfTJ#lV;?t;YYGUZ!)^ zb)>2l6V}ssH1C@fNQLD3b@K!5GvTq1VWoCJqqI^MnL_7(UDdmf<9QaBU+2Vr1JoiJ z<^^VHSG|zyrQ){?mW+LV#<$+9t%gQGe?t}01cniBLB|rQEDL$6v&g{+4Ghj|_?$@t z6V-Y{wOUqZk=XjdbCWe48=C)Lb@euDrs&VN>!g=Nh_>gvSzASVnCr$#?w@y-cqzqP z^?GCM)P&%QSUjxAk1~jNz%fB$-ZxN+1`i4W#_wNkMP7VD^dCPF|L>n8t+1n8nBV-s z=MmKu?jUF4H|HQ*Lk05W?(U_@hDi^O-H{WXrJu>n<0_JmZG9bdUJ~Z7BhCVh_B~I>*^;5DA%d5Y=3iM={R*`O11yrvE)y zVAiv&>m~LUySe}bV4FLia@4yPrj1&!$nS#J%FGvAcN6`AG=qUr$Q`k%ptvJ`~%&D;%l7ou4IIO2e*c<5|FB*NTBf4P`cUD%%3wPFUM; zG9dR~7V$23{m``I-fQta_6YSuIhLoJbSs|c^9Lls8YoJWuM79&y*<))60-suv@{^G zLuU^2Lfte|J;7nm!mZWKkOs_$MTR?xpTK0C6-I~T^o*>n(L}3><~OJ26#+fWdye?5 znCDj6`{VkTuc=9PA6PCGn0fIlt}(c;^Chue;fJtJ#tY%_K!b0S)U){*07As{DZ!p6 z{8A!dlOhO-wI2P4Nq!EDCvih3k|@3yg?@QV%hwnU(tkBy|Jp_0G;X4HiYz5f5JNMY6qD~*V{p$L2bzmetGN2XH@a-z=?w|_kOi<$_0Jm! zXCQJYYYi{V{1r0V%UJQ52cMkT?;s$x>$NyHspx?wcAooPW{T{nsL8??pJv zX4`e4VUMalx?EDys|kJp@-^cHY9ECl@{u$wP`m$E!xHe|M6*jnED}FS{H@|ZhasNJ zEu!MAc&hS(W`fv9g31h11HX~x#Q|T7x|v1*;)$z&6axJUY-bd14rGyC-9gVD85x;A zZD^agFU_V$gVcBqYKUFLQ#Zr1W?bOmVr+u;lj6hJr>z$WS5P-o4j$yEQBBQ|o}r#m zg<*+ZjPifmLG!;;P30FUd2X)F0i;e10H9ea$w%GUFFgiik*Syj^G~cu9Mr+12Y+c-5wRBo#OFSnf?FK0?gm_5DEg~pPW&GgbCD7&NPi1 zfY{wa&gr4{@6ZBy-ix2N4srd8*}I{UZ_1Kwaw?a@ip5_^7Js~1`uv?Q@4Ho8YCl{q zN2L5!aenO6J^kDRJ4zGAzFohPtH0^d&b^DwF<{>J$ttc3Pvn9_W?5b_o~oiEZgJtY zoXL=Lk(hI}@scBgJG^Y~#f|(<)UVoD`RUdcuV|(AThT`)B}D>IJl#eu`TcVe)YloP zUGJ68WANW<1TXy5TVn=)K( zkiS*xh`_)5Z&#$y@HVw8h>QX$0q zky;*t(efD#0O_?l|B>ZK|0XN&{11W8YmKqg-sX9Y$ssObVU7a?^*9GEvcJ={@-I(7 z=%(XGH*VVW_XinDPy_oyox}0XmckaTkxE`7X$6BKQ0J&L0X6JJBDe+U7*1wZcJ{n# zg}zxwKRi4QO({w8GM{2=(3(M?5LrwZbtKRT{%PNbLa&9eAv<2U5FovtKGFjOQ}DSi z<77~+&;I&{pyT+zSbOtuD%bXJT(z6FR6-e=thSIQV;NGhsFWm0B}1mnk)e!fphY63 z!MtfgBC16aTjnyPgwRAq#w0^T@8?`4IIX?sJ zDhN5QuBqX7&cj{d2x4Rp&Xm)>;2G+=H`OFBgglo~q!T1Zq9uCDDcAlEnDH=@mFFxy!PCV=(uwXiGU-R)E-$3w4=vbIG~0QkW2EWR+w`}gm^2V4F?BgPp+ zFE%m~);jz_nIt_C?S74}{T_Pl^r~I5W^=LCuCEguGWbGz5XHK|^>hrMZLT zO7g18H-K!dD0ikNO#yCvK0jck>tA7YX6T1QO2+`XT?;@@ley!cnP^Ocuoo>v8)TPcPNnpgABEZZ|n?_ z#=^m^u*$`^`a+Ihq6>o&sR2LMwIpUR3* zWSg#@miKnm{Z+g4{Zl)3zDY~%*r6`~gCT_|hs`CQdXI9s^6OfJDY{QEg?|G9;Ovy$ zQVcT1yzRouzQ2e?X;xm3J|c05rm*ybSy!XW^VT|HQlZ3_4%FsaTU%4c+hexC+_^9XzM^1tm7+W%2LpS&i~xw>eo^GZvI&amCyIa9K7f0iF$b4iUsYh8Z-))PPGO=3T8x&~i5H*4=ZJ7/A4g+_Dkd70b;6x9COu>^pfP1cJ1j(#%2J zqDu)4H!&9umFf7N0K-K%NL$l5ET+%a*7jL_JxfyWhG4Ey$PF9oLx(QUjXEcxn3kT- zD=#lkL=B@PTP9u>%~?(3Vlk~sI|qj%ppxX{B$?R)=neJ%PBT7>Pby&s(C#5N^LkP3 z+vp?x?fNv*Cp%KVkXw)3j5fKr$byIsZXJ3FGRG!g9%ztu<(XeltdfoFQ(DB$Smd@c zQ72MP^4rfMl?N_wB2gFng?Qzh8T^{|6R98I%;E@LZ3eQ*Pj`&&$hXOKb$!~EqP+Eh zn0-ed#g@jlitVd}q)83$haHFqoU>LB8JF1PWIXE6%_e%X4&fTXqQA9rRuwwLfRWybR(V%cFilv!Dgr z5~z)pm7TiP22QDJFXSK+mz=a~f4rEKf>GUdv02qO%5$H|t*E&X?0+RW87Rh1GXMwi z^%l$Bcj;?@e10!?@?tS|D(G49&3aq6a&M1SnGTnnWm&D@nW7pBFozH1`JI9nBKnxI z7pgNOZ*0`%w-FZ-)jb@0g;hHIW8(1*ZQe__CVWtF7Q3I~d?R_;iTuAMT^4?EFb-R1 z^4YHPp-10Ra!$bfe$s~eA6xeycewkCPQVn{??dF+=4XChv5H>b`3Lx#@eVOA;X^OC zT3K0H8`d4`BTq_r)a03iYHe+6OOe0o$Cjp^z{Q$}hlqH^Gei_p-f}N?{t@XMd)Zns zt?zrI^~`hYIIn4#LAO_>_xsZ}L)kQksRb&lgk2>46b~&foL8Dr9Pz4_4WA@Uj1&+p zKiQ}*9w%(9N??yqk5@pf7~k#asikTDSDfkg#CARi-&@B%DcTySf?eEVhj;+MVGSfm!tXe z{LvQ~8F^>a^YG}f8}2eXw)lJZ?v?oXVm3L63ugv@_9_+hfc%I~ zvowJ1VkHnhqi%3;dUA3z2xa8A4{bbyP2%7mJwL||g&rHgK+?;_krTEe#yzxdv}xq?Id+2fna3#gpMv?tdmBy-EZ?k<9>V)KalBX zV{d;7)FSu=5Wfofe@#tI3mbo8A6T{j!Qsg$euCl+zk(^Gd-_)?fo>t*0ha^q*X6G% zd<@1_Dz5a1nOtuNV`2=r3MGXZ3Gwf-^y;ysU}^!?tcY_Syjc*~u&ceGV(JB0QA`3y zvk-bbA6P(`VL~wU?S)P++Eg?6JRcqHuPYe%38xemWiwEKm@mY^g_5>Zv)xBrat>I= z2lDEv1;#wc;!l*nx=q9!#DwHPV=OAavCdeQwcoyd`zXDc3=gpJhGv<7LxGMi@_yFp9=d4#O4)5xS+7U$GhHfc>dB2{K)LMy_WNbE>NC}A6@nd+11F% zIK8Uw)qTEhOi1ucG0z; zKw}c0o-W<&3j%KmoMlen$zQngvQz-?%on@V0|d|NMe! z7@M%n#IX)2l?MludLyOY*4FNZS5A?%3`2{$FWn}R9H8Pj&}av@cxvR`WbFIhlC%xDsJ?mY19Z_y@D@Rj z+&=K723e(;?Fa+KqULvw0A7TDo>7|PR7h;juVtz+Emo4}95P~Hi}al}0*G=s%<}PL zMN2|e<`lHyO0vpt;(|BX8xfH-@1`}2)qE>8b!JcAPgUH<7ahJdDa9xbVMcscOX(9%2}NVRGUeTy=g&`I z?yaqHNPSV^p=e8(P-eF`W;Fv$;G zA4m{kd(n~Hz6G4lxvqo9fx_B3FXgVUA8*s(HEFO~_LxDhd(ou#qA%x$;{VkF=Vj4@r)95j}+ z2D%(!q&Q4fuaxcEzpVPOaqENdSD!pG4#&Q3>76kYTV`eoE|8?ZGSt{`QUu;D&~!52 zv_3OR^ZTf8TlUJ2|8%KH^PhZ*E_N2z^O>uioyu6+b#B&?OYg7pRy9dHW;tVr?%FWt zSgYAp9@rbIUMwg$@8~-=);oTopuR26HJJ{)L->%^5{}A`Qu?xmvlV+;TetQKf z-GT*@W4ZA6of8FdPJBmpxI$58Af|L6ood;0T`OF=)Ce*uEfA`3-00hya4m?7Z|u5s zxET-@a?YPj(l4w(Cu9g?KI|bgN|w%DBV*Rlbfbvk?AzTQr`iYuq2X1?Edj{@O8(Pb z;<9P1dW#PNSh(K1G5ro``yO`t~=Jut+=-ZCnbo_*d|3B zx3<|;@^EmcE5;nf>C3(7dIy@QJq^0;@-XA87G2u?)PIP3t+X6pz==JjN|!2f*jseO+Y;S(4>jE>)tEJY?qwG-?n+Pj2YkjnVTdug_v`~sv$p@EuP}~*O~|)(LX2P z2fhf%G>b^@?J@WfUG&*iI5wQ+drlyVwMo_%3Y))Ynw=TYVsK_f^(du|%8J^4~w+=0sITf2h;FfsKjm|p1^IPByp9+uv0(lj< z+R}Sqq7#bJ*c=3g=Vlke`j{yhpLWW$dIVnSQ;N&8#Enk)m{Zw$=xWQh0TmsqN>CFp z8f#z6=OVdR(fHH%#&WyH{BwPUd(OS2RUEmlHSm_BWlSEf=GpK*;J6fp?GGEu{yN}O zkHNNJumz~8xaEI^)APkfwC)VN1oE6(c{cl_x?Z4!RkrH#m!DlJ&doU}08&_#Xz3^l z3H%1k#XIN);4B@!n<#>|JQxNy2ka)0D-PgXI4~Hkih3jsZ2=>K4$&*tj*gnpGS;&Z z;cE(yPiF*JZ(bQ!b(&oJ0kol|3d%A;CI>+B(}c%3W)AKPN8JNBPzdu4GQ|Yt!kjo zku$PPpx-3MG<=V=j{PG{FX*-gcr+$dRCC=sOT!`oDkR$5J35?Ec|a;NZ>8Li)dGx! zqtDzHP(Ct@F30O9(rH5L4aaCj01@VbqIfx7v%9bCDI}VvYYkv<$k)`>A;dx%Wwb8C zl-Mxc*!fjnQPG03Z+r3h(Xyvln7> zQtb^?8D}vC7{8KN}A24pI~@n~H@olU;!of03oHWOh5b1ZUo zD(0n1NB1Cs65#rydlhJKhusn9Ytzk1gyTyA)^-6K?DSQ1@b_2YitT`f9Vq~sO0dSr zDf^M9yk@WWJ!nnf7&`1YErjO}tpsQg7?n;UDGKTOI&V5Qu zO4>*#tHPV@0j%cRNlDXbiU6H6s3l9f4KUuMP8m~);PI=<&x3EWr1ng9C4GaumhSl0ipC0Z0uQyMSeC}XL?`h3h!Y48>h%#i+XqEs$b3(up zFm}zRL%29}wg70E3PR3!KOxb;c)i;SQytD_TZXT^S*f>Xu#&!Zkl1)9XO4&d=+GBY zZ1bTbXW=vPyODbs^8)(`n(X8b2TNN!J4}aoK79OGM3*3_GdmT<^Mp}LU@tcN+VV7Q zBIgdrRo{BbRLQ`>>L~XnEqH*rK2lm?u@Yhya)Gp$o9}fuVYyox6}^%#M%Gl0p)m|< zx5qX2{CE{{`;cX8PNjLRwO6&u_Bo=hWu4sBAqZNi6fw1rY3zh6Rw!CBFohNz{qk-C zCcKG{Dmi^1*oAm50>FnH$sCz;wKIndfrO#}`gD32%b{d5f0bzc$x_Inv{Di~Hk9S; z`f`;@i&mBDc`{$aUvZEjH^&ze1T(2uPWmw5zc=*bSg``q<=`WyXx~WAM;K^tTG2Y) zO8F8WicLooO%W72IF0Kbbj2%O&d6l5fxUTg=3LKC)Ka;Jn!7^@gN%4Kzs3X*>KZz9 zN=Kf8;$P<`>93`)50VQANK1@8>fY8{ph-q8j-tM2P{dJZ{vDZ-$D9ZbAnbzOp_qc8 zZwC=9Ia$(NPhZ}3zlg&uu6>4vC^sh^=i=9xe)cu4jK5C^?sNg{ori0FGSc8EDp{6c zXRldW>5;Hr!&q9+UJY;`WXQv5!73l&=$pQ0#-QE7!1H~~yeSip`}X@MClfwGkw{Ib z7w;J@|LYW#Ddf~l`7GnQ-Zh%<(6k>fVo)=NFUQ>|RDUm^5ymM42iCNn1=$1NgJ(p30EfvP zPzMt~s{GyJ^R$h7{O0g=Oce4tFkZ@=1q0_jUHNg6B>>lTl9D$6OuduZfvS`+eoLPeQIaz~}YKM|6r`!TZ(T&6%(4 z;lQ=eBr$o}3I%wup{mbpyuRQFRhTT3C+IYrvfa3GobiYhV9V_==tSy>tub$U+1lQx zm@CaP@ss=~aB9bjh-^FX3Vz9#QKt^YG5-y6-HifA-zpP33u+y7!qSQVMX1RKo&ym@;ufTlP#OWLxfBo?8|sAi_lucY0v%#aHt- zlvsdmC$hZ_OhVTL_lK_oTIQH9QB-{O9D z#~y{g2KU8^he#F+--gHR7);#Zu^6mXIcf3jxn{rm(jd!U#lLwW!aX+|39s&HxTG_6 z2_uQxk^va1qU{RN$u0Uh8dS%CMzCYiXf$RJ0a0Rp|wj-Q(rn&TD5_WA-n z9n78qHx<&xZHse+VS_3vV0d`=jsw>489h0sT+RM0rwKhdeKX-?x1{?5hMi=jOQZ%= zg4MOPOZ(r1a*pFHs!CGc8Jn1dq7pg)UNPrrnL|fQWU4{tq<=6LZJ9ltmq(0<`S_Rs z;g)o_U{FLxdy!bqv4ji(afe8Nq`b!6i@Gi-LXsT(G~ zWXQlFOuH%}-0XRaFIfR0JbWJKbI2_QA-vt)FajKN7vC++op(?(?F7R@p|c+t8%!z| z0T!}e{oqK?LiVAzA;jrMmO$i<{;aov@(~S6(Q`#>)#%g})&dty8pQ4+wes?c8`=l;ZIqC<9s2RQ`sCjq?qcFT61ACCe1T~>} zU^3M&7MW4{5KR~w+%eY!GXuG`Yc(~Q>JxC`EcSq14c{sv3_Kx&#}XE+v>eTBItJ#j z9-W1Oa% zYfQ!1R>RQHuy9l}bm7?^xUxdQq(2U_B`|mH+6AXc@CDQe{VYIZAw<+4q1yiANw6lN z^^N6fq0rUURSz{VMelJ)43-BEwt&RIJbYLNtQ0d&H^3_v2?K0|Bs62{9`9gO$7V7o zQLiF&xTAIj#)fO`8xcoClb?t{2)0qWk+rv+yu3!!A)fO%LM5u6i$RuaGxTLi7@EED8gb-{v-U{!qC(60%lkHQT;#39kGuvBD_Oh zKY_Rp{Ikf%gA6BOTa6rdpr$LjmrQm)2K)>TZpcQy_0l$Rg@!Jd>yI3OZh|4& zDCyA)0vPRCwo9K!KuTX0xI7 z-CMN)5T?R2?}b|uKIDKtiz;e>87I8%Q#RY?M)Z;1W(`ixh-W`0sf%5WU??%;4D8k4 zL#kLnDVJek6W;XC^cj+UmA6L>bym%jmM`*0ORBhJtkHWetFLcB*-A4;{7t1x}#& z1+-~Z=vCdw^O1oBZl(f>xD`o$3yOSqpRb&FIB1d?@|B1<8kwrl<%v$duB_` z1{~y6%z9d9n1k&A0?zRb|2S<5I%-k0wA4Ef<9U63$qU-m3%QbfD4cE5+;eY1Kt{kF zIaP}L_I@vGLp6N8#EMgi4eM#zw_;4BeaY3R1Qc0x-8}twQMMOHBuD_%%rNKcWewrA z`@TW?b|We0q`uBi{nqp|bqPOjuc*GjUTHpRB5_fC+Ix*S}__G_>AF;7BFAix+6Vv1GId5ma>T*ZpClqp9 z76bo#lBpps56K~V4x?kS6gWy!D-@j7P%A-Pic2~ELk5;gG22mV*`x#e*b=dN@AA3G z`^f)zcuOFU-}`z%3I1R_6gXy{4(i6aF56UsCID}P9mkftZOHvOq~Ky=MPD9ocdv9= zJDS{DIm(s;mvUt`*fjFzU^qIo@AxLa4Zx~m5nU=^-Dyk}dOAeeiUKk-e=_)DwujHbzqi_u5WCzAs?j0+}n zeY>&-pM#){I%6*$^k=gCQJsC6<=)G$D5hQUSShAFmAM4t3*+FRPu~qSMKVUr5@@~4nZm$JeWC!72@GlTZt4a@$UAgV%we9Kq^y$;gtcuEc znUP(4wilu?br5p6;zk4rxB*qHt-26qFa*wn@HtrS-KitV&DBs0`<%qWhT>(5-~oC5YqQ~vYsVauM6`3!L=FrZ|OXh+CQ#xnpx+2QfRff1C7zf9Bc z_&S^cu(5fJQj=3HX%c*u7wDzPjcEZ&2!bYqiIIXD_ztj6=o(lfAhUrrAlEr|iOxT! zx&}NHz{jjF5~rJp#LcFeG8Ot)e2{JDyRA_lm?x>?tyzUyu#4?L&?{igVThef z;Y3Nyh=r=&(>SxKhh1yH^dh7W#y@_qD{UsytBQrh*0S-#mZ;Z;{iSRe?UzyP_&=(I zM=mhlhwGRZS>=EwTCiFk!~5?vnO-#=0-=#4VZ?ZLRT>9hdBYSTFPjVPoVC6E3mI_m9lGRnheicL8pg-%@RAEg*KxecY%wlh!YP9t zJ7({8>iKN&hRJ+%fIeRe$ZWv+4m5%bI2TJdQ5-B^aCL+z7ZLpoYlKkYm&y86A%O|- zs}2nF020T8z#W@5H+A(%!XhF>{vup*_4v!)JT&0puN>xqNbEl$U(f`sSLlQNDc$~+ z3~8QGzo7$7=Z3Q;3gQo*`&ytwtVQT{qZ33E zuK>v>P}K%A z1#I#4Z14tA2__VhEE#7hPBGPHRTv)-pMuyQ8F- zrf^oW4%qDgZtL0L+;Cpc6&oLoJHQ>#FZ98-M`J+vS_**L{tL>qwr4 z?a}lWr|3dnfY;9HM~GVhr^^`MRckq_>&HkWTSHb=FcE0J9ZeiT5R4e&;^N~lIxo)x z3`t<;8c@w_b_Ke{$UjhI>kt_H5~8L1shwF+e(MLV_6?zsjc#`|N?4 z6Fz0%%w9bjNYYWr~ajc0Kmzj&IpoT2aB%e-L*`d%H#Se#=h+ zvL#E4FTL$qqw>CUe$+OCJ@=zZ)QZJ0eUj4qHS+QYkhlUJ!{$tB@vr0rhX;?wYfu+Y z+K^|iKv&Z6-^qGtxHC6XJgs!!(I>&$ANcmVNJjMKFj4lTJZa;8)t7VpQ_h5Me=G(?Rb%rAboja`2*smo+;k{B*m`Lx-|#%xI4~>I(8oW;elx(UCqic zeQs$WNrW%GKOdaCdi?hQ8wZ6Po(9_)dL2HT5iiw*3i-9;>Bg>wPP0!86&C_#>)zZu z=m0)_{VBl6oLVzi+ZDCu+W9-pCM_0Ikp6u5!Tz0QFma=jZ)9TI(2UoPnc)|1-LOGD z>NCd9USnoo8oUD2TU1cEH)o>83f)m(-jR*~OoS8vSvn;xrSE}i{+fWK#YX|&sNft1 zAh{}xe9N3b836(S0Cf9J*>5I7T}jEpO5MW=7)kVSN@A2H+=4Z@erJ1^APJ-?GcsR&^Yz?2x)!*;m*r z)w1Ujhe2AnD&CSxy1gD^AdZe#lo!@rmg#G#?NrpMIbyNkDF(lq%B|RSMd1Y7sdfcB zzZqzAKDK)QcSCb-4Wl|TOGE>6Y{Ng9;@)6yTl!60FntTg-v#fd6-k`j%mCKxV^du3 z7xH20-BnCcFunzI)ik}AEbSN#io3fuW_!VfIn}c=%=mi0iLBQq|!-rl3@5QPqdb4ICWK zIw7*4Lj3=a&e2yW#Za~<29|0g*yH;Z-E}XYcgy)d49yb_z+%NX5(oOWh&edW0|EvH z+zDs`9;b;s*1}PE0MpRiyH)w^aafjmE;>x-5~KY!Sg()&>?R1zNC?r$(`EnQ?N5dy zK;xrpaYvg2QHIK8p=qaBN0cH=2n&EXAz%-V5(hA&-|0JrgTgRJ>)g6J21j&_jLstE zmB?==2@0#Z#W|4JKpT-Xg9Ai38o(H(%)|ce9mM{;gXHr}o{WI+lLntc!-d0aj6gS> zIQ1tNtTM?hr{Xw>jyL_*xT*=T{>lxXsykb3A|~SqHM4JI^Kd5PZ|@u^poA${EP=VY zj+lTf>vyOgDe>O%t|wrZoF8AG($QNU!g;wmsU{eX&%e2uHDwm?9K_urTZ$W_U*17n zwgS@f%ro)kO-f3V4(3!XtYMBF;N-znI}2ciR1mOGMFQHL%f{e6;f)U*yErMJpf1iQ!i(+@d5r!(WWE_-awBN#JXih?(I#d#%n-qa}N(D=V5Uv@&E(()O2OPisQ1H1B z_>0zj+;$|>2Vdvc9Q*(g8d#i>ENl4cO?fAvj`ZUk;#)P%zKua+Ukn)`#@`Vyu$aCe z0oB#(&BlWm>)=0A>4|tBE47>ypK&gT|lmTXDxqhAl!iaj;ogt7)<&FXcd=JG=d>yKw6R2!Y;;P2DMT>L9a*XR^M^}Y_Cn`8s8|j_ynv%m1Dxa;Oa5Xk zp`;yZJ@GWgQ_Dd%_`^Sb%mJ!-?EB?o`9FVD{rso3&!3IR^>;eQhWX&*qxjhw-&FUT zn-RBE&tVjGw{tmsqia8YjFn6}Uof zV8;`I1hSH$*FC-3ETx-w+7XC%vW}wfqrZwkpdU3 zpLz4ebgrYHuU{s5ED2pW`Ymv4G)6~JZ-?#2UQGrm=H}+sB0VkJnPCL`uWMKGD6Ogr z)%%N?{u1In*uZd-%QH{4C1ZalM-nu}v?9uCLI0#bM(==itz92CiZsmPL%w|?1R{W% zuoPpzLU$aLNVKUA_2pm2MlA}PTvA4(4;z9=1r{M`UG!-bK_0k^_xB;rs~g{pDY|-k zeC)I9FJ6sLg;)_DFGYBQtKYoAVu6heksQFzqvAZ_Bl<7kdq=@9ez>l_#xb)c>1OO> zh!2n<0MS-6tLq0W!%N6C^~8yZTnk!va$!{VOpXT)H(;vWx8yw!A+m^-uoU6vFgl#} zC>0C|MAAUT382@4(}=IZgZJ7o9wBGKU|EsR`9)M{oS&R{pQbZs8y#wta|v;mPg=ACZ;Gj`>;OFox!<~uraw~KTN>? zPEB1YXRw$trxQScnxSDM2U`Yc%yo@_k(~ABt{S!LQ?50%Yo!C)&Q&O&|^@A@~W*CwAClaAKba?a*Z>Fp^%+Y=>fl%MVVG&*BWAWdM_q%kMxz zz=RF;9_bye(9oTWi<<>=dGzPN3k9(AbNS(RzrURKLu~n6ZsM{%d;0)ltxWG1QACX^ zzZB|a2mE`hLBcA`TFkTS6M7$LEIBsuaO+Me&=g(+@hrKs*rhYbq`xW0gAaEupi$(B z%d#>Y3dxn;k-fxi5`3eby3=ajehy@$jGg{s8zSCI%2sRSfGWl}ii{D%TU<9X)s~{?%Kd!$4Gf#MZVrg``o4;)-tCX?|0b|ZC3#$l9 zVKoD_ncPlmtliN;k!Dw>P)DziX7TR&KowV%E>s?p1N?Losb?!3`K{JvMd_F3Ne+ zNB4SqdZx9$eAC?7^R{D)+*fDD#~cDYuDgAk8aRt-`1s!U1jT$l`-4yt;xwnf24a_ESJoi}pB$&l;Hs4HH_e5D$)zoLsY5lRRAEE;zUSsg` z6`@lW;Q{Gz>I53NT`L-hC;u^{x?*fv*innAq~iyPk5i6)!twl?^Hvo=a{Q0H@wi#i zvKMIB9=5#@?B=GUjv(O$L?JR~Anip*hB($ zMU2FXXDD_hiaqylPUTM8Wy9y5I{*<+WF>a3lEu~lBWU8!~!V_5)9HJiWddA_8!&Wtj3?G*W;eR zxMKZSZ|G3bD&GlQBtqo|D-WcrA1~IA>J=XA0C6B-Q8%?Jy%&&jK~y*6BSz|c995WT zb}E1#kpqq3^U2&r?P&@-+95dZGP+^D(~Fo6@}nc)3J@;j_RuICCWS-!vwZz1rum)^ zTrEh;Kk{vB8i>VQZAXV}TTdssL8X6oDr_K_&KE9Up10d656ZI4#^>PI(pX;&iyKK> zoD$S(m!959a#bgsymO%RX2#7}&p+`=3Q_5q&zq0Y0l>6k9F9()8^|drm?0~HAUCi5 zD#tK^1{K$PX!YC!AjRrNyBRGR@m2+8x21a1A|lz2U-xN?u4q{qfN+A@9~F?}rF0Nn(nz6X8Wa4j}J8qIs- zQy{Ir*%zkTqH1+I2HpC#y~cUu?C2AU3k?nMe?HuaB`sIJfJSBN_{u- zh9yzGCu-F5mfRBNPM6^DFb3ZqTZEIivp;A6oDR$c_)#&QrMplAS5Rn1aS#2LGw;sPLF)iQ&1p(Q!$Lw)-?N4 z;_92h+|%Gu7LOygkck;_cN^6`XNK3KBVllnsXLlq&{R)`nBB&}f<_If>ZtQ`&O?iY zQO=(j#-Bed#+mi->YBJ2NdXP>_kE?wBsJTFwxfcU2EcGJT9~7Y;{yBkX{aDc?bPf` zlO*gBwAjdgBY?wi2D7`(=JtNvGnmw?%&eXr_KL0&dZe2}K=|NL$mQPM6iAi&IMo7Q znF5j4&JX#;XkhYl8eJN0{K17oZ97NznUa!%?LgfK1PdI8APLSKCs^RRl>BPN!DspX z5;b?R<>T&=aUMI>&X%FIA3Y4OU$;RPtbl~wmG%B8yN+XPY{;CHp0GAR)9{~GoD3;{ zch8AO+#fCgLwcs+ronHwoEci%Qf~0#l`c#I!N}sd91l5rV}k(DETk5(r7!yWMZYuz1 zMPAG3v8zl&nKx;0E*Kd_Tf5Wjh1-J28(Vs~Ic!IsMaMWqR4^z&nG_=rj?fbGwfLuC zkoF5X(DD?NN@~&5VB&RW6m9sc*0DeTmWxSVduV9dXJFcEs2W%0RLPgl zBNw;H?5|cMaLmYx0v6sA7IzBHZ7KhFn22jM7(u1ym)p8JLXk|t$E2>VtG+2ytlp}? zC)x@W2i=CKkdJ7we_e-s)1}#Gqs7g;mo%Ke*vC}m^^uZN5bBZN2a*IgND_s6VWxcuWmcnU`k)?4WTA;b)k%V^3I)6zb~?Z{7PE$?C{*p*F3>4j%_mxGYMYZ(NMc`&XfPwM2WjD_9&!ZFBJ$?`MNo7ZUQs1{S@yNHzEM5!VT@(MjYUUT1 z;CI4LV(Y{M;-_5MZyr_+&hmZfF8*5dv(gr&q`?jkZ>zRc)$gt`N^wf9-;$Pbxea7` z(wuvSrFuH8+0wY+7%YQdhz&qb=+GF<$WAFQ`M7kNJVpmM(tt|!-O{PRuy5bioB zN^6y(PFL2G_N`@|t@8Sndc-$hymG|D_F-s=Z|s}Hu?=kU`?x0?F$x;YI3MHY!aSIk zMK)@xggO|iSL%U}(Y`h5N}sTf!-&=0y-&u@w5B_3ZOwrSp;mELeb>M{UxSkMnpbtT zj0*ee+43J$PUdrI=r(7>-F&{aQm<7F6HAyc%3l;nGdH|&Nr1b3`{n+QYx$~9+!(Q;2g4D>vC(qAC8|>P33g89_kGL2M`+^coOV5d3QF2>0{O$9SuG1>= znh};|$=siE>PuCRp|=;P@(_z1*_lywP&=$oEp*=P$ge+ET%GaCEj}}Pp77PV+R_VI zt*X{~{nstR=T&{ra`(spr#{}&R-nqf@o1GtZ_{O4JH=J&)-Aw^aUk>HI!IK%^u?bs zZ0XulYhKB{!cbF4`(@^{Wcd#{&oWxl?l5Rj@ z&C!jwy?OMoX2cpO9Dd!u2Cl-CxV@9Vv*XNn`AkgvN&0!I$nSn2NAv7=|wc1p%0 zgQA2pD<^*GE4W8+8H?30aXV1EzoMPQpDRK=Mv|~c#nX=jeE{4>;m4FK{!-aP6?td` zz(GS;F+L0B)$L1O=dOx~BX2l`PF3gA?I@bD;hGCjjpVyp5q#bJPr!r%)<_%=Onwp^ z>oO0S&})F?=UCjvd3V-6&93yjZ+lA6rL4WN^tmEF%;){rw!W!XT#QVMMEdw7Lp}QF zO=6>wQ~qRR?5#}AY7Vj*SKY7@Ej5Id7b&|3o7*yCT23j4RlbaMGT@&KlEDgoo}!Z| z!-!IhG6+r)r)N(@G;gIlpxXkrS zG8_r!p1JOy5P#`|(^|3-dk4<|CaS_3PF^@_D=J!Z){w#sF@%@Ep~bwN0;;`l4+uuF zzMYm8V=5Vp)EzM%zOf!G6VR1Q;Oysw;y$s_661YN{*9^9LlIwjY(XA{GA=rxk5B{Du?;hxxtoqGR~*KSu}1q5V)iwlr+ zg#d$dRdsLi*~~E7y&G$jv4C!Lh=%6|D@{#JZl;>{M=)bH85=JgKw_<%2(Utm{J@xS z6A%O0ab`2KCR;;TeUq>qUzo4c5H0`dkvj6sdVwxxVT zWx_`KH$MHp>%9?qG}Ayhz4=1Od&TpYA7GTpxgrfQT&a$SMq$23UX<_2w<8;#mH$9z zLy)j5qI`rn76G`1UP$7EQ%Ci?JjM6huN_({$}FE%$VcXvfBZDK1=_(6fG`!7{>2ho z^?Xc(J|^`GhNe%@)|;2nY!{SGspzTP_nYAOduJdnHg@5Qx95b++j7rjW?ziyQ)^7A z{R$hTUYPlt(!CTjVt8+OcaghODCLe%xb zrDp)Dflvl?t+A_if2`*}*#4292nsLKB4s?skBf2-@b_}u+vju|pm{(5?YrMy>yuzv zOdBW2{Wy^5S>^%LkD)vW#0uWC_RUMD1FYj^OYi0+Zmf^a%F738bR zIOl3vWl8eUN{{wl(W@&h2K&BU>Z_4~nDc)esvBNF2GvS3sNS_~2Oh;V$>E(DZ7W)n zGUas;ClCl_u-s;Tq#Z8ru!It0j{rX_ONdhJ{&td>11#=3x}>&@Jo=`X{LuDhiRhM!jmMl?l?b@sIpKx za(eOJw`<^cZLcu(=}RqlqeLG3)=u?-FekOb#tr>FEFM-1;zpUms&~PWe;%}4OGsd( z+=dNp@wYWKQkLabcRyW_a!OqyDw|ds1eS{4pwDtQLkwI{CJ_RYA9B`HZQAV@pr%7b z!9CB&Rd<_oyI5;dNkEFbl}rR0iYt9)f7jkh8EwT1!0k`pBX{{aU22!Wld>AI0XgDqmL^6Ll<9GS_}{%D6g=0L|aU@)#mfomveC-W9ioH zXW0EL>O;@#5~~y@c6SvnQsdDl9sr&WI6T7F*b|cS;M~!Ljcn-Y@uyYhhKt8sjIB+y z>>l(gvE}#PuD!B;`Kf73w+hYLw@W+-GQLkA;>Us@aJq=)H(O0B0>TZoX@m@jPwT%t ze{cE(#8sULudm6zIJ#jwn);}U8;bEGqhs#^8<340veiL^YAIzg7?6PQ4SWHy=8@)l zgHU87-Icio=XoqzRBN0LE|M>M_C(_}gME$if-~}S;IDz2?5wz`Xng)h(hs3wDkLjS z(^$A<=TF}Ndqp|nYM98=`3oSYhX1PZ;aK6&BD1iav7YCxD(zI<&ROH(>db>986Kpl zilq+zUV0x?u2u^kQPgoT&oI02stPuq`62g>hp~i3LjS*)nS;B=D&1l4yB+zIDnBg3 z_8{E|AGmU@n%iD@GsRqSeEDW$mRVbS>(;H4B~kxg=9?>boEfh)J%bS~yWwe$-0VDa zLshwpn{UEl)v#4wRZiX)tZ4F=92#l~J$X4$^L$Lq*+$2QJeQ5!_x|4KubG4uKMyNz zVqTj?+jG)p9qrarUO$om`@(gJLLl1P+Y=l6J74i(cP~Oae=a<{CioXD@!9ZNy6ZLR zHN2lEp^S1}_PlKUx^<5xGvYVHJ%_?IDXjv+CEd)YAV4BC-~@&?n>|bgIj0n_{Pt_< za`?e-XZX6AO8O&T6%ZZUrf;a{DtzO2kmE?SrhCKGI1%KEIVQCSk5tXst?BVm5`#_KOV&h7U-a3K8uxjosP|$wrL5UPI>jApC1B_N-^X4Xu2$d zqC+lRxF8K#G^I3R;#o1DBkO>dGqX!tz6bAbGX5Q;n!f*2^XV>ZYRHlYG>!lyv*Fst zILzVWbB3QnOMr+YYe;qcdKQH?n722WJ2IZnqS}GqAZtw?_!TrIgS^M2#sS3%8NM_f zZ8_`BS}|TKNaYK3Gp|wMGZTdm$dwX7bG*;;b!#64troV-1+e%|a5Ptlk_MPYIhFw0 z?SEIKn{PFk+k&xk^F^7|r9f8{(oCgYl=mRNJ?rTpKw42uFQElzan5**;K^7G${Kld zjx-+eja#oty8%5`I?~-Vv3j=dR?Y{}h;(XQ*Yr_x*)la0Dr7(4CZeIc+WOhz8A39D z;M%K!ks~`U{9!U>G=%jw348JBHkMGm)BNY)4az&lkRbtHVQMTC!@l1?f*?5)BPh(E z-~3*_x_T`3;}}$&oR2+nEsj&N)T&kA^ZidZfCqe$+e4_C%&3t-Y#A4Efqz$8yz-); zI20B#fwjG}qnjp9mwt!!R4y)Bj}qr=yZ%RWkl)hFe7zF#L(HZ$9335hKZeW-N%YtD zIYwTc+RWj9=xg8sIPmk+Xn{xxIs@26(bE8v-kL77T_@3+n8Cm6ceTZP|5Sr{M}zqx z#`CH4_Or#C%=Iv5hLn+z^4mu=MkdeO??+*7h@SlS?j?$0y|cLJCw6w}zlwHBGeP@H z4?QrYtB41J@x4WIlk&NsC_zInU}NW5ON(6H`^h8*vGqot<{bbHjt z+LxSy^4G808o95}<_9AT9F@iFiRfbW_O`d{0gO*hURIHwgeAQA6n5vxr(ZoEVf=x@ zW_46WKr0Z6;&#$5ac{~DBFof`U#fQwJ{ zHD6J;tX8;Cb}h+KW#KIR4}Oe=fo;XCn>o#{O1){vM!AtBK}6p#Yg3JG;+ZJaUi13Y zt+ZTWgzN%Pt5hK>^0=;Q5*j z+!_!aiUE0zN?E}fk$qf?Ggn<-h?oldGFxnHG!MnPhUa3VX^OO}Il z!a_2hG8N8EUtMAwF7JFA&TFXhZKItXkD`uIQ3ptWF?q*_<~J65RbF^~IS40%$|scz zW&9~yMVU@NiwsS)LJ8E{Fpc-JkL06|InQ!;`5c*L%{scE@i0i&GhgPWfLxg5&j{2( z??gKvSWmimirgLoB;N++Hb(x(i_C0(cR&(va2NY7$uNg4w6<*v{$8LqZJH=mDckB% z=)k5OVrsiFjq)z{NnGVtvfzQsmCV(eCVG7v*!5SdQR6SQ%-C)uHYYS4?A@!?68BdI zYc9dO7k~3wiZ{r;AW$RH&BY!O5IC=~-R< z^i^&$5;ep3uJJGTja`VF(+$i7#nF8S%3iiPC^JGMSPY5*3(XZ-ydIU;Av3dtPc5s) z>-wZyvV3#qT9i`6b$O5PY0?6mQ{O_hPp*BPcSpPeG&+fLah27*xNmiNg zoCHnh-hX$J5uj|*uLQQ=Admq+?DN@rBXw>-(vkvM1HZWd(1@s2%f-OH^Z>kIi2DG- z)9~LfMAZYx{Wa^|3GPTmHO?zBY`21Jf*^3*q%ZP-8=fzs?Q>h#1s@zqH5cFBt|qeu z*Uvl2?IPuZULz*%(lEdHhSmD-cVKJj^5e0(3c0|LFcm5B(`I(7{nT8}D-Ld%Ygc9>vS)y;g^ zmT>0F8IvCqQO5qe?Qhnx4NbQT%@0iM;($PycApx3cz=6VFlJc>Z5yaenXXO3M+Ur~AQBQ+W!KrF%q%hkSON<{eo2#%kIOtMDgZRkNW7f$p zJ{Kb89J9_v|2Sr1Q3Gxw|4%R}(C_^Fb_p){m;@TErz1I{HsdkWu786nMh1cy4*_4x z_3>(QeW6X`eUwH2`AMh!zuu8ol-Z<{g%K)*R)k@t97$LQN&uC?*S1^$yixzVj^Ndp zYxCG>8g$ki=*Mv>utA^`FHZZ<#&~YF+GY=lc$|ZrM*MiSb7el246` zRYkxy^^A7PXm0e(F)jj@SyR6Yn__w2kzc5Gl~6|I+g=s+*+H^a`^&h5ZEKG$aK;q% z`tRV9LCvrwqBW?F)9(Q2eQsFE-L{d*AdB_E@|J`|b{NZ`rU~7bNrRnGs>%ZFzx1@B5 zhQqRMVN~|4`^DFN^PWuzs`czWs*+#1WqHY4q;8%e(hM|iT$N&P8%8K64qX97|6*lM z<>Co4w6l+gug!gj2d^C~VzQsrTTn0E^7W|7&ad>!?vD*{8I$^#Em@QF5ebQKGqJf9 z6v;>{6($iwg?PsBPMjH@JCmBm|MJb1O5xSN;f#Hm zw%srG?N$kK(5Bva_qAbfRpb$40(#}-j-C)(FoN3I5;AD>fFv7!*&Ts zzj|eV30~`x=}9rEr%wGLN#{7ur~51YTt=S3U0d-1{6~O+NDfXgXbdQ?2S4}|pKBYF z-Jl6`P=1ZNIt0mtrKsd?IkT7bF^7=%*WggLHs$4=$;*BEaAW|PL#xK^F%v5>r+ONaaW2(4l5={|ZaL41OTQB9RG_%)!}&N6>{Ze~sLf%As4tJR_In@HRNO15fUO z!oxdX5Um$6sRNgXQu9*Ex*dBH7527cH*UnC##MWM2Z*AJ=~nARms6p}%vA~%7b`{I z_SYE+AL=bWJ-8WQ6K>%?-deHXrzxVzM-4QBC!FEyIdSBE?W22*WF21&YPa*32SzzQ z_c}Ea!z(Ha%P8DEV0%r(!zr|P_}`P2Mt#Ma4e$@rtusaYkkV4S(2ZoNPrxWLH9B(g$=y z!I6=zMk&iZD}z3hzCT}g9fwSf1L>JhT{ZYHkHdp>o?t}xx0*mDmw|K+3@__mNv&EE zi1^WzHlA~I$b$hH@OZw<{Ik-3pnOfs|IVM_)A!p2d0N02bSKH1 zpeEXnT$2ojQd$drVFqZ!&*zQ*{gx1BeSh_KX(1rkq_o)~pZWnJATr*8ngcLwV3vCH zQRf4w3e+5aJr7&ly?iMYb2``mdv~9r%wXzY01^g#PJ+-gVI?Et{AM1+6XB>D1- ztKSlO;k~Dgv~f$nDfrx4RQ$GorJ zKdoa#suvnky2%Wzw}r_wu~8u+T!=7nNWQ$tLxv`xYIrsp1@aPB7rtWZJW+!!HT&lQ zP!eNsEO`#%8jhaeewhb$krw#&5(1X$@Sp~?3U$evLBRW;qNwb*0Y8;w^CV^Vu&TVS zi<{oN4Clz06C9{$oo$Tp5Q$Jh&VvsOP$;WaUPlIpHLX0VNxdy_6G@SUn4}atHz_e; z$G%2tV8S5JJ$=6v;%evW|4Ocr=k=zU7QypSMos?ri`>HOG zA-(+5mRtV*45t-1Z?$F*f5dp}Af_P*w%Tpb2nap{o}cC)X+@rZ+Kvzp)OPX{O8>i! z)F`bCnn~LZCOHueqjK~<@~eVe$iC2osX6k)AjK zb)X)x9)c{U@pgLPe{yn$zJx*bkrqQAE^S&{*iN=b^7u@2r*GN_g$R36Da3tQX5amyFtLd#aY&^~XUOgs0 z_w&;0mb2To+#-(<*rPCr-VZx3hRLJ2O-+xA3_OepmQ10rUJL2R#*1wUdByX z+=s@l;=l$oo(`dNoPeM9i=6)Vc0*oBa zz7FEmauwiq7Gsplgu#mj%I3{KrKT=Er@K~=(R(olw2JYsW?%>xO>aQ zG?su1FM$1UuK)mVVQt*%5PN@Y9(TjS68@@$u!nz% zAma#&OgP8ke?q0JKULZjw|WRC$b=%j*>1=kg9EVeJwbRy@F;I@08SR*A8^&!0|XF| z6wJta8m?LxIUXI27=x^j)Isnyiv8w|ANkrlvV0QRB8U)lKoW>;d1d(oAI3?7J97$h z&YnqTI-O>;bRC^uoFybYszb8%A>z?+Y3aUFF(}TRmSgixOkNx@5$#}aq{78*AKz+UER)b6 zG+xkG!M4@!ePXwbOoLGC!tgIRENt&}CS7z0-IBfbxf&#{4<#zxryeq^%J~~t@UC@D!Wk%F;2BpOvII;VJ*4U0ZDOroez z$#;=-v$T}-rI#*Z^`KvYjpIP**$e!RWF^^20AH%h`PgbALI&}O@xZ~Y7buS>o|?(}>G;<(o59lRH z3midydKZd>A1FAR)`M#X*7U&QuvN{I_v6)%Kab9;AF(!|B}&G1%*)$4x8%$DyO%=u zrTXk~kqI+eLrJrXxtxS+3AzhWKw^KdLLB-wF{`!3#R9PxUktFRx4pdh*DNzo2lx}j zCx*AZ{~caU{Nx~a{1Q4^r&t zY-8#`;nTq#ek@|jfeZCI{{A3APmwy}hw6|E$RMN(z&PeM^4E{XUw;(h;wc}_f9gu( zNm4=~4@!p7ndaZ|n3g!X{BF~9L8aaUAWE!pquCvC#g?(ZPDHMZcpDGcy2-SHXJtc( zVuTCs^m!UIY4h#?5$)N@{3r2!iziA08H4Xx95hPf82P)m!z!d>{MUrpk&Qs#J5x$I zK4Ngus-_w6zt8p3S$r!2@Qll#RVKC)P~{5s3mc8fnD2#14U--cI|%+%*=S4KHSh&|*?lLy>r27vQgTaNvfBW7CnU5N2F zzGBk$qm+A=BEgWVF(IF}(%9}pt9Hs0$g-e{G5B?U?J-pG2xa{K{n~q0@&JRHgNW%3 zTrx#uJhz0xpy!2lOtJjTxpO6883l+B=P;7$6?TAkuxUU&1-blIw0(V87#E$H5>9~< z2Kt7o*oF_8st2u64Ee^qx7w5S=<#E3cv6vVfj7vSRUBs@26IR~JI$+LY7MGKW*9Ej zX|D{l0!>DKz}K-MoWeFQ=Os-Mv-!OiJnHY)igIzJY$RRg(mW8`Jsfqs*-Ud7P?OX0 zH)|bu0_6zuT32FtbvG&sCLOoaqo4MGBqa`QC&nXs{N-8)P*oh%?hUM{yz%ZS8hu6A z4uebM7I)_4_jBVMu8}3PqaL20X9Tm+GJ+2Gfg-<0-wX72fWq8b7x77Q9t9 zfEjlZCmrkjUlgHpaN5NYL3SfDFn5AGKTgxn8`6tOTMeB@2_9~GYqocd{)S1Jt4Ui8 zq(Wy#934~eZoL!D=KnT>?CAhT1_gTAjlUkb`Lw#ZmY2WF=zhHhiB zhW?be-+`r&de!<{5Q<1*OoSeb3={LIt`UI)iY$?t zcc??LWqd^6jS|@(r#wKZzsLLGcOr@*uP-dI^|K-`44SJOe&1bbhF0{*?z4}d{AJ!v zG*M5EyT5^7ZHHmb@a1lz0w+U-Q4D~D`YlPM5#qDGaM!vZ*eQuuj3p90ykI9PKuU!? zNBX4FnAF1bj)j5z1seEo>D83kpwb{CK+>L}=HndG6|WjuXM4ri+XX7xqZ`=8HY1U@ z7|=3F+4AGhS_@ALlS`tDP!y9_FXzwR0KJARb^$Yp6SVO_QO0e{JynRu4w;xZO#b$P z1WF5&S}boKa2ecBKD2~Y0fE9WCC@-6&OxJw1DJ2DQ;?b$@}Pg^w;G7CUB|68Rk#Ht zpdP26EOfUcMT`o1SC!_Q43p7lB^O06jPp=>D_UO#&8*`Zf#-V+CdyktE`*EyEl?A+ z5ONZbb(NS4Y!Novf_oGQsnoS1Z-%~xlpQ3`fF#lB&D!_l0?J@{o5K%P8~SH*lT9*z zGJ^q`Zl$;R&MUQX9J3v$8?dN_!N72bOcvJrD{b4IMZm`jA7OjX{?)!aQ877P_St zR+3n9Cz{r#?yS0JU-|B+z1L$vI285QpAko$S%Dj8dw7o?{a0Gb>t4%LfvnqdPhlq{ry$BP}ZC1CgRm%7oqKdW5^|SPj z=h=*MgA?PhDi!o+6WItmiXynViWAKN3^$5^rg)LqbwK^cO-zRD%k6=UHPHYA55IBbe@`cDhM&w*_5#K|^Le5ink_`&BUqD2D15JMge6r(A*JWP8Ybo zt0+X(8^CXgK=qcXgUHlk8R?4+(gq=LNsR}#sj`MWHSxqpy+vX{BGdh`krPTV1Q$g) z_G4yW57$F;&;@*kc(?^|y3R2`d2L*+>`H9E^8bD{tx8lDAXW&7P~=sv(y3bfJ+p7kJK#I!8>@f@ana>nuU?T0ZFW}y@fyDrXl z7~VSe`@FE$kGV{YoNTkQ1ie4JP z3p|-v@VhM40K1Sai`-sf$D)l&uM2j~(rb;4KmD>oSHMr`AzQBZKD6^5w9TK5q-4H~o9>Q2KaD#}ScJB)mFe}{1nrs*_2)D=9%gUsD0s)65vKl@+Ln5ZI-L9o*V?Vu? z> zj>mzCw#^#_y%#$pE*yYMXxsLp)@X`90x5e2ask|Xhe3$WRg5-`kNX5GUZqXketc;t zZ-O5`-h-Bk7=w*i!v`KZw%rtOxLNe%{G3BE%SgAPN1@L~_+vQAi+@hw*?-cJa?gn*0=RIF~%DXn)jL$tdj& zgyv*#x1Mh4Zkc&efe+ymzn1Y~8WJVEB+q?js1wJF%7q-#i(((r3dp#H^iRwb- zcP)7lsIy-~^6P|zO?UzA_B`jpdR$+<`lLuWY;@stxYnH5JB+X(S%1C|7Y!kYs4Bad z|8W7z?6G#~5gNze6~jgLlbqA%KOWgFY(PTIJLUk z7Z+?t+A)A6pao(B#B_e+R3Nw#)v>vek95|beZ5kQh4>zh!G4|#`_dNS7n@&i#973L zD~fry@3f0fiS_7#w18*w`%`$)q@bo4AsxIFc^)L4XsP@PN81+jHIxpRkkl~i9U>uC#M&48DJPUMipoDV zEy{Kg6Q5DE@N0(4`7XX^8hYDIKYw=ZEgbADpwpsN)M#+Tb}6}_EOq7zdV8pmPq4=EHUtZ)l=Q+JZoLn$zYH2qEe8d_El(td$OIE_y-zz5gfCA&rJ ztw=fk@MemXM<_VAVd&C%BD+!tG(~!8RCv@-Q5M!iWowQzjx?^|zXa?Z!yZt8_XeGJ zC*9kR#?@`Ei_QQkTU=%b(VWxdnWU(UeA*F2na&)nxe3(@%JB>wnIANiH$Sh9%4h2y ztCT7QIl~OumOa{L#PF9R%U$S~i5wRXU`>HQmH*ftOg z0V=)b()xpwId=01w4@cA0SG+$?MSP-;I?rg~WgkmAruF=Nm3AP>kdbi+#7t22iUyMNNiuFM-s!;Phct2Z<151(I?%%-^$%*ej1_I|_+7iCH?PhhtqKD&nF z;9-(RPN*yG!$BG9K(On!ibkt2lgbWT|6TSn)jr3iy;>8wmXtO}q2b7F}2|=Z}1Y#k2zh58OBZk}> zTm|3;I6QPn^#yv*Rk2sXH=z$8wR7Hd7Y#{t*B>`-CM7?S_=EgtSTtq7V3NV7nnol# z#LX2*g;49J%-8+{O+_BFsGYza@kc3jvD*0{T3tdnf_e1Z{IKhzEl*w4P^tpwDTEW` z$II&upTw35GVrwbe}mY5cqm$UCt+Pi2GDeqMtkn>*eFUt8Fh1l0Fru;Y&7O5kwom( zzU^+gp30Swh%p0&``pNi-pev8rEIMR#_$vu_KsacxsTx+y$3z1b4CI3;kfP2n;p8( zV#jvr!i5#lm9}kJ=Lhz)PIO*E%YDRdWIOYI6*mHtRXsVL0qLJPqJ1-Or7NO1fFFU; zt~Uu!t)C`fm@42hN;5v(&WVIs|1SrukGEC^yYy9j`g9DPzk7cdD%cVnHaqfOMCD_^ z^pflQ^kqk>^;{n~!s_1LRKP?vddhdVfrg+(FqmoRDtBmb^?|Ig?^g4lQ33Z?YOBoD zUMM+RQ*Ce1VEukm5KnPg*-{J@n@I*04iZGVZ${2Wt=Lp%Tvmlh$oYXTCmkOmDT5tb z5vDPt;q7yzZ1aS~4;++HKpJb>c|@@Z5Hty+Mqt(e$IQQ{ts^(N5Q|?Yit}xwQ3i3d zLkC)CPq1M)cYs+d;VM!vKh?feK8v(k-H)?q`kuj`bTwzm=sVz-GVj&}^s(AFGCU*G=Pb2Cw47WGK|Kb)Mr-Qs_3pt7tz(CfDFtu5Ob_dUX1$ zQyliIAn>#UmCL-4nuQ<-!&9;7Vo}YlOv>s{I9XiR1m>lP!K`PUEDE38p9mXUQIPr2 zl1^fT0(7J~U4Y0v^XCUmRkEyjiC>NyjasK#_FHxp zt$P+1r;SsBGzs4znS+*(iu5NWOa!XMF0@r1Ac@RUH_@l^OPjvij0cvALMVLSK!+tc zw%|h01n%O`>f?Tenjh8?e^%5(f2!P@(c_WrByY~9(V@mU1ckv#?7=44gThA}GO2V2 zW7C9^{1TtP0`C@av$DGt^5_1@NzDF!M~=k<_J4lFHy4)|nOwZM`FU|a_dRTj+W^~o zfI@k1m)z}i15BCuwl#{P3?+;nvr5S+!oLOcnIU}uC;^8<9~XvU@r^vqw=8+=F)W7s z#VKH)9P2q_BvP%%oj%lbOnT5R67)<8{IrOB#Wv}+1W_g<+ay#~1S!F(_-5$x<@8JH z7#dTKq{nD?75N}jaZBF(q$;`P#2z2AQ8QTWoy@&+NwuaSi&9bRmNvo5FpeOY8qxtN~p0Wy#My6*FE8#+HsiuO6Hz>2ziMQZC)cXS`>8TTPWYyX=eSxDz|hW1I!VkC;UgUl(%(Gm}XR>5&0Ojf|FZc9Xjw z)&U4au##^Py~XHvIRUPN2N}{^ENF%@x;J9Uk_qyM9YGS`pHLsGIS}0M&N%cMP5}kz zbqP;&!6PLrGal4v3=dch=>iciXiCvKp_x=BBxifQx%a?0A>?+V!i@20EP_@ zG$(5R)8LEzi$ckO0@ZFwM8N&q z%d-TPA#5=)7)Oz&<1Y0GM`488`q$!K9~q2x^p7%&ty4l+k%UW)gmp&&6`~JUqLKxZ zL$2YvDXRGO2GQ>+0cT9GgR#-S1^T+_9p*P{MVr3B$#5Zix1geAagxjc@+;SI0+ zp#10hl7Iza< zMy5{1(yxHQ-eYlt;Zq=?POOfvZSeN)W`Ov%e3K2dN-)jv-6yhtqsciN%s)0zqSzk@0l%7!|=VxxYsuHHf;# z_yld4EI#|m*n@Vps_2BIz29{2=a_wx(DTXusdHqLHI>JdreVD-l)pU_RntrKYYGP< zsOJ7W%HNQO!IJI%D{oifke!}wU*vFF>#R3>_h6b*YFY$~! u{+j8U%J_+F3}MOG zzOU{z8;a^JY5}ZkSD_b?#!#ImqdQQ11Q^B2waGN8i#vBD_kj>``SR+4vxECi_8;;L zoMn~1p`pKzkmpoY2ag(pnMlw5O5i$}GeojrhGO{|bULICBc*W%iS|f5=gQUAGj<8B zpLFG~)Y_pburfi()N;C7Vl7yb_Eh(04)dZ9pA}ObCt&4xIyT=Q*e;||VYxq&K76w8 z^-&Jzanh=jBIqOdVD8QFjE~S9Z%9gr0(F_he$X~``!s!9;f4cQ2QUR52hxzX01ppi zOcV=U9bqU#0!5?jy4K+^)B+7{i~GboMVvxt z*+`rE+A=5;X=OTS%84NqF=Hf!WLUFy&ib#dfS;v?KW1H0M|jcE$2gvA5}BnngD$Z= zjXXbbuMOw)nz4tKy)-2xTb?W|;3prju-qpa>Np(krGiBpYIs27PKfR5v-?DI`r0 z#yU?6qtyWojwBq!_;qgaseJ+{Fa3NXmr`A8uD;QtB5k zms#SfDq~Wgmi&l8HCHN;gr%i-zdK7MLLj;}iDtV+^V-O}Fy=ae7~G`%g_(|a47t#5 z5)7NP&nUN^B324?G~=F@Cl5oi*3KL0<^RR4Sp&!%-lHE)<}nW?1A;D8gG)XN2oc67 zNZ}Xq75Y_wx%B4iD}B1Nu#`Zbd`s=aThGklP}3@L5F_wQGC4C3%%n_KK{7NPZl-$FMjhl#fv=9}D7Qc}O4 z#`wmpx*zLb5jrzK1in)$;9!#~k#t}YeSYI|)~MbvWcEN2ZFuxD3T9YS)EY<*OTMb8 z_r!&O59;kjm`@k3v*k1X^wWZR%+0?xN^r~;TUqC=$MyTp5)QO5>c?Q8?+^Z08| zytO%;b}60K3@_&s+#gisFgh5$H0FID+uAVu^%OMpcuvC)_a3exFkQS-I#g(6ricpE z6Z1NBcV4ga&JS>p=lS8nqRxyx?bAK$ z;kUIU6Ppy;vf(?8RUY3r;x!3&KfsI}`ZJ5W>DA5Z#h{`ZbX^(9`|6&kffb{ih zmb5U8Ad7eozKd(cS94D^cG({l;IPyfJX&>!MPrLigdW~CNAu^;_I!CCBx~HLR$l!v zys$8pPnTUJZw*QwfmX-~!OX9=W!v`R>Jwt&XE1$pf0UQzkv)_}Lkx<^dnAs^nAs$~ zlOL3G3%`fs74j=WRwn$@ew%;%)7$%+t_w|;=$&TkN5k0ApHQM!kz{)^mI3ozlbV|z z^!SV)u(6;v8`#DO`^5aGdp_H9+J%LNuA{&PG;lg^W_u+-D51T1bw*%<1}uC5bP|a9 z3>j!)yFJz52*8kbud?$Z*&(MFP_0uakilxkb{oD1W9jWl*Be-i1TrOy3u1d?MK5 z&!Is;ybLd9zi!A4ule;@^>v+a_FL7j-FPn<0M@AHBr+CoRx2W)0fvC7e~;=KGRpD$ z3LU?I|3U`*WM-D^GO;fQFqRX&?hb6j22+Ww;z_ZeYUW=}21tV*b`3)+^yuqmkMoY7 z;i&}%g$_+q3nAKDL@jh19N}_^Nl_oRsT!|$-!tV zCZL;0=pMG(|Fo@(?*T{YCi$0>TU2xJ>`Hxw_P*AB5V!*D&o_{6wUong138Un4Zc2^ z43aRmP~#E8o{q$MKdeo@;#G+10~Cf*r|MD#I#mIRH>RjH_LaS3J|H^+r`bQ};+p#t zhM4Cm^uT>+@|f4Il0p3%H+{(@U6srnY_gv}P*zmr0uA%o1E#gBp4Aisl%b}i;N5r+ zb4of~!V>TrtQKi^x=5i%)f5Bo_O?H{8pHMjDO^zXkZDk-nMW=MUisR!r;nvv^DqNC zQ?rPgepeeRsE&o?q$D!_8CziNYO#Hf@Bd{58spm0#fI#$BfOu*T|1)tvwJx_4Y%;$ zqVhaJPbEu@2|oWd2KqJce0E=XXLwI})4N9Hn9+%5Ymw~THy8sNi&}y^&!3lJFjW_d zdP4QV?8u>Qhdv!%X*qR838!6jT=omc$G;pLvK(f{TypIWUc5N=B|SSKZ$hFy$>B`? zScUimF#S6^@Eknx$T~~hvkPh;2TRL$_!JvTc@SL}DF5SSTLu^~R+O21aKBISxdNH8 zrpy4?iVYDF5g7n6wU(FyYfKWznlg@U%UZMoM>mEpuUVLwe!YJEI@d|5)zH}ZVTiJB zZ;oyntVTy^*xeRtlU)uQ{6&lV3Nkw4iqW58Y-(DMIduXYkp&Ir(UJ92#)&zv3x+RVv}|$FSaLZny<@)s zw11=OLocsUGYnhyvr=e5YDVXPvf+)PRFf00V8oI#H8BaP<6-pwA(7vn{3s-(A3)m- z5;#AUAC|8+1-!uSmItKvnGV}QZI7b>SD(2`UD!MGlvJB6U49R^6%!%_b5Z;inkb*EZ4C|aKOAYvt}I1W5C zBlF`I9o2U|InWu))Y2?{0CKbNy@&&fvdX@}VH?iX`?IH~-+eW$@9aCfZZY}lae#Zr z*F3>cvwgU>UC>gpa)YQTW|3lU8O?7*tQ({J2Xupsum6;|sNTuX;k~<&ayw2aJu#>()mPZZZgw;xsj2WV8QV0jILp`7UwGMdq^xPoG0tmwPk9CCg4Gjk- zjBQCefj`WiyKb%FApGwXt-=)~A4F>ATM$TRqnK6Us%E#(Z*2ctVM`4CCC0uSqPP*} zf#%HjM}XGnsDKd_!TaA@&8G1>A*Pbtcr@%}3>o5JnAqs!oGxNNhd!W$Q90m|Z|5&22M5_t*q%opCOc7sq_~PCWP!a9PBIe86kKj21&Ule z#f!ltxCG3DT{ysz1N8S&?gM`w4vV^Q)c`W5TEk&S!Lc<(+$o%f9otVpa?64DlLI`N z_%0;n&Gg5&hl0w8_4NiSWi=Q|AoXs2CA%xYDi7tNN(c!EsUjfv^!>NZgG;|1+Lacw zkF-k$!Gxj)X}9%ZNLt7AAvB13YrKKv^ju!_ZWh-x(X%%8Snsb}a4{ z7csLU%ZOml#3Gj54R8WGQ#f}`0&(xeVPB$d+j@skFd!fyDAy>!&-N`6c4m)ww=A?T z&bpH7dE~XJ^FF5v9C&;S<1eH-v3fp&-{6iB_!=UPAw-Sn`QJCuP?11~;(d<0eAso$ zAHTih?<11rNUU4I^`N3?IE~6KWv{qSskYBBgEBt5x5lMXPhI%pl7$Z11m- zn}rs46}`h5b7yDgmI<7ApS4N40hTr*ES`D{kij3+yO?EMFKM-55nsbfGxSmf1|d0r zd%~x`Kg#nU2Q494xK-s`&tIG$j*U{NifqRNL{4Jz%sO?mwXYR`9o~LCG3^A}Mt>}qn#!!~404^*38L{P2s#-!Ej{?S zCLhaT2_A%exb)7K=k}zmW8B?AZZR2AV#V&saRLr7Jr=#_4_c^P8u*wg#PS)NUMU$b zIsM$Hxo*)2+(0|n4Pg=Zr#OTCiKaQ>xr?vn!- zq{b`#)0cfW{06b59KlR{^@c5Ou=js9*$SgntitzcX?Ido8~?`z(8i-iC@*$W_an*4 zio|2yG2d?yw&1>F+vSG04M+m#9Fkf+Jy(;Q6WnuBC*k{Z`NYJ>4x(Zk>-W9IqC7pPKrg ztJ{-T5iDrEfN0|1A)(7@K6*mIr}v!qn)a>1zE1mRsc!%JWdE{4cJ$LwZ)$q_2_>bA zlgDpG_2yXp;64;&TpcVN-3#*8%3V9xzh}LjF zvs}x4Afp*WSp#O+f;8V+>e=Lckj#YzeC_j#&CMTPK{nF1+ZPtE4E5u_U6Fug-%uZYVeB2vxRN`2E(qec$BNYeM1V3_L0a6E3f;txXma^FrulX+4y}w z*z^##0FFkt^=l)~zT&_XB_;WbJ2$^XU}!>uHtb)2ZQM0*SVRQQ{)F1c>nyAzHc_d3 zr;5oK)4&MEik&baGYosF&&taB2B2#Wit|<&_b5aMq9WXyce}tyn`Q`WR^NB$*dAYQ zYpJ6c4rRepqm?^v?(I0tv9H`#0+iNw9Z@%M9q`1I z09scuQ@G!7Fzw0<*)m}O*=WP|XM`6J{&PbEQI^3}T(A|7%}C8f1wsXsIk4qyMjI%U z1TcZYLMC18fOv}K)v}xq>KnwY*|9_3nzZTQT%fx9P|DEoR(I*G#&@^!;_Ku0o>yKI zA-ZzU`U6f!4p`{+4cLLe-jK8Pu^5xeo9z>$%L3rw%%Z@Q>tFWC%Y@#cw(Xz71$hIS zKn`fat>^ei=mxGH8Ie10QE&H?Y=k!j%EONrgK-u~a}JpfuR2W{Qal5xRiF^q48#snqew4eZ&dsqULp8>D)gt`u`* zp6=$n6~hgb`9~Af?uzC!P6bOTOH+5)#oaU)#l}<1sr@~afUM0+N^$zNQk%5S(y z%e#K$xd7Ev>l(x&6)3o_*DVw(URK|EOxxZqWpig#Tr9aQJ|T_{Y^m-6lh{gJ>Mumi zga+FITh?1~`d7wAs_deZ{Ji9M?fcU|-9FEMY5QUq%Pn0g47n@mTw9ygn53#Co8N$dYvz ze5al(=di9q=+5V(`!g=)f5T!TK5J;)5D_Dvp@A_hv_JtsO!C@~Mm!ZCJvaIGsL>Ip zBbW5}_pdU^;>{F(;JxlUj>W3+gDKTn&%VdWKh13R^Sgx*u|7Jav8{5MKGA{t#F-v2 zO2J^dt+7sRLe=aW{fm11wi;E-^7NX;Vm4LeQ$28go7{AIKCraAkfi>?Y!Q7OIUs`(x9T}+vn8{x|db;G2kjOKWO|WFH>t8c2AEh_2>wra&PQxnFDRQyS+8$+$1^@L_qU`eAu(IUC|a0y`i1Ly z`H6e|w;ipm`}%DtkB>@@I#j>#T0itc!E1q*y~#R~&2&ROuAlV4xiHYN409Z<9#@fge0Zb!*;#m(o(60s9-@9pR**aA- zki0T$`W=RtR=fQzKTrLKvSfjQF?DLSJxLx*m9 z_S}}TT-}f_HC{;d?=5Ji=olu}vQB(C#Qk|AhOiVRweO8`h^QZ)I#KBb3<5lG zp7&+7?aG6A9x)k2=d@1BY3zclvQq8HEK9OoyDH{>g<9}}tv7QFPAPk$&x)aH&8!Vr z2hY+1zTTjzbQg%z4n4|FFL33DR}?(CfNfR3*!Ng;?E3)X&!Q{q2gR^2;$=WGE7W>Z zUdhKSXXgu6Rh8fiM*2!)C35akC>;psOi?+YRZ!d>6rtG$$9IF&4{%OtIG|Ovy`v?w z%5lf~q2OVkPr2N~TNy%w_%;c=s0@kVnG86#efx9CCDYkwQLaGfZx?PS_AxoyX%ReK zn+D6g<&|pXdVJf`8r3!ai<1O1_UDAg-rfn%Pm0SvDvgiFtklOX&-ItTCVe-~(MjG^Z*mKOtJU_8Hf-~MN(&NzjM$4S2W8QojQ z3qJ;Y@Q~pKBfE3ks;^qG)yGh>P8$>IN zLzLpMpy3^p@NK2Kx5Q|9-ve*seeOvE(D5s>MOp)k9x%|WR5FQBpY7<75o`TgG-J_31ne2=GMFlMG?lDyLJ|6fg z=G*f>XH30yl;JY$&VD7uXWOnsfnD#S9|ediY)iiJyZ5?kh2OTFpN}lt!{&Ty(9N}d zizKRxf)(vIIGS%r6Jr&@u?FP83NShI;yQkPJch$NcJk1p@?C>Rt8Gy}9=zX|iVKIPF{&7wGv@;$7>%9HuN~!+B z#TyBx*`mGEMrCV?&&o2m2>Hk>ZpQdrqjVBnGc7}= ziM0-8I%0yy)6&vNp)VZ%y1D)0=AZY>RriOCIE*&=O5F0x)BM5D8QNZy72F&8X(0wg z-ln#$Tu@d3)FV^S{jOS@Gyt2>^-G#k-sa#;Q1+ z{PYjoWJV&^MYt{x;fRKB|jlNzC|h5OO}>F z%HrpSM@z1PIa&wy98UXWbN%PTOXJVK97+4?5y6A?(3A4I(K0H2_*2s(Qo-v~_~kx^ zjS`O%jnAnYQUYw2Q89bI2dbm~Kg8AR<6QL9;!Y)JnIPi0J)z@bmV2-u{zCX+k?yJ@3vP6u18E>I+ zQ2oJQ`|VfR(dYWCLh>}d32j+5Uev+iB9pqpc5l3?jyMWmatr$MpLTvoigB^w1N$#4 z8j<2F9AbU+UGre>XM0I5-)I{+OFrbdQDNV81ZG1Qv>DSc`Wkb)f7-Xv>!Vqr`uKCa zrC3pcdkvMkNF$gWdy6|UU+I%`C!5ZHN4sB0NMGXOvMf2?)rVcRJdg3Vx8O>eA>H+eJHZ|K0Ks9lx+%D{ zq;f;25r8h{A|Yyqb`)5ga@H2)VBer4W2m+0Mbp;>5lwQM+B^V;+oaG^6#9>$fERY^4q_EjXO*7 z=AcXGDKcl-IAyzPK6`rqGRx6;^6rqin!LQaD^FCE#yW-NGA~rX#)wbnoIdww3Di_q zm!jWt>ap@K9$QQ|P5sQAt6+k|UM^@ummOCE7eEt8?*WJab0uqU2{4PA^q zsXjMTv`(w5XnG*>2*aYSwzZAMoY)`9f0Et>*=ivn5s_1T-J3IH8hub@UnD_%A$+PM zP&8SKv!BJJ9lysMlB%g|R*kVwo^0=TR8soZ(&7)n+Rj>yABPOt*lyig86d->Y|7Da zL6NG#=;^-dsUdkav&8|;6N_~04x@$fqe8+Oa}Iq~9A3wlKi}3k!06@FcT(We`gtQh zVzi#2;YT800@(*z)!k~QB(oG~BiclK#_Q2`JoDfdJfj&3R<;)r+R1_@8`?5J9)uVLE3?bMBFeWG~;LR>>XPzxUS`tl^~eR<2x}G%c9QTeF$P%f)8y z$jI;_N7jnGClr;e_p@mRh9?#kq9T6yaV^WM{ZYCxtizQ!16Tt}F^vK+^n(ytjR1>` zF?S+xQW6qx0mR!Ph53)0f)urt zE@#$uwt7v@y&3iOE1`R@9Ej4t{Aw-Jz~VShM~f&LWIrjkL#rW`lT!!>mAKC}o$axt zxOEC*+VG_~Qylox&(E)0!|t@qJSWZ2PB;Y?lR}=zxKO#A&S=9RnIsSq`(-E;oVRcl zvjQWkxjp-%tl(4d)5I*>!4;QZ3$k8&pP0Nl%`|@;wZCT_gnCsE`)(%(7C!6L9R0z}#h zpsEZ&OT9}C5sGwh<=HU=w3$Py;NFEq1Wv*IpmR8YxrK>ZC2yPExFVoKw}<;~Svf!E z+~B$XXY_1Dip~Czs?CRVN+*Y=Dx#<-hp1m&)@l^gIk@cR75o=hK<-{>_XF=4YV;Aj z02we8Z@}^gk?ftv0AhHF2n6cF+c$3gIv4?j^O0=N z$pgp+HGXn4yu}g4i>m$I&6N-w=FIYw{w=e9_Fg&l-1rNY{CXi;jpX#op(MK*{el5n zNtK5zLd%zZ!WEpm$jC^=ayz&;OllWK^6O(HPR|WP6j7rxq zwNQM*dYEm`IdzESA7s7O!^=l4Y<$Lc^YTTkc|_8~Ph&e_0e!!an1=!W{b-O{5;=QS zakHA^VCvEV=)Wb{b5B{kU3z+%o!N3mAA_Q>k4OjyXc!0UqY^Af>oGjYdK!#lM;liD8 ziF1q7udR(nEq<=tQrYpuZna>tZ#!Q`4e4xQu&Yest8!iv#ZkLL6xHsl77FO&anD#p3 z!9*-Ho|&v9IngIe?H|&kX-W+}_C!nyrvXUsB3@<4>17#u-=D>?aCJ_~y8jYM5P&ln zr7Ces={=97DjI3r5WiyX=LOvp4j+BW{8N0~+xDbLii?R6Y7}DhMk*msdsrjL-rhXSy7V34m1Xmk~bK9V9`>h;R_ zseagl29HY!d!fD(nj&j6cijlq%{fM2?1Pc^Oy;#)d4$)|T`fcZI@yhqinlZrwmM%T zShj|Lxt)!FHa-$m)gXVJz0^<{iz?*UqLoF{6vo>Nmx#UnQ$Q#_4Cj-mywbGLyJJOn zo(rbkS^hKk?1hu6S{%;MJ_bm_9;&tmTg8gN58w`Oppg1^mHzWT$O8W^V#cs({I=EHfXx9NALAABV? zt0S*3@4H?2?a+F$Jdqim0%DaO}LXtvjcLNW2(E_=9Kn zrqYw=&ILYDZ5EPuul@y@r{K15yJU2y2XsH(jrZz8XSq8ypoquSB)!=T6BV3N$C^^$ zg8G3ZKEhVl8)N;gCJHTihUv|rWB0aq!RYxy6C;m)Pfi=7yUdl@w;8)?kE`s;SAhH`%UTKpa2FgjwrAgRx@Nj90_CV*sNsDLoW+ z6a=4Duzp&~_ieQj}3K zc{mWie*OA;+wvjEFoD;#wA;(cwft^sYh6Bdk7{AxBRu^_3RiaEoom%5D5<>Bx>e&< zrr6`HtO6nlPRoDJL~FX_zkWV=SkXqOFqaeLNjvCE$-9VILI4T}f1Y2GDnmGG=OBOP! zmZV2jm%DZ0uR)*r_)C3XPwy|c@eZcJ-zHI+ zuvw%@NI<6uLo(7Sg5WoEK&*clj^_V&(fjW-q#Q~%f!jUx)O$lCqasu!BZTdS@z%Qf z@FV8jF#RaiKe}frCKtQ=|L;~?qv+@M^`f2<5_MgWAeKBBYiwVN0WDG|?J4o-z(&|u z%5Xt=tFVzu%@i&QxQcLgQ$WJ>@>dT|{H3(M>j1~OKc5qZBf{Y3-L0star~oH%}Qe1 zSkgNNKk#FU4?L**qBbe}t#Lp8K0Tc+P#(-4R87C8F|;GAh_FTa`ub2y;XJ7l;xotv z6HR-fzZOzvVaj;lVNj1K2j<$So=$-xi3$V=;>W>XSvXmqnIQd}ZQ+fyB4SAO!&W0( zUF*Q(@zJ{p4T$bNat^+ioef0;hNh-;rNUYTZv4jeb#>Zc!Acrb!$NI}QCes1#Q(Se ziM0ktPQoP+sN}9>1bo<3FxsO@tTt2S2JBz8D|*W{p@j2}PcIj48%tN1+A3cmu zH8RU@;ggVX;eUk%4kHu{|NFP1gLTjo4jOSvUPBoNKg1K%s1>xH1)K(!S1p8Dvc9_v z3fv;*MiW8fwDk1u=Z`c#5U+`cPQ_9riJPQnf$0x3D#r<18SZ0-kCGj0=6W#IFlxx5#1UYd{htJ$FdfCD(xZ0;NWQ=>w;K{Nf z0#wV@rX9fl%W___sW@b*xfccM@4N>Dm#ehz%9Shr`^Ct9*S~9X!~v~_qI3MG$pE0& z=vg{jI{I;yGwK)&aLrvfp-*BhXOnS38yiw77(60|*@bmz@eV}QqiAKTfm z%CC5ZdObWYs$wU^#l`;}LhLA+Iv>0FMKZwm1}&8~juE1(zaLd{;`ds~fY;)9ExaO% zFj5{l!febS^-L>xwWMJM8~?(_^YD*__hfpr@eyJ4J{UnjXZCU3xrjF?$YG0$2l)Td z_U6%4@9+EYR;QT?m6Rq8NK!(I=$I;!D3!TPDMJ)WCDn<{nc`3p(lLZcn~artN+M$t zDhf%aB0Sf<)j8kqZ#`@Mo`0UbKI?N&5?Gx96>db3}oa{yG`ASOKkLS~!zqUgN#k#0zEo;)lz+4yM z0OB=4+C|LUc{`LK=`%S0X)R0U3T4;xLGXKsFNIOeZk=60F=>eJaAoJc3Ko}3a32z2 zCtrO9J|WlHd5zNN?^7I`y5))qt_+!ykXtAV`ACAnAgS9qw!T3XF@5)s8uwy1m?r(Z zW1L^%tI=3~#Yc_`zP%sNOdgE_(*dyw8BVmeQb+OU&z;#;Nh4Nk>0 zhw1ZjAK|@b5H$%l=odlW1-a9U&~8 z7_z;lcpApU5s8T#e}XaSv?OX0W8@bLuTK`kZb-nu*>eBHX@MrMsBS~hj@j;wZry}^pS|G?v)qVK;m@s zRS+7$io!%m;E2xLz58r%KMHc~VwwN^c2?a|Fc~11x`OHWWXZGU^HRVO zS0V+m*=9XRO!UFd&tEz_#iIwuTjQ*>FK_m>uuofoMT;vbD4GSno;D0hG2ID}R$MD; z-;@5y}iB3EDsNsEBTdEtO}W)6aR(?u`9BcpsZDKsoyO2 zPr$0kBidR@)~8Mt!5F^pagq}U89_Za8U>Qo=Y8tpRCo*u!bhXbNZRyf{fp-~@fq1u zuerI!$kjhNBe49^_haO&j}MVYJZC(AMnE`;_5BsF{7-)?)G_p+;5PX_nB?q@eUq{r z$)p)9xsAlyp7=U%;^mAaSKLvWU{SsU6I!E;K(Hg)SXw~_K`WLF=Q7MY1oV=CxRC)n z6wr)+svCe`hwO@+@z1wa&v3cJ$6y69o#ov|sz%02Y!f7^SN7p^C!dCvk=nG3?D_4` zqZC1WkPImLB3yAeM9*e6e-EGdv4UjrbV*>g2Gf$;jXboFyz09Wt60N5mhlb<{8yNf z9fc)|l=Jw-$we6}5ZDa9{U{1q9iSxkT4Z4Jgmn#_z1o##PzMu zuoss7`Bi~zlxH<*Xf1@T1vf0smOm~B38B^IDC$$GGauPOJu9OXRb#rxu-6uP9uDPh zNcWT zZv~$}fc#o$^=V%8CKv+JwW>i31^{OCUM&(0;Qyda$+J$2dhlTHxaUgT_ko_vmO?uL z4^aWSZ?$2JFJ0I3mx5>kNE0w8r9FS$Vs=adL1h;7c-7Sc000D{yhoL?o+BgYfpY;! zvvY7zPUvvRv~9MpJ4QSfY$JGTY=8|eALC%bteM$HIsdR=Ns^bpJ}L1A8D&!$2MX_> zSVDP+%cRZHMX1!S7N?Fhc5JPGVi(o~2-6Uq#euv8!>k?J~#9j6;Omb_2>aT-`VWRqiyD2g`S)+8z z92C6^l>R($AfT0b&9cPNC==x9-P?}4IUP~9lwbeNBT~?{|8jS|xZ2eDp`q%9%uS7z zo;CVp_72+X&Kr%Gdo$!67tiDfbpd_P7|1Z=GF;oQ1<%5&g0)}6`7D@~4EZ04034vt zYONaqlRW}!0!93hUpd%|LbshaD*Y7UZQ@_}Lki`Hlsb$g4jc z4&$1Sns&#^M_yK|P37g(YZicUhv-3$wBwU=^K%nTjg9wiZz-2ys_l9~XXBuEYigDVCE?hV$jkOJvBm8giW+TOOo3fxB`B~>Y#zVOjVZsJ=_8>G5eOHjx(qgl7 z9>1TXWoQ`wWq#*Gz7Ly_lT@MP4WL!aonusYaD#)2N-jr`ZKn4f5gZ7yw5L5%vqJYaE-9DvwH`J zA@#+8J6V|X;|J)uK_l_Z%xUS}1sde*#nD}8mqFo zxjBWFpTB5od3O8u?RNz|YMN9ZttI|-6qC6K8ll;SB9_=GK}!Vl0ME{bMV^5j#pw35 zw0^>)PT|reS&@VUu+&z6CT6Yvt*ATu&7SE3tztV2@& zHy91H>R#~%lLIx2Uj0`11?3_90s!c?2DkW_^2N6h_pFoPD)-f`rlG+dlzwVn(hkJN zd0?oFWmf3U1lE7_v`BPYEZgU)d*$}Ne*y!%cc%lTn`L|pobX`dIFOuC8hT~sutL$% z_a(Mo+bEs%_cqDRH?@G01^eipIuW`k=fl2_?wfSc>b%2{P^IJmVlF)**IabnEtayj z!@cD!_&ZD&EXnA-S(jhYuXb;;yU<>^CsHz$Z|n3e{99q~K- zaF_Kw+lA*%zU0>QC7f77K4oC6{+xj;04AuYV#UPUreQ63UA z@bqo8z$K->z+Kz5_E=jmu#C7BEn>N!I&?pU30`Rj%Y)B$d|MTV3dHOK>@84m4t}Ob6tqxiD6XW-@nE

zOkLy&V3pniMJ2kS6pMT}l*ajUSHPVzq zN)H}CkUoQPqc~=0+3^hCS!hq7vQ}Z?aIyVZVV07bJm;&6=sW0|$xx5*aZuOMA-2ts z`~GLm#aQybCL<~`LpB5-nT-Kcz^AByeS?Fqi(YJcHyG>;GT>J+fZ-sX zA*|#J3=Uy&M4z_VTZ0;m7ck)R!ZqTh7C9-Y2**XfOmKj8aGc)-Xp6EYz>(q4vV=or z`scX#jX%z!P>e33emRzV^l8nc4SclF5`MAFRGv4wIyzsGf7ME79o3S!nrDXoVUplc zyNVFzH5&@K{q*RTS)bld5JXLj2>KrQlcm2u50Nf8XG8`yW4()=O&MRW+~)0F8~Jv( z?z8NK1P%;Iri3AW3~;G{-YL{VlwN@*r0BW?*I+VwA9569cQ(XXpYabDr$%nU89sc@ z0!^)(=$NdXdS;t&GBhxp-BlgI6n(s z{Tm=W^0gsRG>wGF8w<8ehAz7lZPDlM)L77&vE0A`@+JaPVp=?8I(V&iRf`K*;jlGE zpo;D*nIj?+v+1rXN3@P|$tu>e>t?^}oj$s53Y?s2?ULg>8X# zfbu7wIiY=Ev!ryuzkE)coEZR=KjJUbY$sY~&RO_t@Qq;cFvhDJ%eh7A)Dsvbr&+`VKp@@WL3@ zhs2c^cGw<*ZyU&{C53w0Rj{h*Yj%dWJp#pjlY)>H;0r> z(F|42|J2HF^Fq{oW|C=CRk!?xY*~@musIN5E#n6I9_+JG&wo&rp7gJM=x%-Mg zt71ZHin!GuivNxPhMv^c9{SBK5RjGxVT0S&-p+2ZwWp*HLn8T;o4S#qU$O|g8X~eXEwDyG92vnZ$B2CJ<4*G4 zlRWj-3u`T7=EB#jCuWg{K5XoL(EAUsUkpeZMcJbUC;`q7W+vzRp!RM3YX|C77osB6 z*e^pV1T$=v3vD|Bs)A7d8c)^C6!8kvTc`xfFjM5*jxa&!sK@v!TSrh=t_OsC7uVBRfZz)9F$81sZz)?N&1dMKb{y2QWIno3&!-GNScw-8LmkQ61GOMZfT?_*CG|gN6WReym zBWLq&C(1r%k(I~QOx{saXP{3?HLm-0qfS%+===@vH!qJMTYC!60l7cENp~-9A?U`O zX2Jh@&-VHJVrk^p2#1)~-pmWT#jt z%L`}}Fp>|3v%7yNdbyQbz(-zV+AtRHcRK^0lIecOq@U#sY{^(T%9^w^QgNAB%Fl#n_zI6Jv zkBQC5%R=g5RS)-DpzJ>62?{Q7z1tZ z5n1S6@gsW=h${x3uq6LMIQ~R=m?zVigEBW@(d|1laGbvsCw3YcG9jR8fkC0;uUU6Y zuKThsXh=00r&_tkOgusvwDxB!h8zU*w?gwS_Os>)f9XY-OL>6e`ucT5R8-#A1I524 z<>hyyqNYMUsZoZVG4MXfbKC{ldfDivDd$Ke?ah?5rslfMoPK-M5J^p3YSLml$WHDn zF@`X3+H_Eh>V`$@_&@JE_$(XH90&;o1kD8p2PgjRR(y|a=wQt{xc>u4KH#8FZgFGJ zuS}g0nS)LXn*P0*6-4eeVWaRk0#0*LStrBie^HaW;6?0}^QBwoDSnP;LX>P%K`IFNWzBmcYzD>C&&A@d44t=@$la~$?({tM0 zS+6y_y6bB{*%`qujRyZ>3$c^e2xCS^D@;uaI*9uyFehKzjEb1Jl892-$NJa>06Yg9 zp|6k1k;7&MtUUx*V)8`}4BpE|xi|;^pm(%Ds)|yusoy-!wUh5vx~8u%wXZNoQ8D;A z>uunWk5rn6F{Wh6@$V-QTj#J>8ioWg@Du~0sj-gWT7NOPq{sBmTOsT9;>C-9KT6V6VJX#<*x?Jq#c##iDTn7uwby6IEGePN%UjMyaeP_y(MSYpFE^)6%^V2f_=L#>-vg_EVH6r<6n1mYs$fYvE~V^;pl!b#5ikEc{fb4($`?`f z5LWX4$DAK2;oR*yD+k`fF$ci>QjaYuzE+dWxM#oW1Sg@W-f)bKv7u(&a|Y8_&|?Z_ z?7*__HF1JpjoJ~52K$P;Z6}pre~&Q)2&`B_GZLW+d1^zVOYHN%hxbOiz+@yJd^S8=p<)G~w52AfyB#H)K7=iMijZuNrSysyf9 zAALlO{@Ms*a)}1Uj)8{$_BE6J%?XcRi*n2bXdK}3IuV{NeIp<;qpoP;VDF=+n^w-g z%2lhu+wiBa)qHkOF%|iD_BZEjZ1q?d8dDYjzrzZCm)l5Z2{tTB0{{QOav4Pcm=_Y#p1a+tw+0zk3I!zb}K!B7Q#;@K#yQH|-?ZQj;Q^LQ>0Ed?~JtouV@+}^g5##6Iq8ECaI5REk&5i$`P}r$j<{~O&Uq(~ea_f8Ht2EDY;>wkiRIku zQ6{#eMuro-*S2UQDl_VG3t4TByn-`%xr z$9ZvdfqY}yn-=GTGI(ojVRpUozQQi==1XQJiH^ym&n=xp@9(Ktm+Bf?$JZt!_-K0Z zTb@sv{YI574rR3m!_69=d~}!f*O*%F)Bh^@<1Dcjfd`K6?mL`st-WwN*lTmlgP!Td zNseOp@vx@*Diu@Thvl->W+{$N@jo-pYabJ2m+#nqLPGs#oppPb-2=y~ z%ZeO79qP}&ps1{z`NB#cO2=6%*r6nbq4g)bP}#eeU0t>%+XCH>&3WFsi9xX!u3K}_ zTL~_Z$NQNKozJd{e*%q>ClHjQ6#Ti_=nsIJcAGkeMAM#FWa1+@O?2qys11|p&<=7N_l<>o3i zu&NKtw^hHsE#+6ng`7h2i9gJ~=hz2GHqt7S*m252ZsHrmXjP7A%vpm0I zr@u>z&$aA>|B(1`B@GPi)K=W}h`fulnBL|g%nz#SMgTfZJ(A7g=K>5iU_*9a{**v&f`+MM$JPsw z38O^tfS|O&^@B@3^&mh{ucMtXdU}}+2;EEjY$X?UzT0BqBO-}m7*S~M`-$IxS5=95 zhb8|FFH5z-5IoVCOfOD6-2%y$e8l`ljA0*)o764zQ!8{gG?Vn(RhXluykoj%?njB> z;&zN*1`u|p-Osh=MFj%PR3!U!oMgj4H;72HnXfC5RX9-Ad*5mrAAMLs=9@)fFu zM`jU8R8V(SX2Ef!e($xrW_3hr12>O%hcb z9IbE7mJoFi$?xtnt9z1A29^pfpf{nUtwW5P8ZQg@mCmFj00c$~ z%U-?Ab8>D0sgZ&(7?p*l%!kB3;efWEEA`4Z$!N3%SSHm8e~2&i+x^G#8@n3+0K1RZ zFq3;m=7Zs7450=i_h%WPvte5F75+=gqz53AyQ^2PnhkPe0Qq|1sv+GC?*97yM(Sc_ zqt)UZ5&LJtBlWX`g@{D2X8r|*+Mziv@>TOTo9+n?6-e|Au)pmtyv*cM@yx{*VGWlc zQo<6_bJCz&OT}R+JvH3DhSFxLcoyEWR4VNVoii};FSkx}52r(;2%G=neb0Q?h{@eL%u!?*mtT2#)OGC2Y z{!T04*oGttdsVU3TefiLxpHK_@4bUW6Ds53A{AwIL+0DeMy8b~=W1oeB-mFIV9vM< zpJ(AOVM8W2O?I`g!!=3sX+%rJ~ zHaM+vQVj!hdH~=Q8|Vs$rf& z;Im-ZeEX}BGy_KKGr$&|%79L$#6vlu9{L#$=Z{vVleb~#>64!w#JoE&w-%G=ntfJD zgA#Y%#r_la9JkF`qQp_%zCg+St+0NbJx!$;o6daPi+WdF_$lSXA`|!@k=Z?V+eLp! zL+y+-E!cIr&bWbTm(&-bnzp!MJnZ^kxnIBnu$A7I46=#SMx&rh@H8iWESdTb^rj7* z9D`XL^1c^0f_lp}Hi4Q1(v??V`_Ue!H;w42v^Tw9a}w+KC#V}r zP3LrZCoAd+}4_K;GlFWzu0F5<6=iP{Y?CZ%c8 zW!DQ%TMr{HMr_L#UH>QA*rOliE?<+Fo;^O&B|36JZsJF!hNk9KJPfU*7^S<7HV)Xo zQH&Lg^2d`JR*28U&?3EaVJ=4E9u^l6>q()5i^il=NLtLej7cA6=4sytHP6E)dhvEU zL2wK6%$NRKhX*ShNDJWIZf8EwrokU+Vm?%n2j;66X6|h8D&E_jC(d>h^I*mjYiTi~ z{F&~Y0mAcVzGDTVy#suUwJM|8n!<8WCZPDs1F9BvxJdNK!*~93h7zvSE62qxNz50> z@I^xO;_>pP(#c+->I2pPODZ+o-ApWo7Jgw+DcJ_OeI9`1{f7=M%5HJQ8Y{cW4sDZ2 zh5)EY9B8w3xTfy=r@AJ)*!T`oiZc?YGPc`w+LW|ZmX+m^l>m9_V#dw(^6TY#@)1RB zJ2`j05ix~!=qqyGRxrLoqs40N`$02UJ8-IGex^5^Fxr+QJKD)Kf~9oMRU6O5np)f zX0kD0FfEDQ{jziOJ~QyA(m#e;tl70Uv0iDY&~QtJFP70aUsu)=^%eAc^S<0=?uvKg zP7cf-J-Bjc+smKx1l|6-!*8FH=H*XO@l3Rtahd#Zb4QzdLD1Y52;Cr(@v4Lm>wbH9 zu$An1X?;lT>@B{y|2UA_feGxL8-I*~xA+V<%=Ej*bh8j44YjQ}XeP2`J}i=P$LIcu zsu?%#mrj*7k~4q!tyVHn$2z@rI#s|ZxxJYQhPh#BH-A}b+{1i0yR{NIiA4}997PMP zA|PU5gN%clXsB_y@vjl7%pbGZOAVvT%z*?{(YvWQ= z#jUMk`)&ui32Jlc*yO_e`d!~Sn~&wZS-5xbyeAnQS~-6wo;%ESn-4#z*9|8I5pHA_ zufU3X_$%TD;q#_8)Q2p3WjVd?l@mYJ*}*wr0E45%=kFI~F)gGhqKX`zpDy$*Fj+x< zlzj88a4zLVOl3fqU}4LpB9VQ5km9J>t#FiXiu{Xyq4trr>$u$W_20a%x%m4)(KT%X zae*x6sAVDpve;)PXv$_VXf$6H-%B=VFeO}$^XoSL7TN-a_?z&o*csctAWjy!u2PJZ z7$$+R@u0PXl3y?Nc^Wb%QzbzL2p-qzeg`UaJu*@*J6mmu3^Ko{^bEvy(0GphMq5r= zQH2PDT!p11yC@Tin0EH*Ii*ohT66{;zARIc`9lJP2yDYjAdp4M!R_MgK$j9iXKuW` zaS{8Yt1LQpW0Iz@@Q2l9d`ii^9BCtrbcfNVD1?*<%XI)XZEdxlka}C#@01={A za3L^^mRKyI`S4(mIvj5iIvt*~NSMni8Sm=qf`1uOyD`LdL2!il4{07QcSUd{Ip!pPf8P6Ahlymvlz@%#*(+fpqzjptZBWq+TSwR-wP3n{@dT&wrsVjx0570RX8^| zGF=x+Bt1d(m#WTdAD5Uo7Y_5;N;(-eS*Z3I9L7_4N5RY76+X{csUmZMZTEJ*xz+YN z9VGn(_~xoM@Q4ApInuAV!!KDhUrH3S1IKfE8Lwsf!r~JXgFs^B>nM5PnDU72n?+dh z+K-#eikEjp1DR+SgJv>%AHL1{SL1%cHKvC3j@C^FE3hf^L8*FD>JXfA+4bv0Gj{lE z^((fB4Y}OuV8-qTN~Bbn^RWMonhh`0iSd&|$T`pZ=9lT4($Ig^Ko z&9K=o=JzXBO1lp0KR5(zzjJ>M*Jbk;s)GyJr_)`V zq)K|rXPqst#W|ql8+lfW>a`C+TJWuD-6c1oA)fm^`y(=cO1l=|=zuC=Ebi2Xk;>;B z-w=+=HI`Q&SVoH4{xn?Q4h9~_ihWA_oR-MD1#{teYDKG!qGA7satEQ58`{ZZrdfv? z8m`q3r)VE~ofR~&w%@5JH29n$f7Anv&e$c5M+3DEGoDBoI7sgNlH)7!LbWJVz(<7F z$-OV3d{}?`>#TaGV?|3C#qo|MQZHVaZnz0pXy}N_M=8-}oMi{X^zJlCYV{M3WcM1Q z;_bF=`DSAmQf@q|FF26t&B6m6SXVP(TTn{Zn_8siR<-4(9 z_&^FKxWL2Uik0hkMNPgxc=#m^P;-0@2>LApnuui){F&hUV z?gUoGqOn6h-=}-9x5WwY7A4*}XpA&#S=a)~_ury=_gJ2*{^`th@gLb9 zejr3D3>r;`Zu}U)BK0iiEnBwS%Cb7ET5oUN)UA?puFptj;%7fa25dT6BM8RUKu^=w zk*_ti?{Fit3>_$59CQcsZ)Z&|zFxOb(1UBoCiOepT|lLX#FeXR>Y2Z`bW+XZ%7j3` z2>tiJo8G~+GadW*cAT$y34~wj#0sPNoDzp0#lOIOrteYs7&~Rb+9GBN$UP-0sFc=8 zKkx_2K{7;)hAH~@we5z57d&r+dB+CW_#Ax4Y!K$Hd)rIrFF4p0y!HW^)AQA2F|HA3 zA@h&j_B*yb7dScf=T@MS0!~cH%4l=||Gq=Z`W!6vbaFelk{E{K|%r z%29j1GPfiXjFMJ(E)tPHc5D?zrp6m<2$KRN0-%g56T5-pilE(-gR2@n9FgmB7q*?4 zjSy)>I}qeg?MJ6Z#8HdEZhTWBY{zj@V~4d;8hf25F8oBPkha}5I)BF_7~!w|Fzbb) zw_2$9EFeZo1C@9j&{Gku*6P^$$$m^l0$%|i!IgvR;kjFqV!V0Dh|8AuRU!U6;f=H}C|C&DetDgjR+5E{Id}Y7GYB`r`a5(1c zfBtzT!U`@@YL^0jjgex6C@>X}42KoKS3s$_nvr%zyCkZW`lc>axetGjOXdt9Tk5WP4gnc}IiREPi@hHey^ z1Zi6W6?Bz@3WCgTB7Y5y0#TZ*->A6B=B)AtY#2rj6jLrSAML>A$%EKz+8PQrsCDg@=S}MaO%2 zvBOd(b_`606Jz*FRW8NcV#yLqShetmK+Jblh1>N>1YdQTEvOY%_@{ltedQO@P zi-;%*E=XY=OcZD%WNFY@{m(q>Cm$A}ieC+JA2B;TN1*^TiKvj#FlLF>b{Z z7(?I?YF^eNt{4w+T_nCZ0pD5vl-rSl;P~H;=mDDX{bzrrhzh>-=_7i*#h_7@mX#rv zLj5klISQYk+8;0uh|bGq4UR&+@D4_DH*W{QkR;m)$xG;TQX{M&+uOgO;J-iNLff!x zc;!n_woIt3RN0#QqvDiJcl~C{6eDwK4G?}Qz!$N;JCXMaY(I9<@DtGIY4NFwZ^meH zw@=|2C2&pfX0Pe`E9=3PMAsbE+MDY4$c^*HiP6F1<@O4sMG93xWk-)^UL}hZi!?kG zkq{SHI)vk)L@3Lm^B`LRSS|6{tEd>r1QE*NSC{ zzG1gKPR@HUfLLJ@bNSpJJa~{Eegl9?TpY9W%3IQilCl{X?#k7x70mQN4@<4B;Y*Hv zvWC-7i!Lj(3NTdq^*0xR#Y$ZmdVry=o8U5v9$>u0>bTDNZG!Gr2IiwPLSGw#+e{a#wdaqfd!(-=a-ZQylc+~=5mdF&C$EwQ8WS%xM#1`WNY(q{1q3DX#G z-D$QnyjpHNJkpi43;chE;^=u;?`*bhQ!IPLcG@Bg_DKxDKf6jVD48+qW!Xk+;Wxm< zF3liZ6*8Em)ng^)>*}8*7MCw_S7b0iuZ&4dlx#K>gL`~SS;=BmaGF)OIU6RPhlR^= zBxy%zJApyLaJ%#nF;Yv%8n6*W1)S|$IN0A&xyv~RE<)x#@Ot_a)M+*b9?_@xJ?arD zR$Fa66D2X8%aex+>vN~>EX{d%X2+s#J)$iz7>1XALs%~J+b>7sq`Liv88-O`4?3ri&w?gO+ zIodxt&U`(%MD;P#5);U4iCqboHkfu;%7a~c*|jgVxll9ZWEk*((weK8%`SPz0HbLy z`|G96d>h01>-xh=xN(WInI4yowE@r^VkwxLw7`Ovnr<#XY@{r|OM~QxS|lBa8k@M6J;4p|88=21 zT$Nk*ccdV+=HB~`hAM1Wf3GxW_Y5)F1#7lR1*OdMiSAyF5oP761OgCFoH#Ksg@a)Z zyCqt9y82<%!+a5Joi5rPC2=EK51WX}cM!RJK=De~OI+7`wm}nn5>7hS!25E0D5eRT z8<_pdDYJ`KRC(28%e>)c=MGz;Ad zvNfH7IiH_H{%*9$U3&1Yj&}Y_?s~?F;8J=b>>;q zh16?DY6AV#b}Q@Kq6_G{+-->g7xra3k(7~L-C*L=zwuE2L9GHn)3=%r11w5iSFkY# z9Dccx2_vHwx|x7;=GWD&82>sWYhrwqB8y(aOk&RXE%1>5d7gAoW?-vj_`ZDdFxjMr z28Xzz*Mc@gehDft=J4sqE!)t5$yG0witl)4Hy?dE>HA?;^u%htS3fECvBX7TwIo|u zwc+C(PZF9f3~-{c(A%PFG91vW(Q^oGLMSkz$OT5!nAlAyoD^$%&~Xco#4bwyg%UHA zZ)tib!KA+TZmTgTPVjK*JGI10hSmjoE{q&Jf_&fW;_&Lk%=6 zK@kzFq24r*e$V#~fp&{tJ~A7C8c%lz@O+|wf<2FN|MmM`HGSDgmFG%v;c=)||IEKqkIsqU;K!4eqN5OU1I zpu~d-oA_3&pvC3oWCP_6pwQrJ=@3RA4BWl|*^E4Un?cSE{DQ^L1%Kns%i3ILXS=T2 z1f_W^1^6@c%6EAG986%E)|t(oYfh?&W_ydS>ON#NCP}0<_6DErEqWhTSJ4 zb73K&KUdCYRb`J40n;R*AmWT*WW4B|kMx(PB(;xE%2@)zE7|hs)~rYZRLn0XI)7%q zzTN9+RUU|Aim5UQCNfis2wF#!&Ag3d&wA*P8I_?YE2u8OwP{BmKzBQs+*dFxA%8I2 z+|hdD8=ycy$dXc$18`{#7aN17NEwO!7>MAuz$nudG)jf0dwT-j+1PCJbnEt9=;3B* z1;7btkXUMher7GzFM)IE`e76m1-<1g^-g>JU8sDL?BE(E7SZ=cR9JWpfYmgVkQ)80 z`$`0bDwI~95j`jlaBE(t$|2@)Tv8Gy`u>dqxF_7)xE{e`3j(XBFCCCOxKdiWi9T%w z5uQ@AQM%!VQ_$7W@S|C2%ws6XDrW&FO>r+gBMTEmG$pLUcm>^GL)ZeA4DY}F?b~T+ z?Vr>8&?|5QcHNyAw?P0xbu+saE*46YEP5Au?Pg-9kHSsx5*($i1HCOR^p{2G6R6Arodmqf zmxl}uZ-5AYgvvd7ndm|>2gMbK6~Y;8D+lq3gg3%@r*tvG;1aXGsVFp2pdEHC(7#wO zzYS=|ZPVsv!%t;1ZTtB8V?KOrK~uyNr;iT3hI1Ie%ioPEzc!BMIuJ31CXA=pZWIy2 zEHdZ}T*%a_xkk!>Yintt^&Q^isR&JzmKG-l48ZVm7_eyov0?PJz5Ym-y;QmL&?+cM zus`Jcs!!K$Qk&0fYAM&JW19W8KBxRrkI0aHY4JJ$GYx-)H0`Tdc=yxrY4`-f>E&4Z z*-@0Bbd8YqT`+d3dnn+h+Mx>1W*%ZfsGXEtr4M*uUg-n2lwqZe8kvTUQy~qZpQ|6J z0ub`o?pIt<62oT3g6sZ}27xQ#V*$MH{dc@jEnIwX=;G7Fj#Hoj9fS@TF4UDc+lzfdP!>nPU$3M^9h``9i!@t&7EpqzaQ!X)CQ;=Sk|!sX0d5QRQXY2_57KP z%YgtW7o(GP4&?aWQQI9H%7f#YxT!%| z9H23u4==&Sj)U5n*SE^TkmOvqe7!RGE&e=&;`U0em(wb+rFDd_g$O z0NZ*=58yXJ96JZ9xAQuo+J_zpB2L(gWytldyLnR$4!%&6HRL}NI%DV-F92CsU;r^Z z&dC59+IFjW^=jP%PN6#-*z{5o$ru_l3uP2HsR^)`0YgIxY^(t1UCNRT66){$l1~L_ z+_*9j>&SltMqjTCrTEM$RQC%mnDWx*VsY_0gLsr=&B4APsCE6~J(VX1KA^iKtA6;7 zcFH8l&*Vt0?Yb?u%0mT4z$DQ;^C;=$HOtq#>2z##UkwTBk|3E<^tV z78hLA0;dRg_*HfUFyDOvX?kA@HY%LzSI4{A)<@m-RGJOao>S=?p8u1dRH8%tBrD=4 zInCLr!aQR1(0YjbAntAU>7qJ^X?C#h&dKyr60xH=Ir(kIK1%;$?~M);zbv3`ZpI6n4Ujc=hJ}4 z(|tJULHpj1QtDuaHJDhz+PQ+e$xvCDp3;bq?h?qWsC;oo7w4j(qqj^VO$586nwod( zxe#~})3ms19856A4~ta}w~0meX!OYJho^8QMTgp^J@R~yvJCkZih=$_@;F;LgbjKZ zPuJv%T0D+N5|LL{=4D76$6$%tOq02^K(77p{{2y^ahSM22vzvKGt_8eq6MXGV1yOE zjV6tVL4Mn?g+~UGr5*kRu)@Qo3aXQTL+}X(LkOSNSI|XM0CNMv9!!?A7Gb3Fl5WP8 z3B~(#NT8U%IYtt7WX}X;`r<~46Nfg4mhO-u+8$2O>OXIaBj`+btc*Kunyfz&O=bhwAMh|@$^`kC=YPNO%gSU)BW8A<;3}2UM?6itu;yD3s<5na zSOKbdNcaxD^i|ro-KzeSkMB|Ovt}NBh7a}-_al+}QA7{wahT8E`u7jWQwAG)z9o$` z(<5><{ef@v2XtIeI2S$6#@u+(nqMPK&l4vTYin-%xCt(_W&H>eK*&eOl}RKH!o%>} z^r|_6unX|EjLnyV{{UFinkt$n1Un=^akZtbaf#eu*yP!NP+h~95c`CWQzMSb)W=IO zyYFnt&5f`^X9_w0__5!h92ds0&PVZ8S0>6$piPymqh%e+O{D1+J{B>|;mb(W_5B49 zGIoN_VwfY7m>s(f@4vpC-hVyp4;M?>+>PiVrXl8kEToB!nr1Ah=uOOt*ad+FeIt;M zZkt1JyV-``;)7K~iYc1Q-@CDjAz(tdJ#9$^E)J-whz_WPN`#a4=Lb5kpe0afLbXHQ z2o_T&uTeA%pK4n%?Q~`0+bHJp{`;kyDSUWIBc65o zA-dVt^5F8uXk}38U|NcL3gIs>C8Q^WUV)eJ512-nn%@#LolVsT>z9J#VIl*s*MVSE zdH@M9@!|J#`?Lw41kECgyvo`icTF^pRTWi}AQ9FsZM^Jcop zV|0v$|Nbb#5HJmF=7GT^96m|&ViYHe`eWuFG>)9@Vi_W`VD_FTGoDDj#kvpl2dmKY z)`x+{ht2d!DM=jx@R80OBFGUH4v&=TBR033y7HRV`zh`t0tzT5a$8pP98kU!ht3-g zbK(_thSVkh&j}&s`a%uYOloAV=N-$K3o7%s;w7py-vh~VP_Zz_7lj7#EYG0uA_r6! z)e_SvENV~i_xBE)vQ~eY%^Uk6c>YYyr9+aVk>1kTF88|UJR-ZT>$np9EcU5+s4GT3 zXdB zhNyrs(q}AZ2A*3D%lNgo@MsfTT-NlITyllUK=g^w8q1xhhg}*1;z7l3DN9LV^UV=u z>@Hh3Lh|Nb)4tFOsCWu6DM&`RHv~tRD9!wX3@Ry2_mr*k|Cr99yoeO#9i8&MuCE|8 z_{jep&gu7?e3=u{z<4q$U(1@xNHM#m=!EfPigq8F%5anrtg0*t<1(CheqrIVfup-F zE|ou|FSKDpK5S<=4iB7aOr6y-_T{W?g+yJd6cq?iIsclcq0ENe4My%Kw%_vID3Js+ zp`CfzYfJ}FHL*6;O-mW5bWSuO8w~YvL&isFv4oNin@QS^`$+`({~o1H&M3Kyg382i_r{(}2a0`0U>aj`EwED#|1o)^dRb_kNXh!j3ycJ&kIpZT1mW`=GI>LB> zQHo&0vfBDW^-#ssqh+i@7^P`X{o~2GG^TQ9W{7lwC&)R`VGj8wQTjiB7=&7TufNK~6S@hFVnMt3t!?*YT$;rQS$~i~+IQ za#&$_NB!LI-AN}L9Un_F69fVvYcvGu&^Ov7qP@XQ&3`OnkR>(ZtNd#KbsNMOgXXt2 zdS2)#Cw~h3Q>aQ`y>!5Q9m3ORp_B2JiV4LaGb8VNl|mEPa}Wa`XB{}JcRWNRRn)EK zx=>?4?)dv~G!0kIe+mi)hZTUZM`jf?2Jw@iE$u`!P8=|b$cO}ZaN|@w`c))oe1^P^tb>b#@1I2Y@@D-++A{vsI$c;qVe z*-R>Zkg&G6F$cCs_{Q5-2`up&WF1i%hOqD%wC$ncrISSQrBm*Ug2=8qgGn7v!^1oYIRUp{-H&N~LDVJ*ozQA0HTQn`RDL~BQc6@CFW8~1)+#_ld`y|z3;rpJ#PLz74El``)z^dfO_ zv&KwOQA4+KVhPy!pEhB=!T+#q+d1REjJt8`aXWmnWJ#c+D^U)hs%G&q?wR1xvt-=G zBJG5V94$AtJlKH5=0JaLE%(TYjboG_vLA#xR;>H0K3ptiR$IOO6Fu8`WqVTPwC&d} zW;YPi1;rFqya#S3KUZ+e)`*8oko<%*4P|HTE13py>; z5g!Zoahdka*<6x*rUD^LjV8MeNoquyct-=ZhLY?z5P|JZdQYJ3FV+zHX)9^;oi#$d zlh8!Oe_LO$SMtGjOG3b9f4t|;>!ryE?)LP~+z=ng$`04&JnYJn20^IYUMREDs>h(; zs7~HwLwb{~byq30?B`}+B!(^J^b=pud2MDs!=AKY_9|gv)y9QiKnd5@)&@e+#<*Ga zkCc>??25^e#U+6J7ncP2`H_Ejh8(y?Hd6P#%$X#SU~9^l>G@YP9PA*gDGR!J({vL3{WA2&|6Md(m2w;*W?TmN|@nsaSt44&F@%&gieuL zzZ&lTwBHSP^4fl>fSVlH>lDcm6cU`(p#$ieF|VSATgEo}QF-!$r=h_!lRMW~Y_OYzO(vD2@MnvvzD zzTIfl-(D*S=){PS7d|Rv<|7OKQo|8ijk5WMs@3L9TRFzP88j*YSTok*c61i?v=m!( z&Ll@&ak+NGW!Go!54<81i_d3+f*Kbm8J`O!bvx`Uo&$=DBJGKSt?g!F;O3Q)5 zXZ@})KpXhgVJmL_k~=Y;uCCPL*s%=L+uGm#TCFrv(%<5X3b!gd^2UZ+PSIv`fi_VM zFBH5{EU*(T2-?W%e}Cx$SoTqAMhj4YRAFdJWkCZsN(Q$jA(B>0z^0z9&@>ruvHW+* zppAjX4x$oA^mqs-lDjBtM>HgO{p1=z%^16=>y3g+y0NFEjy5)IZRp}?1G4SGH*eI; z5aQx|yomJ+q+%zAxIz<1AR0P4Cx36DWl5N2g0&%$I@r_113PLK0+3CeV&@ciCodho zHb@RvOy<9*AXpvKCxSQ4LErpa`fMU?7~QNH3lHYu^I&*c@X}%Yr{e>i$E-G-4lTGc zPAlF9UsPxUG(kVcItc_@yKOW=K?Lw&b1KZS=7N&S;!U8=()hM)yWLEb30qPL!N5<^ zCZxhaA1T8P{2$miSHD~|_j(^$SOcJqJV<{FjU_ksW%?R;lP_gq=axRl{}(qvF&KF4 z`}Cx}%b^^CNf_(sX(RUUKtMau=Ni(xGE%?V*#3U|lMCLHbYozY%^V9@IWG>1VP6-8ENRYh26hT=8>vn8@O0o18 z-Q3<+iF3em4mmKJQq`f11UQf?xR6uhB$Y54Thzj3m+5ENZBB(t&SBVkJ^sBlzt@Jx zSI)?1VFg{3N}HTU?C5MpFK7L|0Nj{aj{Wa!7OQpuvvh$!I2{eWLJq^S5Vk#KFF)Ey zf!`;C4w`kOtlxaR6T>lEhzFK7VppZyx!*TqNE-f8^ZGS!qjm0>114Xr8AYr+&DBK2 z@#pP6*Oa_uI*mHO(Ei_I$QJaCdJtM75>Sq0-DKy~m_jGBMxK|K_uPBGU2TnI;|!zE zBfgWTLvSvHvjfecb$qpGM&jcam0Zmv;}0oens$ zbk_OFYggY|d8WxdV@k1;Xj%Dvc%Ef`*}gYSh8H)T=Xe%c76|xe6S>7~SU@ba;vW<) z=Qm(o=kEA3L}KSq4lrqf(Vrq)2$D7J06w}~nPZbQiv(D2OG@3}*t1yS-IR{04m+Hi zz}s7o)#t+a^dtRTJ#)+(evD#}_a~Hm5mqoYAsfv7hK8q_SPOlh;s0W4a`$pV;fRU> z!;W6 z7RoE{HHRm5Au;814k#A?Z`x=hBhCMzjW)Z{T%WgdEG!W?j5V@Y1yKS0(k=#gs7zB@b=5^pwfz7;7$2wc`o znN<=aoU+Ko)Xa0)_ptUltQoKDm*EUz3qz1_>-=Q+ zhShaRI9>MeZbR*0I(7b7>OSRgxQRgE)iwCM$Klo&^{hRnrhs*zkX4biwIN*k^DNTM zzQ z-28hjUp^xf9)zJ6+1hr%n5XNa!il~AwkS_txMyF!SukTy%3 zpWG|`$m9mii`+{d0+2S743SVD_%L`L3g*4T0>uv;jYi9)Sa%}i#=OQtRKd3WY`)#z z{qsjZf;P3^@VCr!{;mLa&nlsYSFs=63yd0ic`|Dk0=f?Aq8SO$X;1w*n=fRs%81P7 zS-lKaOMv?9-U2BNFPK}TPCJX*+TMTJ-0Lia#(3WU!`getQ~m#c27cTyP*1^xd7M^<@USQzQ=AHUU zjtUq)-|@_3HxmRGd#+xlkEJ#;;a3v#gwU=Dzg~$vX)iF&K6oOa0qq5)^;aRO1-`=_ zV8SkD0+V_bG_SEbqn4$1ab_O&xdI1j);T8TK+t76|o9;Y%RP!2b$c+uq{H0f{-Rant?X%>axV?@vd=T#a&*9jTyt+y=bpVkY5@2R`5N|J%&%{6dIe z2z77RdVuIvh;sCS8OH2OaUVWp$XVJg2isZ*Mwrv;FCm%z#3&B8D&AUIh zqrdD0Ob#5Aixl@+g9$|=49WluHc-4?UIJduYbdsCt&dPVMR^1}fZi|zMFdEf0wk5U zyIo(5xBxTytdMm5d4veD^ic2B);>Q5GATqG2{bsk z8c2)BtE_EoBmt3$jki7$2?=XpKkPJDqW?kNjHqQ{O78OP9vOg(gd?L15}VTWyL|(p zf{b07Clici1v;1nJ)zVV1RC-UNgHA!CvgDG_cxGch49xpkKp$E^LFJI7~(S+fYP{0 znM^?z#W*+}m=g!%>kDha?oB-&nnO9StuHKj-}55fv9Niuj?0^{PC@UomO z=>Ag^4WB8u^d=0 z4l{SkTmLNjMgIpV?3%g?tlSCf-7Ln484vcX5BBUs#s4lD04u;d?Qn&f`fdyl=cBcX z>%mc@37^ct;bNQy%IqURW0H-LWwvK;c6)>Hkr#u+ zT3b&q?5jlR@QW+GZ5V>1*BBk1E1{=|rrkQsb6?+Af=Vz$h35qf2Ja}>=XxrGBQTi( z4D_PY7agM?*i^4Mzhwy?q3xa;mBim~Mypa9H;fQgWH19zy-Rl@o8^z8BRAv0(IzD% z;?m*?vHOT#)tzz>S?90X>n0vzZO|lH&DUYK(I4V-jMEoeb+&mXGC5ptD^18Ui^DQ8 z`tj?)tAI6TdpGO88b+IdbTb*VhL_E|{E=!*=uOU3@~p`cjM?&P;==ZiaqF*H+tr>w zxOSRR^?{N7rRBBfAx^`X)oKL@u6dOLkZ4!qCZBwQ=@z)fsq#~9H!uE}^I*=`nce7` zF9Iyicg>@O_@S|slO2b&v^$2s^?o?K{oh5Jx@S}bRLb-$xCXLREjTZGt4-pbJnJ8M zj@d6cCa#=~#`v2DVmEFr*{Z^|Su^L`>|_Ge=>Z^Ri<;UD zfX>Kv7Fe=*fE7xht1*?aLqnqoL|BtMyahaqFQ-Zbp7E8KymPkW=INpSPGT(L_JQhr z!o_dN411E@h8FUG;r2cZJtA^fpC5i9zwn1)DKdcy`LUFw?iJ9(eAjvZm&f&tHaK$W z&EOjm!2sqU9?2u`@ADBGl=sSR09j8bbrU$PK@Uh~_BK)V$!p+pj#Hh(v%E{~gmH?sE%IXs&j_QySSW1`XS&NEukzBSfH6uU z3B7Q0b7S1OW7n>A^AFrLFJU%$jwzB#1!TzH$L;Umhoud>5$C$=hXYs1^`beAcrz7J z9j6NGPgQP1E&zqZd0}(?vypZagDkEF^$ML@6aavqKRku-q2=li;=TQS?F$I;-S zy&vvp^@=?Zvt(eb?&;T5ADX{ZNOWKMFjy9vKnbFEvWxGqRL8jfBV$mm7q~uRm=O&i zNa7gvlg`GYv8xl3?9SvDGqEROdi%NY$;0NH``MYh&xiLzH2xNPHhAEf zE>{ld=^E89M5?};htR$uI<=(oL$bYNm_gSNh3uKV`dw-8yF(Q*YGn#1d+;NH1QUY#pF3LSqbH>oGWey&-A`w-2UJo=|ZFWoUnE^k9b|rJKgehJCUef@;u9L1vPmrG*YxG zud6_*J)Hp`E1O5Fe~31Lq&1mw3lxP6Z@9w6%Hyc=AQEp{2O~n^w)gXKT{j#PdJ4Kp z#*ddKqw@eB->rQBkPXUwlpK)uL_mfble2lo$vjy6UUk24WMq3lPH1oNQ4Yg+j4(jE z9UJ-01o#yKm=iFOcqj3ZwBrkn4NOfCIzz{MGGhzz>W#Jy98 z(_&8u?;^R_L86Mq=HMQLNLi?rt>%DIpFcE{Z_G#U>X;SwDI$r9Cq4QHb1S-CYt0Hd z((M};c2_5F2MxrgvSMu5b8Jp;?wFFibJux1y#nONfhOncDAk#4XCBb+T7K`rJ-L10 z$%)nY0->sFH*R=~?YnnAl4pyGN_(>+R^F;xK$)Yo;ea!vK-DO?{!y4PetsM6voipz z(;q2_8E*dyF|p^!sNUS&$ps+v>ff*5?VzL+`9?xd48XiKu!AG3MDzn^!`){MhPZ{| z^_RVhA7CA~kdl^_5Wa*I<`DF`q7b5XkUL|sa1wl_$Qe!34yX{&kX7~dLw9Q8t0QNw zdBi|*N4(^h);>MbRkycJ1(Ay<7gK}%wsfySrC5vc9SFy-Fl!a(Z-+>qhz<{eB9|~q@SkHMjEwVY@FUGm3K+V!wWxD z$pF%aT4~VCT1PL+bJ1S0Y6VIxq*K0Do=CQ6*2*h z6^CfCMGroqB`Dy?IRNyta!9({H%Myvcr3kZ>XsJbRtXUR7fNh z-o^k_(+*aW1*rQ57Aw(rMom!z>ItTU__3e$(W-cE(x#$c)aGKJ=YASAYD8XvIZEs= z4W+?JfNeQ-xs zBt9UW5$Ph?3kFK0`5FJ-#v7x|lekaUQR zl$46YE!n`91e>1<_g3Yj)*8m`yV(@0WXWZ8o5Z{wQYCzZ${T53SPSM$WPCKKi- zmwd&2!nA(Tr7~>r6h}XIZOoT&2yx!cHVKu}__RXbNi39=UF;UVN>0PD^GHEW;OdUc zDN9U)xx+Xh;q0~hy_+Un=<+*E!m=tu_cQInR>-j%vw;#Ft0C?Lc?qw&_t-SlL)K1+ zkAEL~V(F6wrfnICRZbDICtt>2pkJ9LSJCAp_Uv&=NjXy(s*rP8HW78HU3Kp}S%Y1_ z+tFYJ3~9>dPx*D98Qh|7@Whr#MVI>RVUVj}mQ`!3HRX&;g_P;O`S7mVVYIAtsNsBZ zP=YU4E)=q-x+<6jsb+7-g~K`Hb-pL5EbpskKC2#8ug?TLjYCf3xA+}pNih(dE)IKtS;u$G_>-{a`<%Hx0^%JCP#|7?!n{D_Sn&O< z;4)^!7q?aWf(+-ehyfbyj{mjnad1_2rfvl@AY(4y zE?^<9Uj52p-hy+DJtvkfUk;-O`V5WVQL!t< zWxnf|c@`Hj(U0bU?ZOi zzM&VgK>jPMQ=80-nMiRN49tC_ArOEZD1^n44_~#r?$8I2>Zm#+JBCxTN-4R~VRb`9 zT4<(jIWwT+=pFM47JDH=%Cp3K7F;q^Y$2V4-to30Z=H;dILa+4`2zKgC4CAc|SnF?Ex*ZR)Sp zjLs%6xtrzRa@Ibcn^tT4*586N%=aJvvR0M+rQ$Lle|}QY^%YJocFo0f42VX*-R~Xe zWl31qH=z|uJ3DmTBpaXzNw&$%>5qGzti>o4U56>Z!!04}%+j$fg`C56X}* zZ&%p-K4q0tgy_b|X}DHrxjUF8*I2&cxd~j!PIvCh#g_G*hUo}qzHJ$H!k@BTuv$}H z%ZHJHKXCcp;&4XOw-HtSL6EI8zG~zz#~Z8YjS8DSQ~2oVB*rIc z;B5Eu(mf~~$D-v`IRCx4xOe~nRFJy+vv)?_KnG6M!$S#0)15l(;XZgHWjUODq(H5C zR!u`=J6>K0&$TLJ0|PMI&W2nbH>=R!iV_A*OVc&MR=5r%L;fM>jF(pz?4VUtrr$>c zGX!pTWlu|IL%LtpXF(`^F8AqxE#3XUFyS_OjGiMyqJ@-B%h9TB4WlfYoYk`6Fml)(y?E`izC_? z$)lCa|4s>abmf)2om5QDm2pgvXdc-5YvVE$mA&r5#>h z&^?&&_SPxAdw;P2@7~?10~VefpHwy3@5V4O3o=3DLo3ycn3x#I$TN`fB~iMlnN2x% zB_qSGe!;tYyU)F{^s!ckejPL@A2(Gvb^!xU~97 z_MjLkfOOa4KUaEI6aH}t$#r3Rq?N}WT&t<`E zO4g$Ev8J&RAyTnoe^n%XmD)dOO;Sy#K8&#O9kcBBp5s`*S+CJJ@j)k|DE*;L^=!P2 zow4-!vHPk7<-}bP*?mJL10tp9QqIJbO+t~6AvqOfut`gY8{8((+!If}_bTO|y2g0`iZ|Y1d_{&W zHVythc)5RN_sF(i7HPE{ecXde7WpED*L-Uxg+|^i7C+r!rf+GRiU6Clwl4CXmGqUK z79WX1n#4dYOETUay?mT|5hOle*p&pb@|k-rXaDOQJ`I02kIc0w)HRCSrZ3lVS*ayp zqHj6NI*4VRS1PCRphZEV7N0s;zoM3v?NYYcB6;e4*U?PuWtztX7x(|3wQNuMOMGyS z`>?6;Ml==-p;N0o+;laR)xsRjtQ!x&)z++R^D_2+dKvraydp1O-bBO$NNK-kVu(B& zF2=xsyKI_(^ktf-?CeW`!hD9{vbXtpk%d-|SLvx^@xI>zGV zGJsJ5zSk{}?s4-dG99FZ{THBt9UuRozDH|@0$B0kA@_O1cz;5GPD7x`I9ab$Hb|}_D3m2^7NqYMi2rwJ>An<4pfRtYKssVoehQo0cao88 zccw}N^Aek%%;GX;OInaLJMG~-CdjbLn2WX!*Am3`@mVtc>re!b+;yp;L49YtZuQ-} z6P-38v(cQ7Gyoh$`Kg>GmT3?Z;}yKsvNff?=dJ0)xucmFCZBi$T?f37->@%hP5x%& zC{UY*R&~C}l$bL2B~ZTx`D;%SN;NpGUVc-Wa@oZ^A8STxMq4Ut#$r(!SdrvoV*Gx2 zCU$J(;fJ92sM&*nl}D1a*lb01mvenbo+LIR=KUgEZ#%NdXPw`dES33gyiZGuqknn+ z(vA|>+_Szl`M>wJ8>+omkPvj*`>YP>b89&*KJ%AMQ^{2};cy0nt%o~=RpREj22=7( zG_XJMxGb8{-I0yf6d%P(vB1V-FISVrX12V!2f#j|EZg8;`!65VIHN>)$`_q?&$VTX~qxHk|V(Led*Hd!n? zu6g%?scn=-C{)&idLYmJyHXZ%ZMaAq^?mxqTVw1@AH1x4NKQ06)!+MhoQv<42QoE1 zTe#R8r{SYe!rP-kl3$xaDlq7i#_S2D4rvT(_E0*FDB$>R_lD)Fe}i9fAWc9S7KFJyu4PB-Vb4} zzX3s)ItrW<7|3m21F#kHi)3IB)7Ss~D(a?0Kx;eXmwn@7VxNvq#6G->!hqKcO9*C? z6m&Yzd!K;2-MSdOP^h?RabLVRZcc5!}V*h%6J1x_AzOOV~RwAm9vsmJY5*d}DW?DTH!l zU4O<>Xu_YWWYV|7&!E(x*+WuL(1=3gk)1BwCyNtdZ)zI>pwG{4o{W7j5|Tuq`3*kQ zpXjHpT)w`a+o=t)F=Rd;^o#f?LTe{txImaSNxdGg1UKLz{(NP@^@@&!U)5CkAOVy& zNI!Cj&c)oBS^#hOGOXTBK}+ruWb>_g`co>`zoHO`KP_9|rCUdue1iH05LXCsh4jJ- zPD)x-4p$-G0q>6LM>PWytvvJ*N!@>raM|^wZu%}L=I~e9r_~}Q@&d9TjE;8s3`+Gr z9|qTI7Wz8gR!z{BM26)O&CX+&E9`zpMzrX&71)L$KO=&}7W7DhkI>qQTG;vK&Qw_E znbqYEw9H&Ux<6hkZeKPXCYi{z)lkqz2YxL@X*Cr(K}|oJ5Cco+pgs&z92f;tb#!)n zp;Lu8{}mb{NCT<$l-ARHNoX6kUiNGA$caluTO4vG@-}ZE$rw79oh)niT-b6uZ9)Ci zSqshC2UW~ID1(jr-i)Bdse%uiuPXT`N4S9!8Ln2wuerob&s#hJ2r&Z?47@2{x! zsQQ7_-!+a~Pu?S}w_SkVjz*K9~{fGN zbskrH>OWM`mTfZ9rS}NE%x_3Swq^7}8H>8jNVujyte^F)POhT2f1<4735!p0NWiRG zckQ?qF8a%6EpKqD1kMfF5RF~J597@p6E@k?-UqpYR0;D!OWpE>S%@{^C(XaitW8;d z0FeOl2@933SyWJ?0L0=Cb5e6uuET)PQ0=GKQW^2`%?Oc**^HQ?r2DK5b8|E7U>k;q z45J_+)(~2A&3d^*ReVjC&{X-7^=B0FKb0)D=g*JrOYlNB^LsHfz)8$;O|m$~BR6l{ zt71BIJ{BB}^qsJBwnxBPKdjgMnv|NbKRG% zNIRw|AttU5 zbClkut9z|E2W>mNU2EUIJiXHkm&~4|pMpCOmx6{Y`Xg<}u*}RYE!DDql(1zqmr6@l zIoP6xM?wq~y;hDDMB$Nf?AWOh|24?^0DnjZgZe#17sm%{`N@;P3XOgh4QBNLqiT{a3k(bl z5m&Zx<>x~_;+UNU#@O(SE}H}R7vrt<66&0&l~d27T?-R7ky3>@3`|ggpX2DWK(Os? z#_pjN-WlByfPcwrk7i#x<-KFgf z3}t}2w+)DW8Gmz2pDSd{IY^?=lHaEX5@QnV{nju%?z0E9#vn~|K}eg;cwI*PS8VZQ z#U5g}Digc10{b`}Sx&0`fROyzU8T*TPh*;bZ&YW;{DP`ldx@a1FdtwE{=P+pQ2l^? z9bF0unS0c$_iC|+%t*-ELtE5`F&Os;5equpA>$ji^fHKt5d9Lb2&LJ9FwXw^r|k3U zD$vn0x_~XAApQE)t8h={!LIyg_qLt}7~DDftgBZGY#}%(0DI#2p*aW~f%DkG;pk9* zuRnNfHMW_tCt!Syxtl4*SARm_Wo!IB1T=f78EZdzWw{lh0l#pRLT|7yJ8HOsPA`EW z$`VCI#dxE4>lFq+1(CVfZfZ0@sO1$YlE8Li-i>?Xy#r|MK^j_03?@-(y6lVnwEJ!J zOpu9RBb0>L5o^oQF=e_YWg42oKS_oJRJjKr7{^!<=Q1;0VaDyOmcURty5^n&qP-v!EYq;$aO2hdr}@L0)m z$$F)s&r7NGgsNObg}tE22n5w#~umR~1hge_2;7@3MU%%?_-u+&XRa-k1H zB3vPMMD{^yfYG_-pTn4po&nu`DiP9pAm58Ub^;m&(*tmYRLRcLYt?hhv_m8a4``cN z<|0)3Sdax!-P!HMz71u^e}2}anG_kd)}8=d-3;$WsAV7LeDaVJP7Nk?XktjHKiPi- zB!bw{a}?Hv_Xz-%&i)4imWDIDqLE-o&^*DGxd!^)WmX!-jy*d2!m z*{{e~gB?ZCi(S`oxh7x1cmb-H`-3Q+no|z3t38EUC$RwKho}&M^~_hOD6)UpIy&52 z1W1JEuUx9O%K#Fh=$7GH&eb8H|F>Soc2{et*|sc$RhO3sVy~0&qTzq`_|MVrShxEfg74~^Eb|3Sivp3t z3n#zuF>bW>sTh&q|wS-9-UKg90flx1m4Rk2zEs8_L#dJAR6#j&hS+)cm1 z9sd8#Od7x4n%DGTqrmLDF){pCcF%3{D*3$cOEy}`VslP%vWF(6PyY^0E_21>1acBF z!d#~itD=e0`9I^5w<7APrd*L%(c}WUXVc=-Q033_5e?8Y_k)1*1aPONW%RLd67kV_ zy*h@=g~er_e+fSc9lR(M6QtJ(`8q!CYHx1wy~f7mT+V-m)c+U|5WJhM_kS6gNLPlR zl=;7oOCrktri}RooT=?v5FZf%kh1x>{GGyDxsGr$*-1xBwa}fC)yXpY>}xxr`+vgx zmhv=oVhZj5=K?D$Q+j#g$O?0Sw ztD$0`qZ5}>BELtt|H7M5^A4`(Gvt!7%VAr80T71+_OniWR5xcB!WrhWSVIxwmJms$?vk8T-j!{U<|p>&iO&nYe^Yrj7eJLge|Ws`Jk3Vab6 zUh-EU(sG3$=$KDubge_9!fRLiV0}EhD{(s8{m*0m+?%B!UQLTH-{mUj9i8e-w<9Fd zYm8wyrFDpOB9`@laQMQvhy$JaKk-5;_}aA=g0K?0BP|g~7s6d9Qf8uJ$qx7Pw%{3H z%YJ`;v(&O4FcZjYo`a`c-T7h)xW!)h`$DuGU`cbZEK^X?mB`RX>eA!b;i5{A!hY~t zpuWxnTuj=KlJx|YpyMD@JodXdHI3W`nlBNY*nwOq>;Q}{M8DuotmaZK>OIHv4{q3s z(BQoktDHPDkU6qDkQuLf`&&s0511Q=qD3b|<^yt#YB3+2yDMbLajy|p(VvO~C{nSj z)M8#LrB^Izgp#H#jI+MI-6a8Rf`WBD*tTcTN<4@=s}*UhK_R&iKn4=i1*Usn88J#} zq(kDCOOQ?ox4P_teUI9HC^As6NA6;l35?HliiIei501xE?VC8y3HVuJX3Yo8eUQAc z>)Pqmvlmu7g7!=ys9+Ab=|#31G0K1rB&i^V&PCymfD38EWH`~C11P@0_6cy&gq8I6c*l615#4u{ZLP38T3I+sr5`ph zAeqm>dnM}$+7HQNR&y-o1dG23;+|D5MklfX%0dKbB%B$16h5@~52rXZZxN6?Hi-ZV zmo?`FTrF9dIq`I3dAEU=*Lk30X5s0!RDS|AIEKy#I2OrQQu^f8!fy0f@4YyCkvGus zEy!~=L$<3j6C6w~LLCaaecO!PFbp?PzY!R7ntDWG{zm-W31P2vyOrjvKJSS1yn-u9 zq=L@?BMJyF7fvOBBxwb*pOkCx8iYbkD{iVZ-J__1=I9MLnU999ozdjklrd*tV>WZ0 z&^7xBOQPUUh_Atw%$y&M>^H)CmSgn-XV5!BFQ zuuVjDhl=j^%6%Hm$i`Fw_{ZvFFo@#>Mx-NTBu%?2<0P4PtpDTQG9<#o!1(zryso z9kl|Z$;p^Hb0F2yI*MDdp$s(`8cE? z^=HKR^fSHzfU;qB?`f}MH=z4`cq9rD$xOX_(5=T86=DFVPc_*TfA(WC1AHBt2!frC z)D|k+1;D*~;h_(~!xl;kkZ3!uSd;ZB&{`D&7 z_`X2W_d|Bpr_YzY%1(YN<|NL-07OO1GU4-S3gj}cjBUvHE~p$6A73?EnIHn6NC0#0 zS;5)j;<@P{^39*@k=x`zU>QM-AS6s|D zNQ0fPcQz_Q-A+@#se&$yiBmY%&Ie!ibff*@@&q#z#)}bPHp(X74`)&9tzR5jY3_CD z>w%c$Tx9`biX;t?AqE3L%dIY9Q7f7g)=E73_zz=D{Kmwwm;TQ>qaN4yOkpVeC|*kS z2eeGSqYc=4cIKLAXn3!+db3wfX{mvuuzejf;>~R@MOXtKl~K z{NQT`Pej#1n+VaN^+UDLPv^{qWgrYTrXw4>P&AE^ju|p&PDh}rkvO^$?=?{DK)aCf z<1c__;wN@)3`DP}(;ABl89lW_fHH77s+Pxem!j`e4>Xr^sL(>R!K+XO&`hGr_`+m{ zo-uPdoNsS9Oz`uXNB)8ic=oD3X8;z%IE|<@5z^=Uq@qs1HpT;ZHGo|(k#P-7TcTc3 z`~YZeI%D8dkj9IdbASN_PE)v{ccw)4X<&gb%=C$mk3!FXfE79B3&0(N0qjExn)3^D zlZi!xFM&W>q32eW`5IVR*hmCN`;t9%o{Ru(p4V4xB2=D%=vMNg7N$Vx4ZhEssHzEU z42Mbc^)me-^PJt&G@0KRmDJHa)5(svsMU;j<45jXB+-=jVE1?r(!ap+k`J0$=||qYaDeQ2%FO*6l8f0nCLY+1PH(&a z=mKEGA3SPaxS&?_;HzxY^_jHDXf#XO0OKfl9G0xWY$&KN+I~ggIYzg8W3svZkp*Q7 zufw1dVzU>41GGLmW@c%7_A1M}tme2;5e^Y^x;H>c?kbp~J(gu*ZeIDQMsTO0&U|LL zO3vZ$OWwxKVIWHuTsB3_(#HdI5$2^ttY;Pa27Mb)bbR4_u1Cb?wUp>E!9(W!*(q#a;5 zQ9D_@NCZh6Zjso-{xr;vwSch!P8QI-VBYA3aD6^n6 zr3XGAxbx8K*-C9wlKaI$;1uCi$x$S-{%3eK>=Zb7*D^qQBfaf_z`%d}i@3gyMPD~Y zFN({d*5Z1VJX-G}76D7qlicXsH6Jithp$;3+ZsRINy4)LlEnC|8Kt`HoZ>6cYHNmO zIr^ag9vi(TSF!Ox`92+Pa(D0>wubqftf=aOTtGB_gOQ+If2GVQp#B1k(Pn^cxd|Kq z(&9$^zW5LlO}ujyf6gWISi+hj%0MsqzGJxQTa=;yD-i+6p8uVQfC(1O$SAQDOVM|< zv&mq7faH`nQM`bbZ64vBHfb;T{{&1X%^!5QXBAko(Tv7`DpBT45gp)R8G*3z#wnUf zSoG_~I*yJPq{xkCc}ML(v1alzjq+hk7a*Jlj#$yRp(jZIm|gAfn}kN!Kh{8+6TE|* zL}5JQTXzCxWHdpey@|XX;`-+F{-4k&ZW zS5m&_HR=gq`(}XIiOYyp7|Zq|5`?+|wXooTb9*P}yf+n&vI38~;uEa|SY@@#iwIbgEs$Dsk-KzY_g+VGc2}v0?WNI{~@2f!MAnK5X zMKmr)fbG6}>YEYTh&DjbTY^M|%Q-oK2q!Ep&5hh%Guh5g8E13w1Ab%(^ov+6x=0!h53b)^|1@!DT%2_B8A^{TH zjfjWez<>FlIwSuXO)1~#v+E3HPbKQof*S~+C1v(V^c!5e6CVw>haGyzx@4wu`96BP zH7G<$>=q4id8Ct>j?oUqkEI|lpt6`JqRI2b2FDs=#c-$BHus;5lC(#z|<%DeSI z2qHoM06dUatp^O6peVHAclHcart$2uTSfT}LIT*uqNKi6(2%PL=T%ge1;~Srl2-j{ zgY>mxYB)Jcu_p5v9*ms>Ii)XOY>75hP>oH4XrEs|0KB|h(AXQC z2JMNM{6muFIcd@R`uc|Skcu9$|Lq&)xuTW|^P!ht_SC!kznKv8C4hR!!<*t)XC5{; z{}`}c@HyrrY{o_W5@VX%XwM`ib3ouEK_dnTPSl#1=R^&LfYM|l_6hm!2tJ5eG{&A< z+A{!PA9UNXd$&b^x7VspkVeR>MrrsKXosxwsS zda(F^c2&&;$GnK@*^Ch!09|*7M(657h%Z$iE}|OqidE9l)g`J*0S5HwlA311AYlO= z8#>+xw;acco;5L<&>m8^aJ|V_9OUlT)(?}RxdY8Th1RXb_!zIQJSeNcSCVBuiU^buun0mgfdXn@4_6!{Bb3MNR}xU?9NfQYElsHsE*%YxPs zK&FrjuZ0%xK84@k^4NV2T#2ZQm)M`WlN`bbM}j-!UwhALA?0OQ+3dm5B3cq*5R?W^ z+7BtZxtpXvwU%&jWAb z;6v7vqxh9T82ypoHZn8P;jE1S=V0U4M-ve!Xo5PO6Fa!HAq5f6g3Xai?vxkM7LtdE z7?p`c9=7h{1O2&Ue#n_`qm>|{x|6Q(D>8dZ18vCr54 zdKEnYJJI^0IV7&+VmPi?5?ta8f|4oBzC={8nDAMcMbnM2_UUN}T?YgVyYuyiF2>Xt zr{D9AUWeGkg`s!?zmo?X4I(Q;mVyxl| zOX`OFZC4IuRG>Q_9Jt2u2agc!5V;Lp5)h35cy;kqDZIDBySXOcB{??s-(&YN)ITs@ zbISXTI24vLRZrLoYh2DYMHz~81SOzzd1uwmYvH8#5-#{e>IXb^bhOEpW(%G_@?oWU zWmkr%Mnpaq(|0tEJ^~)Q75%OXUNg)uQcTW0zlEtVIIMp#ehNUWx2@cYafAT>?Y%on zbN=N!Al0tm_yK;F=0(5Wg^QlM>J;($4mo9~tU5&l3}8gQdHl=CzgW5Ba#rx?ecNnx z!_U26*0D&@b-w37o)Bo*N!AY^!p@hBgI~j4)Il&Hl!c7-^gA=X_k;Wo+UwqT$!YvD zEFH&eG4B2;-k1^htX?}e20Fz7ANN1l1STy=O+}c`%p$xKsAqZ`r#AvuLytUsRIGyB zun4Vd&~`!q`8O==fL#jEZ3J8ofmIahd$TR)u?9+tLa$xZ?NEk6E|~8Syi-(cbXmJc z6tz1rN*ta`MFctEJBXHpm2Bn?z*jrh@p8bd8%v6tWGoEn-oCOt2T8Zbr27i#B>3e7 zi$@~p!;3xRp?mCVbRYJvI1iCKv8METTNx0=&?W(d#dkGGCj{V}YHrvgwk{d-&}`sR4ViHn2J&2y7F>wtsKjSQ)MCn6cm4y%7U8GCZTGhi1t(JJ9H% zU?okhsY`;c(~xD(KDrCIlPeZbw}FwUtqcSm28q4HF%CM>^Fl=?HoT=>L4waIg12AS zx5rj4ISCzr{F+iE+nD*Y$tjq!VMVNlEHQv8M-2>aG`CjZF0E_J#$M7&smhq^*O($R zEUE9sOZ{(wA9(o70o`&gy~FqJ-rW(li+~+V3UdH47*BftgFRun@gr zIX6rd>Aw6iyc#`?q=<#q|&P>fW<0q70yoO^A_2vgK(7clgxchxD{?P<3+&V|`JkcuV6D_YK z)pN{)?CvDz?BltCVG0Rs0!P^=K;8AK;KnZu`s^}S(1?&h60r}xIm!Atf(l+(5Ns6@ z5QUa(!A+Bbw7?94Ut$R%bHVtI13rb2P%x+FZ*j|bh%1PWiD`vx&L+6XeJd4D27Y6r zW<4;G*hL;-4ntRkT4!Qf_{jJ~oDDl8KwOD$`~WQvvK3N=VjRFXx)pD5keYUE=t1ye zBnhVx#txx$rp^xgKuv;TeeI=je-QJ{I>j4w1Q>2It!`+8A5 zgjujfg-TRnkd6n|9mk6k$>q6jD(7YpCAzk{nYXG-B;LsY=!; zJ?w#A!|6OcJP4%o_8k5aI2`U&{+zN=!;_89Rra{eQTgp07q&QibY&rZm_HevIbM#1 zv$tu^2gQcn5Y~$#>1%RR~Z~1-|XQlcuE*9 zgup?pSS#FIvQSv2h@Y*Mq`@~I}#MrqK>Gqorbj7YPfn=BOtAn_5-MW+&h0^Q|) zvF@jJwleRWKEU4X9Ewr_x|6ugc|~4OwsT&DJ|PVdQanan*;Lu;WRsg_=p3u~g11)B zBkW%~&p%w$CPx^3Wl52ZGJI^p1bg~iWO+6Gq)2K9o4VJk{!2l_vK+xo%Zv+rwa|{E zcq_5^GpdcZqO=AOfu!_SyKy`*Ttk-cRF?%@y{gk%u>|xp*~7*1o(GtAHhtlu|3xJg z&BK_#ov9nK3sY+F_4Mr`M8!MgfH)nvm9ScJEtnHpk05D-ItC#B4|236i0 zs*MNpkVpvr*Dj=SR{~71ZC*O)|WUSbnKq z*ndOVtBdF+Y9SP{@FGXi^1_Q{ zH5f_&(1={QW!pB}0Cy};c`p;^f{`fx0qyz$pnqpDFjNo=MURKLeaQs~=I}X}a_`d6iKFHnT;>r1D zYjna`6_|IE8^UkUa2RtBta#(Rh>{Ex(HxC2ide+sC|$64qjHwotg#s9L$4Su`NM~1 zDWHA&H*L}oSc=I+Gi$q%env#c`qaI!Fh#iwnaXcdC;jd{-wT!t$KH>}w*+#Afz$Uw zvUG8vm+xqPPP(b>v(8T3AYllsm}eOE z_%GRdk@}4yDrozeUqR2C^XSvQ1uzI|O#3jr0YVQHf1sK%HL^mqZ-NtoO0X(_TZ9HsI^! zTf3?MM?23`*AdSzjW!Rot8R{dKiuDTyg$o9XUW+ag){XyRp)d0ZBUtYd7)Whh`Q9i zpc|n#%6#JP{;OL z0c?B+0lB;I2E9~=rqv}um{>=VNDSe_JG{dIf`FCAEJ2T}*IBVq>~-tKix+>w z<**ZY%(uuZjzcuZ3e${^Tc!+#ZSYHrME$gFu#>+(W$ILo;YYx5cF!~!I7{u{eaT$BTlXDB{kY2P_r+_vG z<5`XNO74*sp4`{|9zU1Pnms$>1eZHT`mQK5@G&Rh@@5mBFp0tFIXmklVCn`&Mn;c8 zOE?b9W;Z|@Z(wk_Z;`Uc@2&p)yu7c`O>rMVhFIO9JjR4Sk>Q0c&FrtKjjOUYfch~B z*;N@B4ikiqT;5 zb;SI393CC@aPNQ8RE4f^97Ia?pKNfv^keY1Tr4l+^gfom35GP;B$NTn=|H-F*xEy9 zm4<68x=O+u zaR2NG1j;*-T6nOcxq{ zAI|6#9~58VDPS%X_&w`9qO~@ z@eY%*p=$O;FA;(6`F z*r)3C>(`eAd5Ti7;l?0;x5B8yAjR~8LIwL&>Z&ly`$;ziy@$hYh9)MFkWIghN8cK- z-BxYfiO=iVcl=tYl!bTBkE_X_(EzK2(8Mn2*QsIjq}XN#5Kt5vzxx16rw2vHRU&H2(E8Y{h{3X|{lA9e2AU-iDhUfeiY^;DA3yZvF6 zH*y}tCv&?WVy-&Szu26W{8ty?f=zXoQpq)GncS0B-3PkMYy{JG*4wl>zMUR=xRxjB zrn<=1cK7p;#@f80!QmWK+3rH3tEdi5jZ1Y`@18j`LGf3O*-&kT$34ia>p&Udb=!55 z4{z(r?{a6EI%n^HZwYafh>i?l)(!vbcMU>cF0k8wSS`lF*y)K?!s=J8wyQ!P0+*qP z2?E^(oi*1hYJRm8`1H}OX?}6RFITzVQ?$pX{zP$hyG)Q8t1feqltyZgPrBestE5*| z)eRn6R>t+2Tic}{9(}XTpgObXU*;>j$YiIuhS#t6M$PJ1i;i-AnzWXq$ngBWgsS%^?&4{C2AA8J;cK~zQc9u}r~Ol9Eq&pTOW~>6SMJG(=kz8RCyRRv zS6OG|_he0cpDGbw75`#wa0m19@KTPgIte<1ImwHsY3U!BJISwA-s)7~`t|G0GY7Sk ztJ{WiO5oNK_{wtki&X9meT#^0jqBo8@vl0A%Mx@G{F+uDi#J^Jl9io5QuoEJJR8Yv zXIRtkdk`;(j{N;e)D;`ZeAPFXtoa25DzUAmBMW^Mx^6qN2!Eit+zRU_VQ()q7kd?Y zSo(6t{Z|&3s|-tzMO0r7?YJ_>C+9&#hqFO@mdwRVmv$G1wkcFdvF_Uhl`FBVGj2el z=GNf|<~9@*$~~W<_fS9B*+x@Kf~$ z`}!u?`Q+?i--!zMX9wT#jNgDPNf`uo*QXJ&iRp=UHw|y^)UPu)Fn$cW zwFKG7gz3zkWa-X1>5RTzsQR|eb5~q{8M^3Xpt`kFgGT8m)?mJiqHxl7|5MK_!#$zu7t8pg(PL4gy)nb(yD8wKJCUC0n!Op=3~=fd za1sm^D~` zwoM`Vom9o5T;0~PV-bf#nMpDU{jcQqwS#4`1Ccl!DOv(-kT-P6Ue$`bi@72#Y0718 zfB5i0#W|X3S3f(nBQ?KkWEZPWrYE#RCiT9x`k%k9Nc^>B{5GV8@4{Qfqm@}VI<$7y z@9wUXx&G;;S&OXwd5e=L`$Os-6)N_L1Zl=;s|g5x-6xPx7rvGQ3wmc*pR19hK!Wzl z(D20#qH?+!JGD~wuaA4xmuO+KLsWz-T1(9F)}=!=vYOY`qVt`zQrq3^h}b7*?Up10;7KI8E~ckeUg0#niEiUJ72fHdFMuU+d>sU02kh=Ke+j%dpys8#go(=B8<1#0+vUnL>e^JYbjUMl0E4tImoQjgGWYfYs zZ~)GBZ{yZUcnbr1ril{pEl`nf9`SxTE=S$YMkHyJXjL{fC1au$zjwtlrP1-r>ZIpu zP#(QZ>gcM5!kDU*@b(P5jph-{(w_diKH08*39EtorByilDKfi@QykS|r6<`9zSTxh zR|^u^{g$1U^yZqNeyW0iasrvZ#kkq>UWDM{O$viRV$0-&T$Ok^@$~V9c#P2)jsdUA z22^jM!GV`+o~YA?2~b8-M1(6I~YCcq!^2KF2)G zZAZcT6Wv@B8l7h#nl}O~WsvRiT~==vL-s1Bwi@i!mu%u$SAS7%(9Ia)D-_B!hJsi6Lc{*GP3`1nO< zB{%s_yP}_-!DLx7BTg39FEKp+MirUKzuTTvEvHmy01^bpela5AX9~s z&pya1QnFJAoLH-IsL)S{e0P)b3J^#1%anBAKo5{k<)+2h=!ij@r5_#L^XJdkDZOVY zV3@uGMN%c+cld|uQ3iw2@lP5Ot=E~@Xs)d>iia{MKsWB}EEzg0@9e*D%%0r^OVAV# zl<_tYt$B>TF>&Dg`uhBw+87QVC^p^_j9L*5>^h7Wwkvs{W_Zjh-83wpMr*I^#3iYwRe^VRQECOivPYdn zM?#ggE6h*&093c8!$UXC8RdfwhybmIa*Xur=&@R%mUM-fpz@Dvl5a1&jeZhUjssQh z2#%w5?-CR?1MGVr{!j_FsNKn7fx6swqrzZ>C{E99) zcXxNcNL~yUB9@6=X-#`P59#Qwn<-Qb%9jGxzaC)ykph$77bv#TxuCcG!+k8hq86qr z7_=qzy7!*Cq3oGMWn<&y zXIhVdqU|p*bre`h>zRlBU~XTzz{eodHWY2`dtiTdZpa<h&bc1J^-{~>CW5UJ3z?H~SW#~h>5 z?qTCS4b%iT6qr9`b!K9>*~3nZuWW$KB-Kc74lA+vdOkcoKt+ME+jmuVkygQnMch@D zkm1^AO`!}!qW5UxL;=afHCp#gG3UaNH?sKXy!nRAbpU8DIs> zPTtFE&%o0p$WHZ-NMS;TvSF9W(A(?j_;o6u(Tm@gWvJBS1Q=8j)R?TX=DIpN-_V+e zh&}*EtF<&VDr9x%Fof*P%~e29tt6kpr?|aH&E*n0oKK#lJoYtq{b(HDx3(BO#xc(* zVSXlNo~BRFIDJZ%;d>1J`TI}#M}1DO;OFCeL!AVG_;wbUY62w1PPhwvcx=FCX&sos z_~<`n%9L~r+@1m>UYE^Gi?8a^SFEsTMny*ZB)<3IBQ5NJzY5vkwf*zgul5b{hp?)t z9_s^q#|jU@VK-ycsQBg#^vK&-OuBcG1Nov0ZAK|l;d`E;UC z;?n3X+S4(gs9JQg;Wl>v%m-@tGS*D0I2d;vo=@iaj44_*1&)bRXMe^8dxtSyJOD2p zzWoZn+)a>^T>IeKz1l*Gj|`r{G6`D`UXc;-`E-8a6{weQL8EIAta!YMXs~WnWzV__ z*6}JGy-w_`l}O{9kw@F$vSZR;fFhC+ZgMQcVD};3E1f0C1#}a{rv1Z=xc(@_AW@{L z|LQBtt0m_1GTM?pOgsD0x8HD4qIE{R?3Jr8myg{SrgS)?Ff!=rxi z90iaQvvQ`L-2|?|_wPKa0Z1yNRtyzOc*)n-y;!S_oXhY4??u15@)OUGizLnRsS8IA zj{np}%#KM^=zj86wR<1hQK*Xp3uh)}rnC=2u%R8#USaQoo-Cz|?1y$S<`GW{&h!q8 zxHlK7Mr-YCxb`lbiR$|db>e^y17z!y7g=OH1#_nk5s@!>*{r<1kb!%Hz9sj?+y7sC zUjo(SwYKXyw$)bKS_hzts1;E`K?a${5jBFK$UIh=WC#cWl}W5qiwGzP$XpR*4n<6m z*$EICq98;GLkp4!5fB50QSP&Yp7a0r{{LF{u66FT?qzkYMv{~w=^DP>v4ve_-JVSZ)NmU&K*bDLJN z0~wZ^hhKgI$Nuusz!YuDEOaFlVL3)3uefcKGAoHT`)@$(&>nLy$%KC(YfqaB>1(YF zYU7tr%^!Q^uAaZNW;pYV_OMT2m)W8(vf2C)t)>=xlLY&5|MRO4E&4(x>L5E=y1C+A zP}l3T(QhXo3WF{l-OwdGXfQQ6UHB$q_56A_fi^2mm7OBS&}gX9YpMegx`}`3z6cZv4QI5oLR3 z+!2Rb_g-1>Ks}s+{EbAT?PCwVhrdpmWGMu1fL+*%^Lz{G4N8Lcdw;xLkV618t0AE2 zhF=43C@q)gmlWgY;cgLDSWqtrm)e$1_AekD+{{vhmd?xu>V`zRr(Sv_oD=yta=-!_ zu(6$;UC+!`;ZYjZbiA*c-Xi0f!!-ibELP-J=a~fHkp(Lq01so$kQKBK@g_;i$nqB5 z3oQp*fwgQFa2yRgN{DKEkGiQ&irV=5L~HpB%um4b$LF60XfjO$%#>y7Iwo;Vf053(ySFAte#B5?^ljzH-FvpO*VE8_HT0FsLk zv`W^&ND9?}VQG?Qdc@Gsu)8X%E*hVfoSbaj>J;sVS=AI0uv_@ygN$q4=0EaW-CDnn zQ`6SoM8P&AGk`5sUnc6FU4ricZgH&{z6Qn4LFvaYcWxPsW3$;AD6BCDiaZ3!hG{>F z6ml;Z>1X%v-~Ux=$j^3d%CEovx3Ao}U3C0A~Rz5GjHD5^~2VI^{Ial9r69IDKxK9fcF=U}{Ax9rU%j z>p1G4zCGFeGtu#UG|SQM9y2m|%nGyGCZ{1oMW`!>tS}~_CU?}0(X=s+eYs+_pt^cu zifWOd+*a`h+ZS2aNF5G;+MRLqMGnY!J`AbrTl{6gT(?3mAv968`6gGwZryPRLAo+> zQ$a~zVEt5cuH`j9EHI-y?O?0BM?1tZxf{01c->|fHJu zu#(8%ATXks##0q55@Up!U^0shAlsXK@FCaS*_M_-!9Nl{)awbXvzPIIx!Wq!m-hYM z=98OF9RuY-{U_y-;g#%sO)k(y7JI0AEl*Ga3yKepqJE<=^Im}g7jrpG9RASjec+Uc z2t0!w4!Dwz`YM}96&%S&fDV|hBvMclqkrLVS0cQNb8$YN9!?&*1XOjRX`Z(;A5O;> zAny#0N9jS7-=x2q7ly4(J%AvTIf-+Vd3^-JK#3Pos;5tzlX#37cN@+Hx8uj(tmVKz zef2ZGeCkwKf>!i*;SvOuf2Bcnb#J>+jW{z}$Ye&O51$Bq1g1{(3Y!vRI6uuiJ@X%K zd4Y66VupZ!5x+WTBk2Q$GXiZ$y(FGSCEqOqpK(*4!QR5Tmod?I;bR5VG!!}P^aUwaP zQk1RUJ${X}-H1x&RYV~itc#75q6GZ!)X%zd!T5?^V1`PzmnJavMnK zmiJEF?2C;7z`idv`*CazCxo!~8JB0aBPCmThhT@}p zmblEji{&uI&Z;WIkd9yOMz%@r2Zm}C8lEfSw?C2+R!I^hhVqdnJ){S*(iE_uWV*nf zpMwgV_qnR?e=#u5GQJCd1=zfs3^oiG#yKt3FJgFp7}gvS*n;ss9?dN+I&8nfNB2D@ zsBOoJI;TPc<;ku9|J?rR>FEjZwHdhe`(P_>!Tpx&60)-MkZ_S{hZ}ym#~iOJ!PjBH zsbhnJ%=m2qOo9+RTz&~x($>y}3D1>`5_Wq6-3MM3?t}CG$7b;;uE5U*=R}a)1NU3j z2E`BYpr|ib9b1qMmFxa#QAYKrHe74BK$PC}nvBCv0)S#hz6_w@U4+iCD_0VI1K^8$ zf&0J!$yeP)kmP#mec(+i*nX6QH{U;vvgAYd_8rq_U?h%`QdU=2&sGia_b15>nNGNn z=4EEqH|cbFKzCi`_+bboXGcDLerrohI&4cWNN~f5Zg7VEGLYn?sAAR5R*jIoLzucFe;8umy#6( z8A+?Jbp6UtV{``3YT7Ui6g;Im`|`e0dXtL_X=1q_&-kZ+LcCq?pX9PJ@gF zj-wS*wPUPQJ=_-?RuugLdhx}EOKL>E=|b;!vXY?FfaE;4`YO*aOzz5pi{}W>1iCTt z0~=#nLtQcoSI$K9_UR+rMqeE1c|Vj+t{Sa3TDrP|+w5?i)IjqkB0)et)@|zU*^79y zifT(oG#~UvL0={LQjMZaaZdd`D=)OEy5(hfn&Jf>8KQUxaEhM0-~t~@vXX=U>YQc#g@-}oTS)V%Hni9 zY`6Fi^$1y(c~6DY%^ukiDD<$RzH(;{H!m7IxrYF8viu=hM_7TtoAX9rwC(=hi?*no&mmx;;%oBe43D1O2&%mjLLX9h z7x(+Y@7VKZy3loY6vp7p(o(CLDb`G`diW@CkQHd;7FQEwb+6n{w$n4id(4kY$j<-! z#iN;97Mf%ks~~>r%dG7Zu2{iqsKnGa7#9xCkQr6^*W^dacIp->ZB{c1Ursayee5Wo zQ9x(tDA%ta9eVWWQDDesTuJqpqJ^#Q>|JbaUpR8Uf7HL{W5=qg)cUldObsi1c#G?3 zZsm0v5Cw@^WD_Q=4Mg2!>Av8Pyx|I0=)P|e6|^>Bc7)J;vT`qjN;qvubhrL_pc@Gh+geElBg{D+g=p2kw(nX1tj$;@Cg7dT| zL_q025X>??xy$_AulcnyG-Bd-jfHqN#EwR!r7bKPEen?yMYG30T~c_(S1@L`X;~_) zoz3xn9yW*b*{nY6ejf(3EzG_Rm-Q!pY9QjEw$L9tT;$la9>1+M0FdLD+Ap}Na~j1x z*1DWHaR}F%F&zW|nkM%EAP$u%Tly& zIo|<7p){ef{NB;B;h0*77s$EDwcXhA*WJofr%nlU)A2Ft3cWD0|LlD+0A(1~S0?x5 z9@=oj`mc|j0Yh2&`9s&Yr)rxH%APgKx_&RuH0USOO=3%m9H&EGVrw9&W{KwJji;9F zfZQ^$e!wM{3QUk~EK5*Oeg26eiPEN3`GE(l=;qFyFuoGz4qs8uD zvm|SlOG%jq2Umj0IgoDDW7|8(e)sMjWu{}QZrZ`o&@cj%{M>5wo|pZDgHpa>gWLEZ zP&uLQ-SiVI2c-~V&AASg$G?} zme=H7xwks3ZMnl-J^wBeLGm3c{s27!UdCN`K=|1UaA_FOJT-Xi*I@M=9#$9n+8nYQ zdnj(u_FF!iKk+=`Od83bkZ6>^jk7{%wyGiM<)bYx@UEXIgsN=pPaaw|MH2*VbvB6~b0p@8GWR(@Z<_yikiR0{5^M|0SA#rT z{k0j%ujf?b_#DKnZgrhc@7gB<0CP4k(!Cbg1w2h&Eb-}=!9S&DdFbkp?r{`k@sX-PEXYxRX#B>{HM;5dQE|~o%w6yHqkn7pvufH@8s)^ z#m4KMY-y8(IDx#*Zm-Z?;bJpu5ecejO!vlK0On6F`Z7Y=!!44u9}K|EE&2jEBF@b@ zY*jI&7kO?qM5;sGZHYi+>fr~)26isW1arP{H`IWrw%oCbe580FNOM{i7xBI`udBeb zfEE~r!3aR2JX6>|&aK|>NZq+eC7ho&KxumR?CLA-k#gHuFxvL)-UF%$TfeR|eE|ZH zzTJkNmZh43E!;9s^-R%|ECdjiV6o7x5FQ40{-}RPngWPL`#aaU^@Z_|EnB&F9=pmr zYOwf^A%p*_YiG_P47T+O0uw$t5n36PyjtzPh??JZsV+EvYd4p1Ox`iQc@`!Nmu&vL zZ?c)6i8r3k&wsoL{Um)$Kx}bItgDgDbL0F+P7b}eD-9hU|Dl&dem%u0U+wZwh*^6} zDHg(uE9Ri%?r`naga%;7LdXX9bD2mjR?o-QS0Ap0$gVNC-ce-t$niP$)6qCNQ*24e zbsC`+z6^_%>j@F4rJCDW3D%VOk-~oAo8<@V^TU0(-WJ8o#y z8pjU&$ov_j^zY09ISu_mv`xzS%K$3qMCG@Rfk^}omfPC|?R#T-t;rSNbx!8|ez$D_ zW!B^(;*RsKf2?;yQ36%%^N>XK{GVjNP=NP~0-wt^GeZ&+0|uoJa>J6Xq%Bw0p_BH) z-Pn+goo(TKvf&mhI+-Lu16iUB@5(2#w}Q%Lu)=Wn`SM|-JWRM*K?3RVZLKo6i9xOHu_m>|PiOvh|M02WY#`tN9rba>IGPTAg^Mst5 z7H7=nkUx$nv65bIo_NUU@so;Et7fJx>3P&2D5iT2$z--N%R7plt*R!!Y4V{fi4rtH zvWgQ-Tv{9XqM5tG>a&Tffnm{`;mc*X%IjhQt+4lKw`AFC(T{b_mCYj22lFdH1y&TP-v4UkN9CpR}S;?5fEzXw|w z*u3*k4gSc^Gs?Qr!ZpZ@3A)zcglmT@ddc_M7zV%Ol9Cdb{pwv|hE|T-;+LEO3guYA zaiaw3sJ6s^;>XbSv2wF8JS(?BR)CyTIt!URk*M0dQ@EBbt+`8-Jdr|28gCLi*aqn_ zPG82WQk8$bo)(pl?-5n;#6jtsb7$*U%>C~WhBop1V&a@_5*$+e2FC^l2Mx4UKO3tY zEgRA$l{`n{WMm{00moI21lLHz zq4ori(LM*6D2+a|CZ=>8+^qC~4l$}lxouy>`c{=z8OCjeTvwkUSC~}u($;?j(0~y^ zu(2WN`Q^6U@LsN>+q7jKG-XDr!jrOs0-a#1R&JVxS(A3`oyN1KkO7AyjpbNfu%ilf zi5)eJa<{wv23OWoq9B(X7KNhTv%3L%n$P1w2IIsLf_PRJ#e&`HLUwus%|-~yF>&Hw{Nh3lcjQ_mSBlce zdKzzGj^Gp~pbJZzFS7O_hz+)Pd@b@6tFY1monWhUN#I#H+S0A%)xIlv?mbs|;qIug zQp9MWlv;;+)%HhQj6v;MClC)Y^1oj=+KN8s=PQE0)vYrEwp08J5(M z{Hi&=E7seu{JsJCv>$bFoBq>JL48HklF+CeM|xVZsv6UkVcAWwp;2RS(bhH?Dd`Nn z{?*rAFbUJ9m&5aFhx`vzdVhVPWxGWy_x(SCpM6WJ!mNZocn=QGe*^qJhys$P$L#gP z!+YQWkGMDSVxr$!x{v&kt){?kAZwF2$JQrAHpXery0wx z8{99Pa#wXTN?3B~X1BVkOLI`Xxoq@x7Vn^Il!H-1g3q#0-KaK^A60Q+LEqy5JgaX& zM-5m`j$YL&!7vs}FQ^hldZ>eoD|a@nG8}^eKxVG7<`4T}wHObqIDG3%@t=?mRUjQ|3OP~u zc0th(S6RFzc58Zcekk-WAFQ!JU|(!_z|e`VL{6WkdTL!df60QpC)zn|w>ZB+^+J)DKf5%< zHn{=%y6FV3U+FBmdJ=Mjx_lCWt$W9{X7@5RG5kq91mZ32Z|$E-nl-^X6p6NY*d?$u zAY{h`tU(I(e>0-9mY4g4=%VW!L8a;*zW&Jq1r6cOEB90;vO(!uVbHhVehUZ&viz`Q z4R$CmWjg z!2_C#CpUXT&3fz}ND>^n9e=chVuunoa2!SnnDDrtA+#NL8sKyPV&~6I;xP)7e&ktsR+n=Bh6n}ks;6E%iA#S)-;6^|v znUuQ$pWx4pdx)T$TxoD%t(~`t{^4$Ybf6AW=$NN%?Jw~q4tsifrZU@2zJ|kw;yrDw z2}ifdcj-p8Y1>XQB;wTk2h9ij`<47qk#I!fQWlF?&DG~gbLwekzoGh1M3IpJ^-8I3 zBL=aTKyh1tbdDi`1p8W?es!)WQxch6#>U{_Cq5&aB#TXA4P2weacW{7Z><`L6$w}| z%7OWLMae`dt|*;Np|-Np(NQav*;K;p{pMdy)chwv;dP@gxpVi&Wn$~VO&ccjlK8Mh zq7rVF=$d06w{ZJ@SU~6a{Pdamiarpw-LtdI;;4ixjKsG*GE8$^U~FBEN=4M5Wx~54 zo6ukxL*BId;=K`~)n9!9IXqBDfr6UPeA4G|x~_7nF0&1$!I`m$nM_itM!W^2K{8QE ziOPKD-T75_Q{D0IIU64?8^r(4emuS61~E0D<;HU;cl$c3)hdR+on{A5$HIhtD;SSj zpe>KIT6y+$eH`c-NmmG>cuDeMSdH}UBY(+ARB$=x&+kcLU%#B)_+p2mDHu1*iWP>#2ZSC=%l0wTsT8+Io`G-`!!CP%D;K@rlQ)PlNDfY zij8V)z61pWw-uI2%br<9I-t8vvP-y*0?NkAN<1bY&t4|l5vtQ+@A)=Yq( z%^w^btah60L$9nubLY;@mIa1bWK!s}xEkAzIaJXP|6u zRZ{Xc^(`ql`dmEkNsqzPvcLX1N@;=w1KX#i;AM$w21p_B=QonhH{GZq>Qs#$!!lZ$ zRP$hPLO6Ppk}3_P6e(>9Pb!qQH=eexfw2`)o4Petv&)r+9VB(bfdT6S{fU5`L!^72 zSC~sfbUQvAL$_G`It;H=eLMdz1CB~GiErFxmsVp=Pu=4N4KDGd^0z%XfS)?69~UF@ z=Wr8I1+fsCyWa~|>7VBoKueY(3VbY@b-S$ph--HaR3Q2Y@;10!@(W&_dHYh4l)DiB z%_t;!M!~SHd@Kyw^y+ylR#n;PH^~P*{~C6XK)T-jRU<-S3V-ptdAKr}6@&Z3i;exq zDp=!Mx^F^9)V*InDVD$K=#8Sk-91s)pMx6(xd?^>JY+~{mT3;0j~yKyA={%f*?d$3 zo=0`h`)g)$Vb!vy@l@ZRjdkxa7b&=Z;oH6JK;$Aq60sXQsw}RJ*?&6&ENewQzPPMP#;J zZ~%;;sg5O@&9tUW)uz0uL*JPtP+FR1T?VjvDnV@nFaX}&e+g=(Yrcw%$%8w zx+h!sfsJLI7?cljMEO{W1p$MQp0*ibElmVvxKJPkCDtTaHKZnp7(g+L78k{e*c(qc zHOOb7cq?i2r41}7b;TjDHOh6~_v0oIYEkwl1L|{skAT4#@PjdIu%Q;+O&sXG>O< z7iDh_w=aBmf@=9e7gB=iX0c-++fgf+R=s863Wi1E7?O~ihqmyoKokd|Bu(X2;GOzq z8HYBc(N#&g-wL9AsA<)z10;F;bZqn^v5}A09{_7SnWdHECHBQH54Y$CaV=P8o0M47 z`%6ryF@iE>M_ZUdpdk6RQblb9;03$IR9?A$Jn&<#xO{&32T`du@n=kMDyOZcd2ks} z@&i<;l;A|pZLeguDD7lQ%mM-$)uM%ftALr!B0PQa1`mY$x@&&+M}s~hsSs7Ib}gU~ zc}s}}V>mqCC^oArMl1EPx%AJ4WpfhMzPWe~^*8~o5h+`a?&@I;GB;C*eTCFJBZiEu zni*a-QCc~v6?Kwq<7umAjT4@zn&>#mq1yY?t1eBVjANvj6$HD6si*`W^|`8E33&OO zwt1r0-{0`vKp^NOgaORK`x7lcrf`B_J#6MtWt=$+5H`lbJ>34X;@6q=j65VLayLx5T{z$B7 za+WK~!;wp#Iv|3*3c#Try@&uM)_m|*@Xz}GJMP; z!Iua-pH0Q}j-jf#%0$2^?zr0$!}W4X@}nzk@|GPC@fiQCjXuD$&R(LNUp$>Qi#**t zx>Cb1zaVwQb9C%@M#aDYdsYm>I)Ye?vXJ8WfO9Ac5fyJGWNs$AKdf`dk8c38U2F|d zFBAG<^?YbuOE297r%0iiBC?CJ7(nk34sBkpqaAJ_>JEr%wNK&_IBM(G@)7vjX2WnY zpY31n(Ik%Wu4r+9#X1BAWB)9b zIji$nD#qSvav_!o>7>&gVnNqtGhH{%XGW5?YK!^jIt-61Fl?$c_S%zminb0{#^>OE zW3NKi?X%`NoR<34Tn{x7C5>Ex6|))l98Wtqbtf>+MvN1P)hH7^NiA$V@a9ul-TKEQe5Hy@|SACEzlb5QcQ+ z3ezDwP%$!5YXsHzM{`;xL3F{^h=PD_CaHCfJ!~3uRDp@u)QTy*5R$rJiXVqTHo}I>i9&76$d*SL)zCt}@IdE}S zV|Uhw#Rgz{Aef8XC6bx&d3aD-r1tPmX=ymuY^oERYMU8gbpjJ<<>gQJYLQl5M9V zWdwU!n-}MW_d;{IbQ5pRR#r%8xGgVemnh6`fNn_2=DR+X0u8%uZTv)Tb7nk;&e(d$ z@n<3`TW#G2?0D_2dzNz_8yIc)Fn8J4lJmcHU%FJ{+q9jxZvUv_>hL0X(bmk`AC{}Q zE&Aol!``y%9{jOu(d8G?556f6ep}AY=WD6kOcsvj{Pl{>Z*)r;4b&fempIv9&Sucr zC3In@uy|cCx9a?;yQ-d)0HT!VKBviGo)j7AYA<=7~p&9x0qT zrco2r`BF)tbFE<9dSj5w#;(H6I5PnePxLc)Imx3$KN8PKS02&N{j;K&D0=*r%0E;2 z-$_BG=;!R;{*80sxX67#e*g21e`5vsU-PGpot>TgC(q=2ez)e$+qe3T7OoPPULR9U z2m{KQzthn|1|?i!(pj*(u3EL8EtZs=EPLVi)D4j}t{l^ZhP^>uIduN(;l{>B>5X-5 zyXN;#c4~_AM=fpGlt`JVyTb5^3brf5h{NP49?3P88x6|GdwKRnOeQtTEtEe!Hulmx zf4>>qs##_ErJW`w>%yXG^m}fh8p~+wsOijGfN zF3WAoPAiVDENF0AOUdS2?%TJomND?n8uM!R_`MkR0`udVNtXSQ*BybQGdJn+t*<*~ zF{!>jJ`Urrj~reaZ;)ZRNvxJ}P-cm*O~$QTYwNTIbPpd_O>ogk!Hr?Z++rR_8$a6p zVHZPZ6maJ?I7NXrQ8|a zHTwvc!D(w4cMq5!S5z8{=uNTj^=I}j`M+^JozJFPjRsY+)qY*{LM80d(L)w7wN)wy zZ{2peYnvZc;}*X+@`bRxmGA3KE$z9qXcG=t%en2M5~r`S@O-)|#iCV)@@R`W?^xlh zOui;nb;UB>YbvH)LJmJxGseePzJ%WFU(RghF5+R5E@gY5e|AZuQnDOKzOX#iQ{1Yz zVa2>`s?u;dUSA(7+{zL~uhv61id8j}19=nYPVNwGn=m3gK)Eu9MT7k+0_si8j$*F=@< z=$RWV@zvxStqVW@Sjg98P;*i@Yzkdn;k1uR?Ao2Hj{ILmB&1;A17X^Ssj`XnVlV3)3%bfFs>+IzfXg%_UqS) zenDNF@3iP`$MzO~FcQsOPvLmd({dJO?|{_emHhf*7R{;CgGzVfHJ05t63#m%nzY(N z6vh=&2jfmj1!Q4K|9aJLILA%idmEX#8k0uFqRZ~E{q5FY$vv-_mh!OyhCAl(v|(pu z%Wf76Ef4+ea_XUG6|zbfsGJGLFt?>v3@zLB$CV#Ff2%rnvxL5xLAmonOuQ*jr|5<0 z(u-I+zVc}~>=Om%=2G-WTMz(T$zoo{zEsG3<$n8>dyKVJ;LjSaoRx(ezG>jm^yX{P z*0pk=NQz*4pdxuKCfY zFDnbW*JoHWG=zTk^=0>%-t9buuvBp-mhHQ_s!B16K zA3D8Kv^$cA-|jF|ke=N=4=-gh5@vTwvOxw;PQ5gvJ9A`vf0x*G$cByMj>i8^nGxPk zG02GdQr6~M>3!70Hf+xFmB)TluMVZfLAhx;L2J}?|Kf#j(iGi!>W8Ihl{n;srj4%; zQWEExQ46H@QJ-&F$T_P=)hWici`CR;F;91Ca#bt#^5Ubbqx^>Bdg3`H^xCp*RR@of zG4GBzQmx^o9#Ky#w{_-LP1ZAFy$1!=H~dOjp7Wfk_H|_)yi@&}v?0VVY!@$>dA>=- z%B=CJMo}~pXPDezaN$OFu`4PZlVGw3-_1E7vHEDY7v%~(2vYt^dy)|D<@{{zN zx+Z_ie|6Z3?dzG%dVtkxeyeAqirw#DUTROGR_h=i>y_+9Py7as(f4--ys}7;6P)Dz zEm=ZK)xDv(Y&HUX3+{|lg2pl8uf^U`#X4Hih@*0%umrxk`?L< zX@B^AP_To}8cM{1jP#2Xj&BB93tyMS5@;38LO3K|o>$_;d+(72UKQ~8us!Br|LfNd zLsg4*J@YR&ML1q?AQERSedxaK7^h;&VMfwzGn<>6U$>>UxTY^U=eQGFYJ=0QqY})~ z+vfS~NQbOEsujY{qI2llE2VG&W0XrPu+7J~V9};OD74KldT`yI>h(P1^1P_#<|9^u zESLC!ZHXl(PtmIWDs!bd*yg&G+pcF_EM*=?7cP{U*saundC7R`MQRwOr*;-+Oq^%{ z%0ZkEJXvP8yVZg-Sly*KyWjpZW>rm&y?tAMr!kQ%(t%d4yN-sk=P89~EBX}(CjnU) znPO+#vXk_3qgzJ5TnZ%T#hn}N$)S|Ed6bR zl=SW9Eb0!}t0%tF&5swQvz(Y2n3TjN-v4421a5 zx9riJ>;qA?7wS2?6V2G8p)2zHeB!lDRj_sa*c-oqr!!Qhluzdmd|V%`B{-SV^&LVu zLEx2iUv4{3Ls_AfTjFs|S#*|1G;Oz^Zg_UWj5LIAhQsUYVQ zjA!9@6$uiS?`!?%kaF^P_;>+S5>11O~wcf7z{`qzDdzjl~d zEe(F#sOS_}<3eKdqT!W4nNcHEQdpZARmHxI7kzw{3(PmUZ+F#BGGLf*isWB*voE%` zJad;S@fD7~Xy6H6w{=$t$*LTZRmeHfkNkUwz;Flfk+@IRQYLi z1kX$ds0|SgOY%EWdUZCf_H}>j7+S-YiaKzjhm!OA8$`GoL3?#oKS?qizy2ah=iaR{ z)E>To4v$jPi>M?&qUc9Bwm5gcyN2W`!$$=q(TjXhFSIeidaImZ&t z{2+(dpXFPP+KQ8RzW%c>Bc&B>Bi2wTGiN5z&t}Q=pYygqvya$z8%>#NOwhk)&e^$# zNbmK(#>U3V>11U0f4KR5(0-gi#VP$bx#kPf#YNN<)5quTG%6pbhkUz&gngv-C8{^< zDNO>__Iz|u8l73ub34JKX}!+y*OVsk?B55W(-Rwwphif!ezt57q`%gli0yRJbM$-d zcV}Dq40IjKa`U&bo9Y%{=VFC6J9Exzn-sp%r*Z~IMVXN_C5kdpX`sCDyflso6(QdF zJCRUE)$VETQz>R{Xnk|Ke0V~`Hvjr5DiTUjst9 zmE0z&!S?79B6~J5DYyS%6I$?gC*aIzMXcrpUj)nD96g%|hAu{8%?17$g=iY}xx@#f z7SzNugvc*O(1r#f8gu>VkQdp!ZoBvlcUQf>RO3|meCUi&s~q={w8M04l2>?-US{fRMyM&_MGWyP@DB67+0Fe^!-pl0V=MFUZtR>iXX0re@0j*hc zPHk%?Z6~lI_Mrh@ENFunepk6qU!=TE$w+wcN79Cr@bM$%LqVRChRtP3CG>nh!=*F< z+6YwM9tzOnU8}KwT1Hv|p|xQp>2hn?8b?dv)oY)kMs6374%csRpkosTJc~5OGqMUt zuJn>ey5^9cN2G%oAL{u*!Z(r3!rMEQ^oA^I_pS>L5-YbtD)s#u!5JKe!hiE-KWR-F zRZ}OznL-4)94g0MXw-CCX$TFBqij(*AJl&&<-o_EJ?PF>A4Or(S`AsCjv$Uz#;=?q zf>$L(bLsRTS#FiM-3ub;6X8NrQ?m)JlWz^AOryV8w6v)EF`Ao@Dx_ykR|$x{x=Iug z?|IZaDNp0N0@=aA!l*s$_l9LUJqJj%ol+P-Q?&^X zwk#%n`a}br19dRKhWI4TUYP~Q^%E7r`Fi-poOe=xrp)Ra_T{#2#n%0(J2RR8*UFhr z(k}|9qK>Sb2_(c0p=|6ba?w>bWnVFQr_!VKq7tQr$7U|8JG%IlHxdljrZ<~mE;^T{ErRm*RF8$x+awd?#NB8E;%kwV@rOF~ zdQUR9U9XQSV|j+ubABx)SdFBYERTPrmxBQtH+HqP$BFZCrUA$A70E4O>KvHv-ZkHq z)5@HGa+Oln0u`NizaIT#)t%k*V-!p2M>tH`%Mb6&?{+)+qLrD~#$-q>wqb8>3%aK% zHAUsfD2xbl8`f3qMJ9@&+SCj$bMx>9&20D-cM&d+5Gg!7+93tsB=p8j_OQt*IV5<8n}7yRu_|Hap$@shjz zka-fn1?f^1;GmP@nX+mU<7O4@SS&m?e@!Oc4TqEj{*pEm@TXzMk-EP})4z(m#muDh zsbSwK?vd=N(vANAyaM9l|5ml(|MLp}FY*dJLHQ$T0}#yFeE%UFfP3|ZK?d_6lzd>e z>}*gGS1guZ1kYr{jv4OWxs145zfUELjHwl5R^yrAKlpfA&3 zVqjwOYETOiE_KnvlQ!zhdk;37)2d7ov;@Z*HMpuE0}N9O9H94Dv-7iMAuA|(e(z;# z!&dMpyWQ;a-u$^a2!iWw@`;mWf~RFA^rFcW1at(dKk|reqeOiKhZ1N_#Lk>?|LwIU@+aNrU60fU`BKK zqm3WU^-W9&KP>*kGTocC4yjegu1QJ_uRLi+Jv>#QRdZu_Wk%JpqkcOcs~K1`C?Y;s zjMu6m-qh0Y7$AK*bJ$0-M*V|?MIrFFl0yhW!uI9baF1a`@_-lGvVzGtb#IkCg+~q)4-j^A_+x{YNCOb&yCq=*Z>*=WWyX~iq;j3fmM{xc!y_Wr`3Yga zEsA(K=F?F(`&;Q({zMZ1knPU6`-z>{rj)`W40Sa^cin7xH~~}t5^41O%sivyvgb1U SgSL~uNzpafL*MoDx&H#Uuy2L{ literal 0 HcmV?d00001 diff --git a/posts/stereo/1/stereo_sphere.png b/posts/stereo/1/stereo_sphere.png new file mode 100644 index 0000000000000000000000000000000000000000..52ec591d459610caa389f584d942131c19c15cdd GIT binary patch literal 120577 zcmZ^L2RN2r_&-u!4YN>Qyf)d9?7f9hh>VPEviEG*ue~D5mMx>~hF*J%%;L4f*OvJ| zk5#|x_xpdZtLv+t=bUq&dwlNCeV_9Px~D9A<>HNt7#J8=-zvkyTxwU_Uoc71C7b5*4MvLI2#H?_=5l;2-pQm7QZX84xAr{PD_Cl1+$#jtT z`M8*9SEXWgX6!6UU*U-CFR^O>jH^-~~KXn>DSxxzR4;;%pnFff#cj2Rni zP12VwW!jY04EIR0N7FY<5Qrg3P4mr|u}g6?QVeQKOVi@wJpZ4W zUxSHVyaVSD*cZUipv1qHMqv1HVxkj%VER!KibZ(v3_4!>YvniBFwq~bu@gxetU#M? zCs7Fz{kHzs>BQa$gBOIk?Zpg!;UbzYi9UDy=b^!8;Agn!GWlSv7l9GAVU+TN)_mSqv zg*#hXg0=PZQt~!?$o{Gf6L$9%a3u4z7#zRzbPXgbm-x(huK%-28dxQ0B7+mg%I?=k zoF9bXSQ_lH|2u&n4=nNl#Csfj+bk@KzfMz2>kHqqX`182p1@Y~uc@lK zDDihJCd?6uVL$SbI#ZH>EEU)@tTTe>-xv!4F{U*sZAs0^jb*jM!`*iu`z!zvoH#%< zelqM=7=CW_zKG6+rY`osbNk5yUtm;h5s8R@ z9(VzrZ#|Bgqs9J47vb)I8wiD)@cW+^EP(^-tx>{Sjs!i@Gbh{TYI7YTeDFx!Xn1L}?E{-FiIOTP=>;J_6le-xFDO^wAJrf&%Wnd=?M^y7p ztmB+b?-&ilZ@0_TBuHR}tlijqH{e;zKNgb#+6%`BVQogEjRPyYi<#=u_hRU-+o2%4yU5i|E_uKW|aH6V0ntfkEGu?55cY6)@%I%1wl zwH^wjdXJf1O^|RNQtEk=`G0ntKnIi>#ls9jCkJ*MqIXID@e?;15M;e(T_iBaPz?W( z63k4&Gi$&30$dCapI!G^gAlIUjNi(zyEKR}ARuQ5CjDimDT{yu<(%46_T z5+i<4WB3UH2aG`l-9MWbSm`W0^@xC#^zZ~Xc$v}Y=x#RIS(|TB3zDb1_UizyC@5Iwco{21 z98uBO`{@}@>_fx$f6xg7tCztSu9Cz#1xCqZ{q{?ilEOM$9m9_qSUdZ2!o-nwz|;S! zonC4%Hh?8l0t1T;w;0D>(SR=COgjV#Ou(XPe9V`z2*?7&=5fFO_7lR>T?H?nD)=k# z@-}?n<%P#yJY(^}?DF5eT?TvOmXw!8bWvb2i$B3fFNNL~_B&f(O#%c#eB>Jn;KgCU zu-w%Dc<~cp))ac{c@VbRgurqdALK6ojZw}EK(x!Q#sC1bR6vf*>P)!t&)^sdWa4=c z!H=W#=Hkk`w;)iY+BU z?CdcH)+9*1sJF6uV8>b51n9(xtXpTg?qUI!E_#{NApufUabxd9IJNNK@K}=r+d-+m zRRVjB!SHXx{;LLp1OV->JyOj0SOf{UP+;Lcx%u~TEwItnlbksw>?&ChlGS&z)?sG` z$OmcBwV+9z0~^7~3(*sD>hu4^MhxIJSy+I#bz!Ti6ze^FsM^}vdTCVl2L72o5S(6E zO)Kly)z5(`OpeXOjE~Xy*9q~!rcZ$2-c9ErDCW+13;w z669oT1_D+JOSO8V)`dQ$5D6S4gh#s!FcTo5|A~ah&;9g( zqCB|T9Eq?9I3aH1_7Arq0O-ek2T&Y6LM?6Wi<>ScCemyi99zLSum2`-0x~c|A}(-| zB3N;w`jIo82AiK1a4+7QL_i_B)KJ1CL>Gqg?Em$!KVa9M8W|u*3P>U7n|}L^y#18* zHx(nEVb~{Q2GN1Z@0@VHB#La!v#nuZT>+^&8VieH_BMot8~^pXo%!}XkQNdzgQ3g7 zv(=Zgq1xosgH-aK;6X0OiA`WUjd^CG**lmtsC`Nwci?Is7xm=93@K81%n9wrP1`RtPr#;m^yYL)>YO46i45l|!-4AErNK+AHrqSig& z6#jVdb^!2MibpCC(mjX)Go3`l6R>Q`ZM%8kG$bzp-f*%MpT5Q-nPtJU+XKupI( z;HyqsS{?#2w&ux3q+g%W6FUOYoOCO6dz~bl0=w5+HY@>o`Y(3Xo>C>sj4B$X@eCth@ zFk$Pj04gs0%3eEt2(q>PNw#jV0!d=k%1!;RUJ^)vRNBVOq`+?=Qn1v>*(-mlQ+F|7 z=TC@UX@Hki$JWfATg`SneU9M71?$o=sa*gvdw?41U(eEd3Yilh(GK)A9U!I<@#CDE z_qX7~M9ggSb4>rJoIO=jz)j z>lXmv5<`TS@tipKUp)dR<0HP>4E;kH#1E~_B1z87kPqq%*F}^s36O(=KEhpW;F#|( znJv$eoS9OK6$oz_Mp^)Zn*%2@FY^GQ~`FW`xf&3)Gl2hpV)1o5-7pK4hqL%n0-$6{n^$4Py7)5 zMIjr+urzf9k@2ROUQA@hSv|%o05;bx8?gxz#U&Mx@kqU4b6}&#@NrtsLrHBLB1|i& z2+Gr?iwA+1H&Tjf1I%#@gkso?bME5l&`Yv_?R}t5{{(PM6T&e~**I^Y|D$ae!@y8! zGWsD9AnPwd2qeADNE*>Q7B?-g^_Cjpzwep&p z8bs~e#M4*A4C){vbepmaL<8_7x}ON(zQo*srJkq^4Z?ZtVI%}_4W9`i4~4CM zzQTOvwA3+BfE4bRsRb>2gf{>$|HT_EMSxe@J=r$U3*0mjMCkth{_Ew>El#7>x4{!+ zrx}MwX4k;Z{DL5p2GM4o?L$BcKz)}%&oyWQW~dIM`8snd-a2rGk%7qUabQtfV9{C% zcY)KiEcP6r_&T(YE~xj=cT``VY|9wn^n1=oi0+D2f^ESfQq{uC za!ZWcr)>94gb~9rIl6zuA9zmqLm9)}2B|RH>cv(IrwuBl55~cOog69s%@r{96}BG8 z(`Wf0Pv6JDM{g@ym`p9th2WER)?xMmusZTUF|eB_G{--N9a9TN!N)e$iy`w%)#2v+ zb*il^*P_{ydrr;S1d2w}bQ-8*=yz~jajV#{v$A=~kXDEvKFW>Pa2Q`fH>nYw$O0NB zA1FA~pxqqzpBj6&)gKpU?1W^(mwWK1+-topHomP~%ECTXur_c>9a>sYRX{61WC*!& z4>_<9>^zs*e`g`He>hu*IrCIK2#ETS9r+6ZJ-~zBB*e4bu+-jb`7G$|pPyQt*0~Xi$P1osBznlLMjmNfJ-@OBN2oj8fG8cmq(4 z_4^)v{QYWsPd`0vuL3>oTBp)j)idyw2Puq*5cgsPwf zLfcC%h}n4YCx^1*HS|+7VY#QGCXj(ZH)LWy@_JF&x^x6S<^B2Tq}UyfLwe!D)b2_= zpP%OxtcNoCsP}%O0(>@ zCs?1}M|JR4ty3hgk9_P+pU*+(oSp7N)fU)lim<|db81E}&`wgBOlTNFhkvX9h*%h} zkyP(?HZ3T2SMuf5@u6vvgtPOMO^1v1S1z=$M%Vo(k-7ANR^+KnN~*VZZoIz6ydTag zdV6!YKI{DUuTleA)U<5C>kyOv>AFcvS0+sqlCFPed z8zbN#V=jMX@^Dr*cBi^teZB!RGsR6NSH)58ckCO2JIKU<3ThGwjQmjF9z*)3eHa_n87%0Y%&{f3T$*95V` ze)wVJOVOI~L7Pcq>>o`l2>X1a?*jI?0ojyv|VX+^oVY)6fvd~D=b zqU6BIq-)Y(`={+?k|-#SS$2XRw3ci%I}9$wzz;_{nK!05Se#Zf)Mh%EH%1&3gb!=f zY(3M}QunPsNPeO3X9yde9Be81G45KN3A#n`v$HE5{B)AhCo7BsNOW;{GUoCh+=-YQkYng*qT3_~Qby=H&)hffW{3E=5(ilF?86xxUK z3g>yyEYQnfOQGYhTT{;T{zV$&KKquT<`F;Tn5|Vyv7uF}mUYJ9K|*Ff>0Ds-N7BSI zcKT1tieUD-U!lzkPtfE1aogmm$;C`KKpwh5bx;yOOCo?ylnEysj$p-1>7)s^QCsFt z{EM<~Uh&CK3-q93<=0bMRPC!B$K$GLIssrW>X~FOB$Q(;U_jI;-PgnG$6ZVk zz*cKMfI1dhjFktFHcn3|B&qw2Ue}}fX9+;+k$fhv35{mG0V!k`kRNa+_&#p)NFqSy z0dJ#txC4^!xP}SB*<$z%jD!OVY8F^|{|J2=s^*W477L00p5%n=`X8Y>OJBSP6Q-lGhM3l0s6 z3JckVaQ|{fUolxAEX8%XDrm|#dDvBTK#e2)iHh|{-eS-V9*6K6mVr{RoKYJ~+t4Hf?V^`g50>#S-U*eAP0;usxlu5B=!d4Kx#)5Hb@Z7wm_Ii225ws|;#DbHq;56XxLd&#LyT|e=7!*{x?))~5tvdA1SiU&#=Itr6N=(je*Ipn0)?=E zoXdQSS^z$a(?Wql?b_=<{nV&G`EpQ60o0HH+77O-9GS_FH6mdUr6c4uudXno_=x`W zE`ZlGw}RIci$d+MD+*pe&;4TGYwKikT5DI>|J{k#v$s>kvcc$+)|YxR z1e&k*LP}LJ$GYIA1)k<)gZ;97&m6A2KZsKAl$ckTdx6?({=4HK&xBpP>`Kc}Y z)T;&HO}UWscbG~m97*ZhzyqSKH$(Bq5nOPpgCt<{9%prTEW0m}TY;mwWBIekcwXQ8 z&YK&8_0g#~|No&5Q2x->ZMTRHB1;u{&4D^R7-!kYPcMNSUZJ^tY+M6v z2*)Ec9~}vy#f=p`IFTC$Kb+vWxlvxkyn%FK+K?3OD;#dJ6V%H%DSPgMV@)Bp(wO7c zg{6YQ2wRH%)VBWKrOdmWJCalu3+U{RdE2WcX!opE>$W_WDP;1v)r% zp{zdZ>2^02700`9o#TQWG3TZC->V#2F^vmmr+3Gw5N-C>+mGF)E!-*pvpKbJ)hXPEiFlQXltf4<{?>+Q9v_>FPXkSz_(A|u3! zQxhaWZN`_yxfhSz@cT>X+{YReA5!>naiMTU4%%kH4PlhW#y&~_es&NAdQ{*-z{^*` z#~Ne9ZA(Jnr>J@LNtUXQ+j`czuO+!yin9-x7t!;~pIB!-5CCubr>s24k#>{~h`{l{ zD{38nrB_T-C)x1dHUpyg4feDWgzT^7c#dO405o)#Mk0EskDNk|5NI^}{ts(WS>!Mg zt?-HU1c2krJCe1%p>_4u#RwwgzyORFaIBqkAbZQDode7VIX!NY=!?s zBwirWkEdD3hocEb$6@eVdm(Z%_id)ZahQogr%5c2=#G@-S4gCl$CeT?S=hmJl;tq6 zLS#TQtBf$c_Baf0V_B8}G#4uWmGOU1K%7tx5KlK%bsd~C0fm!*CQA(y=r|tP-QWrK zlaC;?3B7-udD3PCr&RW5r&O-TkJ~`9JlaDW4sa5YZ+;rbaGQLj2sJ3NI`IC-bKJCW zR|M8s?CL$fbRtKX@B#>stNQbp%K0`}fpqi!*Il-w4FKZ;MJ-V_ftIiG9bTw5Y1MR&O~5B54^hbmQaEeloW zD}8iweYTck+(#D#E+-Y9IP=+&KcqsxMv(1KTgM$s#z^?#((=uXcH5f(#xjm-GQqL8 zeOul|YKN=(Pc$XZZgUVpM|!a1O~0WBdA`~MK~=k4r#+{*!?Bz4Xa9A*S6J2Vl4)N% zskNHRsFPbdeR$r$JHh4q77H4g2krIOJ@=>%o~e!R#Hms38MMBPh9B<^!w&(j-!va* zaDpZ}gN*ONi#Q?&b{n5mJZTcvdIj1n(F1iOyRoBNhn@9%gif=wbrMLQ#jrz{$dUcM zZNa7cTO-_B61Dp-J|DI{XXW^85!^RmqQlbyU&Wel=eS;!4E;`dvr_B z@4H_qJ0#%H^i-13NA7plyZ@)WF=(XVHRE#A>C2U81<87zs?6{Eb_DArbC(bDs0y1M z=_mE_9?A1!>Fy3knm>UED@29#8pAHKg{8+ zI_k1+b}s_#*fw8et?>>$s@i)+d81hc&v^Smk(xzooVaRUo`To@g2HPN;lZ`--#&1u zn0Cc?v^;$_+AOU_2SKS!QN(sjbC?p9&_>q*H6EG#l)V6XVU_aFK$6FrzIi#tv{i-o zrUOgp-f)R~?^^1mx2ecI8f{uBif?_l_(5n#W%)k7NKRj@=1ssb@MT+@RvbWO_=1CJ z!)rXduRqm-5yg*X-SeBBwgu)e5PlWvXo5&>Jj~YIxODZ%<1zf$30!|}`P2s{-@vWt zemq>H06S;+yVX(&LF;Dq$9BKX)E`!W$fiNn!4H4<3HCRVvN*MpURYh2Is9DU@=iTF zW~ZC#!Ti^v7V`|5Mzq%6-L3JudL52tUJjNvjW^YtKC@8o2ka39+Q{-s_7=1*Nt|!c zMIB6UIYm23|JNxmzVb1AwVoPeE#M_YceTP+RpJPZ?3from%Msjyc~5jD>=LdeuV$2Hc*-Pf#pCZ8@^98qIF%hE zrItoJ9Owq1!bikYALdUQFD2DTJk8>kq;G}0EEjY1rHe$g;v@tk4p(%>U(usJ_FOlL z(s}9g>+QCn!^3iYS>(OprqW0gDK~aJ@f%0%ehZ|SF%?V<2%ohCu`~h~qvq~O4O;)o zM-P&k(gvrA&EM(VYs>CGhktpKMr7+#B}vr5ZlrL85_-^P1ucX0*}USC+Zs<9XoI2) znxRWag{{gGpeykAO4B@Vr`0&)(4Mq5Pmg~ApyO&$R~+7mv>^TiS43W#w0@_P)0P}y z|9WRmB@b}BSoa_vYK{BBpUL^O z5WV!mdhhru`_X~EEmp6)x`j)mI9Va~LKwWi6CimX!JBn5mg&4snx)7+j%rs&^*d!Suc9GL|oRku<2Rgq!+l zY~^KjW*6c#IQFSh*(>hfI+$)P`7zNf716%X;J1}GT3z2tXhhp26S!DUt|-rYXw#>P z#_10)oW@=4i_=hf`q1g#EA9ocm~783H6h4jQb2|2A%Zz80{umvs955+OyDKzS5fd? z8kT+QUDD{u1cDjXg0b~Nl|0e?-YR&t$qn&?hV+4VtsIBAY@f;3J4sZ6N1IAmn#hCc zzmFG)Xp?7|a}?M-ZHpPWu<*4p>}D;esM;El>fbI5NbEL>q3cID(uH`Ms>f?xp?AxE zB=Glzucm#lr+1Ctqd#Qk545cB816vckyf9g z7$ai2J3ZCPhl5jnOZ(r>@l(Re{``0|R=hMR;Gdtmb8W8jE1Rs@`z3sK6lb=Od8pcA zM{N=RgZeOrB%jmf=MXUT3Bd&F=Tx0AZDA_mkVwmU(p19X%#5pmYp2m?-edE!3Q+gD0VnW5~#jDobNG@kI1GJ*2T<2a^Le-tPu`WHF4 z+@Z8*fDJestg8vS;0Z44E%o2BqWcn9vi|ett{ypmA)VR9EsF4)s4HAaKWkBM-B#L4 z+UNb^3)S##JPQO$ZS>iGaQa&nN?)e@dYfSC%6vnj$GTR&=6L-dm413b{fo-giBjR` zJcP25FMgZZJ~0-^F3RQo(HX=r6GcM-#iTdrj_saYJ`juWjWk@lNz=GlHaCG zdRF|Vw$Oq{xa7ubSCeP%=)^^7{1n~F%IyKU)yR!!;{iqVx{NoQFQH6;oJ>qjVYj=}Bwg?W8xkomRxs$SrluM%2>#7~GR-tN2OJsaZ#f$VSP&m7#>(X%t*p zb1`L|!-W*UinZmv{bhcvL9*gT4;LnX;aBVDnf+Xm@QcQea%Sk=t+f9%^$zz3sqctP zG{}8a%vXw{(9!5WsO1nSg;P$zAHyFAWoFCI#Kh9}rb~r8?7VW~#3rI{p6sFpx84Ag z1~nPDE8Tr`*`)v`Ez{wvNmZzGV7X#mYK_PGhIs!zbiV?E0FEb;B{R9~8;Y9KIQ|*^Xgps)RRv%pzdi0#>9^Pp5 zs#eLZtyT^?CxnF0$eGeAq4g&3i#j~#bzGr)u$hsLD%puZ?=9a@gE~oC#=u``!YQqx z!}18k)9^UMwe`6nMc14EeTbY)kQ%BA5y+xL{n)rvGb9!MY@;lYvf3m8wt8;72Y+5$ z`$4q}Yi=ut$lG|eRASi;2mL<^D+dRP91nIms#*C~bDP{01T4MouCrvbR=)i-h5kI! z#Ox8}4-ZbLUc3|K*-PQ_U+wW>3O;CR1d^$Bemeq#OaYU?U!9}7EI+OCYz@#a}+re>$v^dOMn^Uw5v*?{ zlSw1hozQ_=8td8#Ob_Z*E1hphN1U^_;ul&)N6$xQr`*(L*;t5MC>kJ~p$Hqxz~*mJ z)p8z>aGwcF=89y$xE+QU8+}u>e}H!!*BU(-7eZG_eODXW;u>`QYH!PrT54W&XuFH7C$bR+1pD;QHQTx?}U~FimY3RFy zfiIGi5HEg?tHr!YPg5l&Ac>UzAqR7kOW7e3rZk9kV!f8x9^|O#Z?%@#R6>YOXizY^ z5ge73!9zFqDe={x;!;&wRCLUw%tJQx;O61Q+PM{Gv|WJFT?K{FoUDyCTa z?8_{?-G=gkLx5GB>-Gc#NJCYz`56rO2|vX&G`28_kW-gZw36m?tfHT$rW2ySOc7Zg zzK4tB-7;t1$jx!&V&wjl`CNp4K6j7bq4ALYx`}zY{sqN?-MuSH(2Xc*aC*(LI@|3G zAl(H!l&o4YhmjdYtr};{NdNOks;R<#1?SA5h|voi4zV2SH!L@dr*q#~QKJ|-Yw<<% z_4vF!6GqLe4}A--zQ30tNS|T&G14xyC424hs=xGvS!dK{o9$)!2w6gFI(}llW=L;s z(APZ57yLn^8e9z~>ZSZQ0YRmY_=`>!#(o)y-Cv}Q7fP&sV`5mLIh9Nxa7O(#Y z)N}QGj$*4j-)($!7{AQ57kTI!?MRt$*)QA1!ErQ*(C|k2B?)S4lt6!g#v(kusDiS> zyMI zhr~NIYsdGb=G?;%EER`wlucMQw}!zf9)rKtLhM(*uc+9qn5QqliC&9Trs&`&Ro}a% zW*yf2)Mm`=HSLJU?|9j({I|Kcp-w=<5TKL;-j~get}8@}$%Q_fn2d>vF;Y2@m^1QE zrj^fi&YU=|6WidfDvu$Flxi23S$g1(C>1D2yl@X7s-3YLg>APL+lb83&HfUtC zV*gd-H%lUWtD#S0P1dr{j(Bkv;K(WL`U*!NF8#CFW0~#ib~9*b$QdkR3vsUwXcx+S zn7OU_ZWNiFVO4P6t#7u(m71EmDLQU4;muC>_)k9AmgY>;6I!K^-7?9wFQNwa(mX?B zf%miVy1GW%tTo?xE=iwK^7o)o)``4*8|pL>;F2-(ZjlbhlTmcU7-`1Xr&WDSONx5K z`iD)BNnZLcnHPK1<>^3$VAO$H;`KtDM?mNbG+qAMOCpW`aHGvUMbaOhh=jQCErQZdc$1Q$uzqQaO_aD?w z^_v6GlieEM19ejZu~WKQb41rJ)g!zaWRRDt^JTFdln2$jd(toy(*&Dm?c|n5oAR(3 z`%~eBH{^?lrNX(fd%`~K*u$&Dh!%7fx!)dijyr@`?er-2d+!^eYOLLuH~U?sr=yuV zK8rD;xYUa!*Q{cSGLt8*W9;{ZSl^#sA>zCN@PWq$4V^o4-oj+o{!Ky>Q%M-7v1>23 z{^9!Lwy3)2@BzM=M_-@zd`0uQ?7b6#8Se12ecN1pCS#cfrMKO>++BLy_T#(Z3VSDWXA{ljik>S|!z6>Tz zvNev>1?lPB!IX@-)M1Yg;1~^i@6)D9|`D0d>Mgs6lt{ z{KzoD^%})ooCE$k_-<*m!{?N1y7cakT%>*OIiPGl1Fkmp&dtx6!h4?C#QTPQes5CK zO2L5c9VQy*@Tbc9&zn=Z8LcZG{jgd8l3S^Cy?h#pXtmzqZMkEV<4N1}B=`1-0w{q3 z+^v|QPx*Xr8SdTD4qe2xMZy`U?wJ0tX|8*K%}1@!4SSNMRjp2QjgU=5|I1XrTAzsQ ztc2=!Z8tsipiqIk%AYceTqGh-tZZCi`4?jjG8wN1ULzO|SpIx$E^L9tI32~s@`Un%r6NK&mihjJY0n=c-# z*(YC}eGcFK6L6&<^_6L>lf-j1Mf3Dj6+1Vln`x9p=p005T(-x42|oJOOL&s=*zSK{ z<_Cj_%jYbHeagN0G&ismykjlNlr6tpKDq1Q-eX&4IH6my+IT`Ug!HN;%fJH8&NYA zcl8Q>vz_%A-}{1zK0|)T$pa%s+uyj~RryK2(L0q;wxu~LG)Z{Wnpl|9mX&8BY2 z)Kt#1XUu5e&x^QFBx~%@Z zhiK7yr4Q%%%)#%1S%bWIV{ubKX*ZZ@Wvv|Q)Erv4TJvp7&F zv^&2ZjkBj3SkIRm!mn!oqPbf!7>Aqb{Lv)zmd1mFxG2G3I>zu`!X+h}wb!rm>si}i zrGzGWkXs=*p_}23&S>Z^#+!VyO2V3)|J?5~(xY-WgBX7%MhPm9z1kD-QjsA#=fLre zMfO&Qjp!T79>4JcJ^oMg)jXP6JHy{GYCwBOLdmt z4HuJaT?^^$%oQ~)obvXnU=A_){_(y%)OrvDG?kkha)wa3hHH~==wP1*z@4|4zMTo$ za!I1D-)5sZ{>h1*(y0#Jh-)wIt|$b3Q&hz1yTrld)L#hh8_xdsElgptzuQQYS4nr= z`Y1` zs}%Few%q+3N{&gz8cyRt&8z<&zcu3O!j}3ZMLw;1S>xVhU(!S}=6UfBUnwGpd%j&B zez5P42XGX80zqr=bz8CHps`2Z`<~cFXOy5@6D^McL?vSU)y)>31pi2-YpmZuDA8xe-??1+1A!l zsk;#lfl)^{)1xsWjgF3Sz%LTWC)06TrDs}qiPejWlOvB(9V3w-wsiOpEvRnaxR>ZQ zx|B`R)O!^@(?NO9biMYA22!ay6uw|;ea-&Se-1nAF?#m3dOja4E7fMo5cTU5KR-S4 zsJwjs<9902D3+iHv$b8)v5)wbr3+qEG=3}NQZA`0uR)-x@N#q9{}b?;_5Mk+sy*i_ zlOiL?y;}BXM?7M3ytY_2sw}a(CkfGm1@B2-P$pFIk&?GA65HRjUZ(4y)-QfxGV~xsTd&NV zmH9kwGmf1WGTGzlM25$J;SnFYSLP7yG?2_mgZq9L&4M`?5H%Y3Hn za}C!5?vEv~@+e2>1UE5F%!=mn-VO{di%-agL)y;Ek~q!UM+s)^V5%J@NnT2Z}ToY9xA?_S%@qw_B& zbv8QVCTd3o^_YXlYbP^?d=l$cex%-s`uUPw)Bf$$i`3k0?G3;=8 zeR66m&+)R@DR^YNJgwJC*ejJCyyiValOQJsrlW+|1s#?`b&TI-ER9fg)%L!b+a=0U zggVW3s!!KMI{NJI%WE@G3bPM?kEmS@QytPO7X;sGPto}PXql_Bj2&`a72ilh(xnPy z#y?zGOw>rFg8i4vhSN8#{;c2?rPqq@P$5-=)2}L={wiUdzV37d3c;*Y4X?+#$kEML zo?9ZG52+ic%MW{I`j=i8<$O_D${ia{KdhUoVq`Ja5Fp==L=UEFa`7V{-RE-hI!N&d zc5_;D8Zb8>pkT{NBrU)TD&_uZ-RQ!49ZAs{O){lw;?n0CWW>&;O@{n0rut{rot5=H zv~o9gerYc_(r(skhpYzOimKW5y`}zZIuFO*(|ZPU!+QVuyr%N}I(f`c+LjcrO4Vli z??QOexaeW5*G~QLJIbV-l@hf$oD1%H6g3LU8t z6y*I*sd0ua4OJo%FfCPl1#98mo>$TTUdPbh2C@cn)?o2T-9`$bh&xBjRj52cOIR3F ztUyS4$6YhX{>h|0nzlcy*^OEDA9w^C1ta%GgQqJ5wK0ybi|# zD(B=@#DW7j-m~hpuJ&A@cq^Q3Q@a$n*8Q}(rWS!{wpiq-ys&E#%((fXv902+$ zS1~n117`kPt;<(k2@A~j@E7ff&LdCz2{S{wW}&%VCthDaZ$m6hva5FM?uLmHHh(cI zzbsPel@V$nk5q5y4W4M`fZ@V`jhEu`5{2o;mk)Y{veua%FEew>5B21bMn;<6&a(^p z1B-%Vfh|dPAGF7PYeC^2%&Ry_L=hsEbm7H$b|yI-tCzpOE3ovEs!oR1JczXs5w%t3 z=QkfYC|BZuQ{^t-+2!|7Rt$E8`gWiO^15NYa}g6phs#6rZTe9apDk62MK(=-!3%zd z%YG!;#wG1vK1xJQ){mRDTt3g===oD)j!gUJ#PuXZSPdb6+_nzpdU_s1@SZ=()Tm%Z zj!qGkRLDN8cvnvYt!1Xeq~A|@N9DTkrrThd3^I&P@oq-Nu)W0`?PM%vvwQ2;b^a~l z1)fhP-wDkNq~k#^mocoMNNI=*J!mW)5q+qL0H^~#Xlb(RypX&E`nr#?yub1}Mo|%$ z56XMpePv20jBK{KTY(Cr4B2=RTrQ}cdkG7)EmtLc8S^!G=;zkxKk!aIzeF7c9~h#2 zlwdAYJ4CFbDx*Y&O}&x%Bg;)3=pXx|s>Y818gTMFX?>op>%z)f6RGO35!3zq#c<}} z-!Sw0al&>5bo{br4m}@Uni zk;sD4;ih{s@l>h#Ua9r%&9w@EY-%n3H>`1C+R91MCe^;&^mqD1QYB|?>y>)O&-o}W zsIdg$w*{E3yT;l7Zh30PsxWs=lf%_;;nKTn#`3-)IF56|5#$b9!OpUHEe2A8Je4m> zzp8ddv<`VSE#0!DwxxZ?DwM;rP&Xaw{6N<#+WE3LRCuau&Ql!`(;e{3JeJmGdtCtK zd&sq^dY^H(kkeEO`Rwy_+~kArQ?qtzrQD5G(-W8v3&!xI}*e(a|>TsStwT76ie)%JB z`q9&&&gHkqeIR_KFSB0~$6m8-y`Ekdc1yAQmcQrrTy_YP9g=ML4^b5#qCFe^f~J+0 zJ~+2iy~mukNza(iQM9!FZZ*@G&bv_ypQ)~|*1a6qZZ?O@&IdI=T1W0i?&KFQ7wJ?g z7w8vl3C)1}+yDH+fVOjf31robi&t(3jaFWdxKm%B*7ie+>&Hc3#TK_G&pX(>>FnSS zBIq&O3=*Se6WNN8tR{so`>*RC)_zJsZDc>dk48;>NXWC<@7Y`VCd!P8v=dqnv(3>d ztaaAPCU3+;Ut0R}yWMo|^SxoN{NNb6TZp){!6E-Wk0=}&Zi1wS6*AAL@@nJZ&S4q% z;f&jBM$b7OEs5LUv?~-eJ1vcTy!n2&Zns+4rhN}j7i0K?>atr0xYC{gz6f)jZpsC} zUq#CjimE~r1BN*9GBJT+_!g<*;K9G~+MY56_V0yCA#ongt38Zeu1jS> zsZsjbMTC5n()#hUQZ>1fLH{nnuqT6Do@-IbItKd|rO~gXOzK{k{r9b99-`O69u-XA z4=fktaEm`2e+P%{8n3C|TjJ`x`cfebvMipl)K6~>)-=CT*ITwA z3e?XFn7J@IM(1P1f;o@aC zCNfm4qU>3Ml!vz@TJ0T-+3ss9iX(Ad9CM#ASy;Sa?-r>HVg6G<$EEh9tU#hJS-^6Y zEZAFyCbQ17Y9H28NLQ8O$m{C5mZR#d!|&W0J+1zOQgxMH*^htjl9SnG$z{gM`wDF3 zo3x+b!tA7?q{VqD*4E@uj+f@FX?yum{^QAayjP>SclBSge5C&6G#-B=E=pNc<@YC- z!mcbt=*{-cF{4}xok|;}2d&^c&j#p&JmTl_s^G^xqU}6(w zUx{+Kci?+clu>Ij2|u3hUArBdo?)Q_d7ol@X_G19&KI+`Og*DApZ9OwKs_?(s3fTk ze99ZA>VajM^fTL1sH+vdme#(s)!rBPurgwtW*U!>YaCKZ?omA$G4_jBMA)uCeIa)!&*wc}mzabgS<6+;$=eC8k)^8ZCy7_}L z<%cHe&AK<5<_QByHnrspv=2OlZEVVWN(Q!t9Jv}8E;pr7wOf0}zM%Q`d3E8{`YZn- znaJ~)wvRqoQrGr|B6d9x;WRaGh0}3n=Y?&__bHS=eb||i3c?9cf1ljv!T&kg1HY79 ziFb=K$s+=~-O>wvE|ki38#;ZGYX~m!F=UfQj;d4p{3xT-xs7XgGeWstZTTAGUBBp` zL%5m@t*d1{FTvl)ZI2IaB=ot zQ;GvNV*#FQN!9gBK4{sPKX&@ezrwskW;HqlQpCfopZ^G}d--8XDqJN-?^RE$MnscdfAq~y?#VoQDAgk@Cs$P2MtCV|?s`)R z)$PJ*@rRYyjCSi5cl+b@-WAsUE;UsCPSfqjKQH^)GL#0TTdt&mgrhRrcJrP8A5&-H z7gZPiYeYZ+rAui6X@-y(Y3Xi;4grxEkU_e;yE~+ZhM~K=JC$ZAX<>*v@9%zY{0VdB z?7i1s>-j$CxmH-4E^a3defj67pZ0aPx>p{cgADq%Qfv`*%2uC$NIZTvcc6j{ZKr4h$p*mjh(>XZ6bRaq7ao+XTDn1OKccXOv1}? zxl&s- z5R|ODzd@IEk3}UF3wXTC0qGlErsp3R{25nDv91y{UaxP4WX5m&0abPw(wbR0$%cE; zI*(RRI{JO4x7w^Rlfj{yLB5z~NS30Flx_0cr>}YOmK%6j; z`Rjs?z#Sf$&tA#>nAsqoSYyf91dIBij9KYtkyE^$ss7Ls#iqEm`!o;F=PmA&`rV~y zU8gVh{f?Tzn}NNh^KJMPe}`HGPOFn)yM4}zv2-k}kam8^%@kRDi4gY7R0hvDhB@G> zc=Hx(SQ*n$QAIp`#_dCBJ<%ikCCG3hEY{Lf$@2VSq#4fd!=oR$Ue3Xa@R*o^C)#4f znAsOfJyw_B3X!~RxGV7R(HJdpMAs|ZOft_Oe3y_$k4N@jROh2uE%GXSDbppA*5XWH zJ|V}Gp3XX`&HV*;Pu}i&M;eDv0f{zbd3+&{7Xm4lJ-Nnzq*WL`ZbDYuu0BGnDOiy< z)thP4W+`%IlN<^)MxyEzRuU4ikKgNkYPup$gO#74koAW8I5Y8w!UQ+gA#~AVaD(AT zcU$kW^UIZ3^E82I$7t+~kN{ z(G#Z8q?ZN~n;99%j?RhKV(Z8rt_BR>s5xR=I8`D3AhQG_Z}NBtf6A)s`#fK{RBO#T zv}cU`wa;{nnE%e0~&F%5|gYj>$$JT)dBew0Xz!j~qlF@!ro5wWz z@@b3t=(dGELp<-x<~!iS)hzt4hRU$h;pF(s7Uv9x{P-p8^4cJN=Rb7Y0??^u0&5Fx zye+>BocsEl%hse=E0GfU zJE^J|oxS6k*oLt+o2xzh%@@Zq$!2Q1shkR3QkO5duO5}{{XOlV$GERtr zChdj-a)9V(Pqls}5URNlVNw=&$+$x+UKv(NC^eF-Choe{P@LVze#0{ra?B@ZKp)CZ z&rggTo?Muuqe#>YPh^NMJM*~DkY&XLo|U(oM4nb{H$WYGmg35Sfz zv!t}mWT zPmzfTW+cmix4q|`Tv!onOA#Bt54XF4`4pphT3ll0L5&=t9!6T?FfYN5PU}bZA=t%N zHEH{=b03N(Ec1PX3dVglL~d=XJf;Wf>)N)-4vM5s<95?n0#AD+AF^`$%oFiu+_D5$i}Vuy3?I_3Qxo&`ith zoWeZ#6hor0Pc6gcR=L;wQ(RtPV$BQ`9*rC`CbR4BUHS~vW1(XI=eYd)qTmi$Hu?HK zqg1Lj2TG0$J48y+Jx<2^AIof_so`MiXcNu8j2lY`9k?^l=%I|b~GX2PTSs9PG!mTUKUmKK0;JxBf6#muS|S2xKBvZjInecC5!Ybl$IY^glD|<9d8_ zekb1GWA~lmK01 zZ-+a?yt#s@RiR45jRDAa2Hxy21TR(RjdRBT*CRu&eM_+qNJ@}%6WP9BC2Uefqc0|9 zUXI{MB9UZe9t@~!*dtNTrjKBJ^0O$Z@h-Xt?GUdJ3IZoc^gB({{MSkZ3B=jbsZnSe z>d<@D(3+EF$`m>+k$D1WhZX>O6Vw+DW6gR(f5{*9PgnOld)DZ51l1ziqW3q3<>Vyh z!6LRxG@Hv@4&%rZSGh0hhC1JQHvA$eyYG%DEu+qGROHFO983Bu8C&PHDpW?`UbhcB z|Hwk5yrO<&mnRZnhH;$iqf%GA*Jj*CFPk0D%KZ@J`dswzxey%dr~g*3pQxb($VUngjc zj-lz|nX(r3W7hWO!YFVjs%Eg}=JmGv^Bc%eU=;Xj%Qp$^($TzD z5Ft$^=uj!e(Gofs_|vCa?f{_W9Jr9OCU2Bw`I^Y7d9-AGvhDLLIScU{i)Py2r2tXH zT_XB&y-hFgVoBDSr)7l{vM%G@OgYLdsnj=${#5*-(c6tyH#vW#w08X|P*Ojf0=EM- zd2XRXAAe`C6k-@zhU^owji{jN%a@H0I~@mB3&=s> zp;FG)jBceuHuOVWH#HGxBCih5zNd@%6#ltn;MPpJ@-5Z-`Ta*Qc_c;aZc)La58RRc z;%E||(VZmSXV1$;gp|T_`etXL7J}XeucA4GiQMH=y~AaePZ4~Y?&V?_HY(7L{Chu| z;}mo%(W#EVm9Cf)Rk7>yKNWtxT$|<_n*TBX*%Q5Kq5yvvZyhe z9#!{!t((Hyt7h?Rn5t#9sj+<*AJLaHhmz2n7%OMuPxu%c>@xa1{d4<9R17s=??p-8 z=UZ@?Ts6_Ay5pTb-rsCxoB8O%SUuw@T5~`uiZ1j#A3O3G%Ue$p=o_71Fwqajd#(c6 zJhc;WiWRLo`pj2F2Ou#)12yj=;P(n?g@{-sztecQsvGUHb0I%b7{^gH7?-18*~>~U zCj%Qox8vBU!oTjEvGQ>H?5)kr%oQyaBSDJe*f-B-N2Hq!f4g4A)^5KFqUilLf!)I) zS4%(gU-jUMyhJ4Y=M)V_s)7E~ZE#|8IcKoST`*1SsA&@zCIR+E^AN)H^sZz!~%I77FOI1b0j8rg2XqL$&fI{mRb z=5zQ#V_Q%>cE!3BM%S?AHDrVaB(ZQlle$Tmlt4EV=xNL@@ef0XPcgiX%)q+>9UGf+oKKQ>`ka3+bN`tx)f zCM4safwiEa^VS;ZEk0VaK2oZkP1lwm8Iq5PCL(oYtX6CmFm(}e+1HI5%mFDULfyl! zbN%z(@_(e9AyEH>S8WcwXRNY4)cJ9Qv%Yz@58cbC7h2AUeDdn(AKVb`%R|IUjFy4l zHP~KO=?7;3G*gy1ioyL=8=HA&{#I?BV2i@zZ}4x)rYGHn`$jLP>Kl5Msv`ixe3?9XZoeaC0_q51l!}E#^?Z_FQlTB0d>{IhC7b!qpP>KoLp>+Hbl+8?!eTi~I^!q%MUE3Df?S(uu@qg&2IQ9b+)=e)oS^fZdUr z*~WA>LAS?{jpeZa`^~GLoP?P^=@I# z8OmriW}tQrz)QaZCkwRh?ys>5rF!q8GyO4^%a=(qFU_&LLXvgk|8d$Djbx?Co|v&LuB z4`p==s5>1XfONhM`nh0|(_df-M4_&nCM^Tt&yysEts>0yb%Ie*R^i1 z0neMD&d>kq$`NH=h{U_n@fVHu8>xt|IYJX=U-zZrm2^ACwA75q?X(25Jb08vmqtGn+A8T(t?1JUZY$uuG*r-WFIa zso!;&hg|S#%QjtZT3M3ICBx(Mhgx0Ew8{DH6l?$UgW>&$j36zLenB+9If|WChAxzg zSDb22gd^e&<^vZAleX42ZQ^w-kpX|kUv#e_^5zxQvfvm@*M_Bg38Gl4&L`>hcp5?f zSfRAVJ8G|U446fNx*$LmzHFJaQuw@HNJU1&^u)uqn>5Z}LYfV-hT<%h8yC+-xNBW; zun!4N01vayod=td*|q_81~=I5%&8|q-!$=o9-`u*<+6YDtf6=OD7@CIlVrK}QXMaV z1%5mLM()GG6b z`La?voPDaP#hvL}4+2OT?CM9IKM^V2tZe+=+QIeSn`oEKFQoqW0(PooAFiqP{L$VZ z@O7jbn>8DIUa~omzCDj&Y3~uaBBys$^)=$z*cWd`YklmI#bw%m6Pf={j+2W2qAv4Z z;hyn2J(x+sNuF_IIN=-<8=_^rRWRM)lgJn0MR0ElPi>-6h-ZBpOqk>}C_2BX>alpz ztmbv?U1-GgY0xeD<4&X`|1nFqKOvyD`kL&R|eSk!xU z>vN><1a#hcl$VKR@Sf=p+~IncsxrT7H#e_D9>FB|0Ul9#rCRX?RrnCRW~uMZ5mvXl zVExp}ZA%!42E6SN+ZyHXZ)sw>dfcpvq{q!jyp5vNch3rcGl4d_(VwT~ByJhIY|-^xI0vN=afpML~CMqVnnN}svQcl5;v$yOUH z)A>`xP6z+IV{DE)aDYoT?5V2D6wwUjowKZ@>ukMCRN^-t=*QHUA6DWoW6V*9r$+>T zc-R@`FB#8((Ns}mRpGZ@x7w@52p6TOAMO9P1z!8=6+eqSxAECH&Yb*+7|!&W1Sf$~ zS#JtfNY?R|E&`WDFqP49cF z>!mn43GappbrZXlPUDl6nqPc${jXd27fK^O!p<*#b@eW^ zxH!SA{fEZ_2sa3;HEt~2mPrHaXHK%l5)zm{LwkfV%91{vdD(}tQ8C|)zUOPbQ^F6& z0}X~%yXQHuEk{UAphIH?5SNR|#Dri(+NSp5){`bmM2Kv;}$E-Q2c@-5VgM{?6#)Bzs2 z(!u-~OUA|W9=e$U(>23yo-&CLEV9$A%G89IcxPXBA1ceq754>=qOpwMW9Z-6G(EDJn3tH zQU&fk#iTyMfndB8%twnE7&fr-0e+>W$N#}l{_OW(O366rCYZ8AC}psP{_x2o&!b>e z9)nkw6s_&n#&K$UX>W4=3?WiD7K6kDZ8GcnTAaBC2n}3tK$r5NWFW6hU#8a4O0T@@ z)!)>{-e}8@f||+9vq~~oP2=VC>}YT#$ny=!^>Q|%J?Q}o`9u@kl_V0))EOHDdHk1$ zGFXS6x~E!`|DEuVn&G?=Jbv z>MVbH@E^VY0n}Ep0sa?S?;ox}!op9|*9X7k4XZVZ7aRL3vlnlfsCmT_TRdenVk5qw znZnLiAy6OTv;vT){HCZT+AB#A98Ng9sOP|ov#oK+i*^S)d^PTkx&sl2@&_et1 zTynQYJr*1PN7`X$6dAdAvd-KF>m~07>n7(epSBf}dq9#o3}Z7JeE|}+iAIQ4*0u?c z)0xASmks5Tf)}1DLNl>_D%KkTU zP3TFKe5LZ*xH20!EB37*r>152-e#dasGtnH3|A(xVyJ&dHt5vZU>l+%@Y zxSVQvxExnN8i~!%%>}wx1wQulV>Z4f1d80%;+wKJTC5b;Q)Gnx-C&=nwaz-+86cnE zj$w5=f!(7$6#BiXTJ`#MpV6rXzg~Qs3?gOhvqS&#I2e6YUFUtWaVO8-o;b-~6|ZOP zs+3iU*L3ouz*TiwObptx)@c}b%dj}Cug?u0y?`^rV|Ut#%vie{d_KAxu-DuKt`P6Y z2loyCxl(GH`h7txwH)y`Tw^@RlK;YnK+tCu5zd--ZSE55i3jAfDgdXKO+LCSy6fls zt)gF(GG2QM%OWqr^b#tg$+^4B!6nvhr;cD!$l=u%SOV@(_782UqkXQgcl+`B0Jvwc z=CB$|D10;edN*Z9r!42d0iuUg$NXP&q#uli^ArNt%pg@q#>WgY>6r9lFv2schtDI zp3J~iJsz63Wa0}aHLQ-;Zs-PjOGSvxMSIw!G9_wHWMJzaF-nG#F&cHTleC=gkfo%# zfI1d(6A(x3hrn@t1dP6Z7)e{rl#_$7V6A+Qp(z5Za3X0^;|6`@+A&|6!I7~_l@zaM zv)vAucJz2>i`uuaYX-g86ZNBlzwXr?CbR?_4`A9BhP?)Xs4d~rrU{F^yFES zTAHP#p=XV^-gTJir=>l_Kpj8xBaH>j(dqB<@LRpqYl)Vp6t9-e7tB1@)b|6s@TJjJ z`C$*;b>rMk1(^zNVk=kL*hl}3B0}&V&SupOq+A*9D!bmumyL|JmuT+Y z?nk+H*0f44KXb7B>e;IO?$Xn&_Lb4vAc9JUzWL*P%NolUHkeW| zm*}10HZf$+qeJGM91dvpbQSoqV?OixL;ESh`#r+t;4x7%W0LWmu=D8Uuldu>(+g|l z04=S#z)uXRMjMMna)x{1Vl|of!e>^CMVO(G*4b*)%Q4J6kLMEs#)unpEqDJKO*`dw zUB>ck8in0~k+86n$C#8aR_uzT9Xp!UUeM$n%9N55^2SjW*XS`c<5=)a!FSvVXK4K6 z6#!m1uOeJJ_pyEPT=y}yg0)iBdiBunxU%)Hw9_VSp zWc%+@1x4Y0tZ}Y>@Cx4-Z#1D?R|A7D$ zKU?1Tx&2ox>=bLnxN`4bkV(Z?(6llJRhq02u1sOJFg1sTR~`(>R>oYjqda&i zcP@?2xI&7S-=Lg&<=R#_yzTr8yL}4{UB7om!A0kf?=i~7qPi;r1|JM~?S6UxodY^u z!c?>%CzEmM$I08Xu9NRN%icy;>wOG*vwH5dpGBQ@&B3IJ|BbPV*hVxQ#C~_P=LD-? z0YeGh_`si#(`Bz{ukJ>#vT@U5Pv&rr@%2nIdLrQlw?_}}M}#N%DVRnOqDN?Mnhj=*B5#tD@Eo~zWY+mr$hZkf|A(5q*EPc_?gF6im@xff%?^YS z)BW+n*`mait2$3OvqYkWxomJTqGE9PbS+3rJWW=|mwtc?wC8kO=(1a@&STHQA5SmCgXk*fe7`O+E zR~EGuZ1C4#@9(-!;JZ3Uq1IbM1O%MEFB5m-!Rv5KHx(dx@v^lH5P0FZf7X@9HM7dK zQFLP2iD;c)9=d=xBn1a9CT{~&8ZJwnxukRmPKs<;=Vu;AXdP~1$nyummMDj`$j{mB zxC(jiAPr+5B~1!;=So`$k=@8MrnqfY9s{=uO!>0)n?TXqz;(G4I@E2pjLKnenieo3 zJ$`%3eAWtKL@2xidJESdt=j8qEsQU*vHYV(Z_be1sO{pCRpzR2h7 z+GmsEw$=r&jMQs@zmaW+`WbX=QFTFI!IE|T^tITH+PCUI8%Z#6Boht&D%Oo{UrmJ9 z3>FZ4<%d+nSb+M#Ipk+@kL*Vg(F$Phx3}Jvu01Y(Gs`M+C9g~43eG<_&6d3 zql8=5X)yAn21*Bb#XSkZQ{-7GpWK(htivPLGj~u%e!kT{ySwfC3`D&ZDAiEcg?fTG z!I~d+VnLZOL!D^u{}P)fMwp7$KqnkjvV#1TthjiKVWSY= z4%AjS!m6gLn@Lvc=h7=GO*Tb#wF_^N;*hgu2kOh*-=>Z0NI=){@K!2)Q>1IEf2a=~ zDk2@jfQi#?$r(c+d~@k==5P?Y@AZ1_KUNeeKr$J}3>__%VAS(Y{AF>pC?9RJwT0ym zG=?#reKG#Z2=8yMOen7K4aqJ#=A-+#g{=1Ogz|Q8<9>yNa2Jrbf-m`C&s&dD#JD2o zCR$1CN5LS?)y{t4-k?3N5$Hr zTJ#kcEe7kap{$)o9xU&i_mk)bo`PP1d~MWEF-urW8=|y~W-&Zy^CDljKK^BBZJ=0< zp$I8hPGU1gLN$fRIQk`n{hIbmR&r1cQ`9u9RCs?)M zSi~cvtn;sOBn9ib8p?Y0f(Ewz;VR2e>1hbRIvmzdFh(;ODpxVD`}Q*>3wDv5 zf~9Evk4-~1v#7O+w| zOIYjLwD)s6k?Un8ON{a6@R#Uo>8^VV(z43gPD6+3q!CZ&tHNKf`$z%fLQ!bDki+{# zhEB+a3itU4DL?>iN5@)UK2|9k(b23S6U`6bom1Wsm{MWBKaB7w8K=dp9G5fZ@Ty^( zULC4vw_G}DMd+S)Xh>^TXVrp58o}P1Hjm7gB2UM4{q`UOh#U{cgJ{d)RdfeY+=hNPtL9G=p;Y_cAUNR&3d0%r@E`M~vW*)I zFgpLhQm7ekC8}h`f&C?8q<2BtO(Ref@Be+2;HR%I@y2Yi%A&j3b3@MJX=TMSl2frq35@)lGDqFZQ~8ps z^_Q!+*(A$t{B7yFl-&=97htk=-~d*}`*r~Q41X0wHwc2~un?R^`K<$2t8y~eU*JYi4H#yA? zM4wGLoYdx+U%7G?zQXma>qI;Ui&Pm-IgI?h49OqN^9Tu}D*lL{BVlraT*o$|81=|6 zvq*I%>4IF>zuU{ZKH}Wnb}Uau5&4{gycw7jwqKtJxJfXMMBkA}EmRAf- z{>Kr{*OV-;YpL6*c-@7VfyvQ+a}Foob`36{`SXfFjk-qbsb;6)A-?7a2xYwWtrzm> z{Pxm{meT`y7dcMTphNqnET%VM``$FDvEmqKg7*4`I*f35YX9aD(01kpUk;&?zaZ24 zslPi4WNu)r_9JQi$}rC!mXe{|GFku8iIB*A6`gL#aw1E+crr&@f6;zAZo8Y?YL!F3 zQ`gz+YDWzwBNIMZnXN_cbmh9Zhs{EO#5;X54r<)kfmw!z!c|98_6IaqGw}Ep_uKjY z#~~m=2HnsWrn^Zb`F4D$CaD+xo^NO1=ed;h)I$i470|mTaeFbnJ?hmfoyTr1JFjR1 zQv4}N^OcIKxP_5&=H5B0QOKqXyySkz`}8kFYSmcTP^w5+u2G$JkKF|Kmrrs#D?<_) z_Jz;(JP3;2U~eCtLU$e&lC$ecs;C-Ej&BLdrgX4-4WYL_-t;htuv=~3x#=eTY1vWO zv2PRN-^H&v~&%$N^DQ8!rX?DF-i zVp)So))`{Zx!=^?gCt=&X#Lr*8Of|}R!(F*p|bU)=an;a_fB2#h*zS8TDgpX9mTy zCXrxW5yh}m#KrF5B(=eX?aEPDIdw(UJRv-qT&rRw*~IbUSdM*gaGr#HkW^sWL_dUm zzZsMbBDHI;c184qj5GmR3%KVi^%~et0{#ZTfT#XMGs(LhX7-``mtUS z@WH_b7{keuMO-=o%1TyeX2#kl=X)c+ye6|&_gsAB>N7Y%&X4zFn@`z&&!Qgo@6BZ( z>$l(deFtVx-lx8h&V0uvOw^e6$G1RIjzW;9}q@%p0EvMOeVa#q>?L{4V8?(i1*K-f-QW>aydu?G6g9_2b zsCiH{je5J$-}0J;T}cKi`bs#vQ4@f_^d6Pl&|JYE)s{y~ilK6ZSAawMXhWn=z}Lkz zuN*De>bZ(W+t2K^;P~7*P3mej%Alo~_&{4&9Dc0LiG(q?EI0!-NYklbh>&Qu8UQ5?}TAGzR|)R@xdINSI`!VJYeYJU(G`ScVUxJ$XJ-$)3E46$as0S!0)mF_i=TQ1b>i`B~QHGo5U~uk_UDf z(r>!B>|Ymm*N~^ieL*?}7X=%~TIf_K`H$iAtLzkK>m7}iLp38o$ML9bpPE1N#hEZA zYAfj`zAvQ~`&K!uuG_}__pd?F#~)aWDX(I+=<3j$4SE+q^$Tk$R-(C6`t%whW>|f% z{}Jf`1!hU<=6KVSWt=KFMt!Y>e6|9c8=4Nl+kxM@h|77!_5gGSkLqW_s5BmM&NG=c z%Jdfyr*<&`0ht-<2KVD6h98FfwV*WR0}=E)JNoO?mtZHaq}(xMJD6GwtV*#!zF!LCF=Dw~onJ!x$~g3P|FvjEHzE&teuuasD}!2&`RcFN z?X9Oyhej~$pMEQEJm}8qE9aFiwoNrghF`RVVSkP~BC-${$9duYrn<1j2CPjsBFegZ z0t4Wx5NqXSakZCaQv?!safC0tJS;QPG-Mw&_M`VR!%89kbX!X0aX8gd`;$3v7QN*k z1IntPmIuxDu&?_udn8Fqb`v>wppt4#gozW%%~t%+OdH;Zm%FLV?eQyP>riN$tKs*% zL*WRP@nfTp8>DiniAOEgsM=JD#s%sID|@W^<-Bj=qP{bFa?H0#P-aXq4fLQA(1hF zbWUSl(ckp1ulTSF{TC)9{ zAc^>~JgL7p`R+A#C3ME)|F8frYqeTaNhqqc%RhD{=V!NyGuGJ4>%ut2@wDErzWt`F z?|z9*XQ6NAJ90$#coWTlQu_+$lTe7(w^0^qtbQyMcQNe4DR+FDT#MondvshK3^v9u zj-~F?KT=6tDsG}l@!R^F>TA_Fg9R4t);I@MvdWr4q8D8+jqHCfnw%8+w_*~t0}FlJ ztM&FI=gm?m&SE5qrGv=)k^|V4M2n~*tP-!oP-{{8;@!(PT<)9-4FXC-LMo^fI7XIy zpx$HmFlQk?7qW@{iY#@HFE}aeoD|5FNfn*t$U&(?!{-B9i7p|-J~&9sPrre#IPXqS zKoy4ih+GjthNTo-OarxEz5eHgDaNO{{6li}K|3G$yM423AeY_zu!jw-%ea~wA=KB|C=YVw`Gc&hOWOyho@*w|9Zc(gq zBiE`P;l=|jxQ?6fcQ)xWtt@K*>Qb}bI~_xzptQ2V0$k+JMV<1T0A?``uS1)aSW=mf zUi6kvFvf#b%#(s{hk@RS}hf-7Fp>bnxwG37m9xPPG4?jendY zNelYGa8@(fuYWNQ-rcDS2J)@cOutMv>9aIrmEMw;nc3Sm?&bc|H~#nKXf%)gU-&z$ zfJWt6z^kfMmp5#MZT$ii4F%%g{qqk|1UY@twKO%%c$+GFuzd|+ekg69a%Syw`1tKM zIT6mMJP7AwXucHjH}o&-CcJrrR#;z|tV4ywbAa)+2%p7h7KyAK%+{|`@{)z z=sh0j*5*ow22Tl5wrGEMExvUj@K+yFH34_%QTqI9n1n1Jotpx8dWoEYbvWxCJX)VX z4(qIXZhZ>~FjHkALzo2`>8(*VD|z6OyK3aNuzI{8Gxpw1;`>(GZ}p}&u3L{+?4;nQ z)Q8f_{ya8`fWJ#9!p@JNuRh5_)QzLTF|H6E-QnR$k`Q~$CXEEe}A%0~Np&7$EpX&Pw-L$Q7&H%a| zRjirG5G3#uhxJ#<;1v+h%Z`4{UgK0{uEVeg84d(*aAq#jG(@=@T>6`!j9>O{)@Q1B zTs=*FbKp1?$tK;GcZ2M5l6RxNi{}5rdaEmgRp&Wr=qVdb_qV}s{j2RXycho$w;fZm_ab>D%RUfbUJ7Ru zNvJ-?%q`#WCqPMSP&v>J-fuzM`3SFB%o$S1oLV!->ch)v)hljtw4vc>whWoGOcw?4 z7-q8eI>-aYO!@qgua$kEHVNDnaRYWCqKf=S>8(%((Bk2WHs_;K#!i5=vBK0@>^rdl zQJa9{;1QVf#C` zIHsS_)M3C0bCYzeAl~WU zJA-|his?^b!_q04Vk~xp(Hf!04 zVxdC6DPB0FcL)YqF?M|p-q)A0x|MKgqoo+EG-K->K?9%6X$l8_me=Q!TMRCsk`QQt zX}m78TE19N?#|9su@n1mY)5}sGEGLq8Rrte| z4ZY;+uJw#&>2Bi8SQmN2&l2`R$4T$=h&}6YYYH;ODAey}k4o$bsxj#+g9NzE$_l%G zF}A|j`?@~|ym&iiuN4pPu>B0}faenrfNN)u^Sv?FTgJ2v`|8MF=M=gVkbuAri5 z6?fp`u3SxH8KH1i*q*bcYyN=s z(icXq1b5`->WewVRxNA3H2sbUQ@#+uh`XV}ydXs~iz zvin6fE3k6=+p88=EVq?yAuv zyUxIC#G-kl(KzQkeXo{rA2fok>UrGg4b8R<5TB*#S~?=H@j!W3FyJ3Nu}veanPWYb z^*tw7p_n}qW2i0jy@~u^#a_N3cmCH5X^f?iw=aNL94`*?oaOxNrlaNWX|KtC{|gV= z7Jg4b`pczLIB0XOBWY_Ci@8M}`|$EdtkGLBIS=jJ@Dr)r^q1VAIU%v4zhf)eFCkho zIFG2l5neGb5D9}Z83BmfR-e;Z)L1tW<{x9-#51{*4=Y|-EIoJ)p}8#m9PDp2o_0+P zTVrMsM!!A&W~aJR+qfGeWhDxylTxHiw=3U%8yrRK1mU=(EHpT8g|n~F+MmqT%k2DJ zMqSsV>2-K@BbmE{7ct22d(MP3Viths$TV+~nj)cLz;MuG*5<9GC_f8E4bs!`79uvV zO4FDfcoC_+*^oOj3rgjSuv?xJs-`^FqNw9EMsMoLgX-D?I-6edvlM0Wv8k})>xz6(AoL&3W^abQ~ zv|DpKH?nZmd4(GE$!pvzqt|9KvV)T0)>5&Pi-r|mqkubaF%!&t!04-(w{gU{3;TDy zpL6Se8*q8~&2BJyOGiO$&#s?0DaCMG%eCyyWy(r_Z+D1E+pEOELlVVP5t%L>RCB7} z_xUZz_eWsByT3b`iqsg6_noAj9Ia`OX5un%lcO+suKirycRas|5{tleWO+@Z!Mj}sw7zW^o zt(iiaag3AnhxHxBq=}BwX33nj8 zwJw*)_Mq_U+d(1kL)IVUe4o0woII5MzWPp+Wy*D>p|*Z9%*GIw@kM!{ zeNJrouT;D2{gz@oU7#Ray+*?1)=|?^KVCfQnpbaBZ{m3ZThw%P#_X=)yTpj`>v~LN zMk}tl_+!FLq>RRc!9z=|`_eqS7_E}a>HVy1kPQD1`gb8FcUOfxdjluvtzwH=^CR;~ z={UFS7$IC@Hy2nX{&O5Pp9-BXyW-JHW>_zMP6eGO&QZsJ*)@*Qo0`O69KWRX(ziNU znqozNmRzbj=ufb|N5uKWwPOq&3!$6Zi?h8qzE{pgLqrw-#z)zQ8iRJRQMgM6;$2WF zJpMf)gh3Z3&&s}Ca1qI3p=&DXetz-8!dn2Y4)gD12Ud$^1}&rJe_NEjQ=TI~#0841 zYR;yE8VQc$fBF!iuHUESSdqg>RMhQl03q*DA+oeZRyH0ime);nd*hfE*q>^}g14pj zSoU7hQH10+y51aEa|fv^o!g*}y)Wn&BO7H7Qb6BQ1(v#*sgij3#inbEc9GYDtU;Lb zj(A<S#zJz(dXvU;j2&ZDs!DzZ_!l-?3 zpsh;q?Wf$lhhTDxpJ*0GElD=ZL<#@tndCAUjSF81+SkLKOlV)Y{zi$vk5T#4^cIhF zQtaJc;Wou-hA;bG|Jzj5Brc|e_YB`gbx1>Z-`VWz++Vd_#nUl(vl*4+=w}Cq6DlmtTe8h;U{H_xXsW$AU5-y%ICG#z3ZZ3s4p|vyL z%$VHuTu1En^hnj2A)FmuZ}Z?5;aTQ4hWeinLWIDA1gfd4XcKn z4TNsmrAJkTqN@>O_<@gDZoP0yao+U(g48XkWDlhDblxJf?BSD-cu??<$s8f8N)C>2 z0KJJr<;xr687IotZG05xlopp+xSRbS;SX4Yr`qZRzix3*TQ}%Gv)a>X?*$s@rK=$2liczc+*I z84lATvV}1issCu;ufl;S4hIP+VG?X!Gy@|A?DW#xd2j36B=(|S7|u2^qYRBgce`if zQ3MN*-mn;18?FXp&x(8Y+{;{ZIlX9HUZr;gqYO!eKu~Ycs0^7dBe2fH2b=K7T#0ny8;7imr;deDpi?0m=Lw8&8W zf;%}t3=m|Uo?U`w=8d{^b7Z7+5)lEB<5)l$Z1Q)yxTb7jRLiwk^f+k_6~q3+w3fUn zEWpw0S~<^Vgx<{oq%J=MlD?hA_H^lw=>}8;KqzJRa-t^d>!{rn)LLd!cQbbCKld+; zjEYr(MvqyWT>N?^14jBq&hJSo!@R!g2BI_(3TR`+=6~Qv-(g~6iKPly!()=XeDlc{ zZHTne_`epyQNKTTO27q?7*1Jre@V5xAcolcE*mYZ7u=aPSc8>K1!M6&M$Pia3p>ubte-$VVS2YzH(@7EWVP4T!hef&AR>8=c2oTEYX)O|8++U=WA;bf@{ejtVxn)q3oibTv ziCp@pznn_l{})YH9nf^twHe)@(v6DJB`J&)>5#5b17UQIh5-UfE8R$UcS%U6z~~+@ z>5>k=`M&S>_x8`dzkAPl&U2pg+-2-2SzfAOO;%SU)*U7jam3!yi~!x=7?*s0O*bXp zc}x=va~wc>jkvcbHOoo=9^>93D42f?*_vs0zZiI{ZZYeivr)|cVQ2R31MK^Iyg^5^ zew^?5<$2hadIFqz7QK~#g^{o>7b_0J9GIgXY`M@x`)k7H-y1j2v{>;!jb+ldx6cRp z`kJb427=#mm9z=6G~44CN>GO7BU|LasE71MrTZ32@tCyM*$}#*{s2+XxMaW3I{VoR z67if>F73f*+B&DAd4S@4y5uXY%KPk2*t35`R^8Z^XSFQ@oSt9IbV>eE z*~9skEP0Ao2VIw9y?KumAU#|$@iF3R2>q=+-zSk(D?*6_9?gsPA-tLL@;-9O<4(X( zZ$?#iSHEDz3{6-FQgPSMMBT0@09=guGiFx6SL_ANw7$CPrs8nz{)EGFnO7tLQzPfY zwC+1QLNhytSNC?_`!a;){czf5n3puJyF`jM| zIZz+0eAH-V_@S@vdvJzDoAzYL6d3ED$Ugltn?^faYL2C1LXx|d8*RBPTf>Ah45^a@ z=bE(o`^%ky`#aUtc2~Ix209tICHTr4yVu=?>o~PLyYDe1-?^J&xe#@YkNcdnOV*Q% z;c(#Rgdq+wt=<~kO@F=}ANsZ`EJvYzRbYRo%AMhlNH?nsk!?s~uO$K5KO||bu3ufL zzgRlX22*B)(usHAe1G_gUQ5^PP0cixvR|Ko%|%dEm1J^}V@V>nTOg(M1{MDB2Ma$b zmhd=DYjm_>T4kvZCaLZz?fdo0oU#!Ns7mlPmnXI1r z9>=HZz~GK=W(y|_%D1G2RJxbax1nz}tdOJ@uz;b5wQXd^e!AspHt`+uQ7wO>7B?{f zmH;!LFP>5>=3rvl_H#;R(oSz59luZN_`mU)w5XstyR~duQ`#t9AJstJ3m%Nn%UbUG zcDcU2J5F#OfT>sVGlrSUoiM#`f(0NFa)jIOut7Do=`!+1 zM}!+ud^Pk=q~BJc!y4MctM>~y{HT7%(h)NlnPzBe=~7>h{ha~4z(Sr{HnHrHHW0do z0_E3MnX=`Q|E_7BsyW=Y)3qUgMw3MdJKMP75I=%>MZ=J}I!Q_r^PCT>ML3I<5)*R0 z9u?$@zh3ZZV_W5+!lSIQiQL5O390sg{A*m&ulilMKzwz+3i64#w@K&g zN>`qhs0foDzBa2WR-E?}TbMOM(Ss1+SZ-L;d@nv`8gX}T#FNI>)-Zi{_Jod!5N}!)R#-Y+w_~Qfv_#?$8%wj0rKP#+{mW$?03U;iVXQV0w$jcS)$}EdKs(qdl3i8^ zm0xfv(~N?*^7r4K`Ni)%({mn1xRO%>d)sL(OK1qV7mijzk9jvf!+iO28}kojS@57* z_z@ma_NidHydyt|XH@Qvx#OegWEhj-A9tp?WTC5+{(ViL1&C3G!O7}hvExG2)l zsG*-IIlKVzYa~Fl22F({0()?|v)vDQ zxM^J7F#QPfY~{O;;Sw7ye|Sw?jKxYw)XrQ*x%SqgD;~OiXgxOOK$2=V7j?re_R6>; zALFcN^a;ir{Er`_yyr5_MRpt~H%CIcMu^A{u&@k#4c5u#r%1)4@?(5TU8M;+u2GbU z67N_@X#=Mk(Fq==UXG?<2Kr#7e&=Qp_ms};cg;bpl)2k4mf5A}iKHpF&&&7r-{CzevJe@M0z8}!fv_L{cDbzCg zi~f!TK1uu~jd74OO|tTQQN|VZpw)5sDEG&!XH!$lagk{D5~Z5oUC_5uTsyq%x-;6{ z7dh>X8r(vn3|1}v))CYm35$)1HPM$IXzDZonAWm@7HZi-JDHvdFgrw6+fAI-SI??p z=l0h9&n>QfDYU{-7cZ4y;5klUWMuVH&ZzzbP1o6_-VFFae#WE%ka{UhoT1MkK9078 zVTn&^)%}gk(!yvc+9)l46f{^yi9@u+1O=U+*JtZp8C6c!T3Z*KBu(hxH?MYNm-hDc zmcY!kV}{%ofK4O3+(a~mD)ltJlg{^Iit(!-+v}elNh-zNdPG}s{Owsrz{44d<(&Lt zdaZti`f`;>mlw8AU6Z~K1`)nsn|K%pI_5IiZ4XAe2_C%{?fGPY;y&bwuwj1ZJE}VL z3<6X|qZmnDX|i4_Uv?li)syF0ZiLOCX9HnwvsI&p4cvJPEd`In;k3wT54Z z0(ed8VRU!-O@5pOw>Q#-^z36@0MU>5zQ7HQF|A}i6RDtlMY}yKLhThacHQ@`CZpk* zbM_G~>K*=z#=LU`B8^8Af81<7{ty+=YJLpW)~Yy~6K3Qipm6vVhxPyXNjRGm9OnK}F{4aPcF{KK- zm|LyhTqMi5urr;D_GJaD4F6s*(CAufl=Zk_F{WMhH$sQ=6A`Cgw^L+`eQ}P0XkxYb zu*rj(zY~5-Q_Vs?#q`~MHUE6O_18CQGCInY0_4|qP}A=Xri+EJJ-)48P=(-yAv;Mp zWC&=4;i?ilA)6FqEu!{&P;~GeN}1piKIS=gyDFH|NbH3qj@1N%ffM<7-Ko-ELmKY3Vn_5 zJgpnD@ToHwdA1SfRGZzvsbK(R5`#b+l(x=c8_Uh@{4Qhf{;18g82MvC?Hh#z4U^vX zt5r#M(rNc6?@Q)LiKkBW8DVs;Rm8!L2Jb(q7LCh@vc_%l%~b=b*aDKeRGHfe!;!^Y z5V}exy@xQixsLbopnhOzDrzEkzqyb}tLx|SK^0~ypGZ6R}W1r+-nV8=7vC1tarm*`{r91Ksjl~cy)#2kx%=<`1BY1eT- zs1b_*Qyt%q-HlG=@_DX-L2Z;KZ-fty>vTl}j>Sy(wt$I@RJMZWMR zP~aXH`YMR_F(5{&9(T9ekh&%$pG@y$AN}@%5S?EuGxGPl299aBUA^d1r!j2|YZJW< z&krposSxiQ(F*VMF4uw?8DCsy&R{;vsPpKSeZkUxba%Zy?*2aa>gSkQ90gRh-+I1^ zv`01gI?IYwrU|(};38jr0EXGxM7k+DE>UH*c_JEmg7jS{3XR12$gEX$R(}Kr_RbD< z*I~Wt{TG@Yi#T{s%l*0p0ie$z)v4&e*diSZxOWs{a7>cBDT(KTEMHM|AuS>6;va*HW7*(XTw|NrwWcz?ujoWSXt{Tg6 zPuknrY)^-;Yo!_|>hXtkKZ zIss(5%wNv3BV~0QZkHIUOvDqIfSOWJonwGd0~XHOA_1N>Xve%0dXS?0H>fv!>}bK@ zLif9g@4KOkN~_J;gBY#Q*@uG)rRY+>he+_X@JqRsIzfp3ATty6Khy8m4o^1FWWgq8hV5O^N7LT!JZA z^rpe@s?M<>6O8+~mhh4z3;MK#@G#Is_0rb2V&l>wvt`<4LB(>yCBYeJrioHwE1KnC z(GYBsgVIgsa-47e*WMdesrSyw*d5&J+TN!;f4J`a(^xy#y!H+1yjz{MR;~0(Rv~{o zTFk!8`WKG2UDCM@}H}l{Q=>pSmbHw{8(}%0@R;FWDZ+^FQgErFq_g@Xa$pO$5Vhoy|)1a@wBN} z!1BIatoXd!E@c&0VNUJ?dvT}&KIimZgm736z6kJ8o!|4(?r`D$IQXzQo0`ok6r@n7wn z7{4W+CFZ-8gefM~s1qzf7id6*XmZCy4yB+QC%Lt zzpXL5SSCySjnfVZ*$>FAu+y4#(A>CaRv;Jt&IDcCG<&~p3>3mS|F>ex9=Z^?jkdtu z`!N5)>Gooh%v=+vYRnLgzyC_Ak(tTP&F=|kO|u^ZUsp|t4KCWVA8Zh*D{h&iy@s>l^HGH654v8X{H_e0BP)w ze7C+v8HkTH4rh38;d`GOlcoIbB7*?kbZ75fioh{tFDgsZyz>;j(r4$uxo>aKD&r88 zH$?tttFf^!yj)yreC9vpkk=NKy0EWXv}-G@JNg46-8SAP7{_i;BUb$^hPL(XgDC*X;DNidWIEte^lChiy1_zSf9KrM+B z^k`DIt^!D|)IOA!Xv8b+!e{bzD~59Nq8g^xx?M^+oJne=v21 zn6Y)e*71}ppnk&vY%6vx@8)5YZGI`^9EBV*O>5NSo|eT>}) z&bC3`m0x^D5q5hu*sHzEi;87PP+~8$2OZX=-Gm1a+J1bln$eS7R~e# zi4W3z^O#7f-nFwkGOdiVM`{eqxow|{*B!>!x95EXG$lNA)sf^bQqUmTE1>x67DaG( z$p}9I58JTU@rE;ieJs_^thUc53!gJLys> zhHdhXpKdIzM+Kc1hCWJT3ZpRy1}o}pm-6YwL?WZA+Le9?_9Zih|4D<@ByjV@>+&2s zxZVUyp|4R9k`#Y&t@Srtuh)rAPUwiH1=xfDwDR0vTK><@sUQZ{8*)ggbx(f(s#B*T1(O`t!^GdL!u+=P>N7pthm0En{l)BE%>1s`x!wrl z;MbCvPAOxnCT>*^Pd}v`dJdf>v)q+K57!;#=<}yG&nqNL_HaTUoRQF3E#_Tgr+h2x z%*`wxfq;M5_0&5gaMp;kgL2W5q1~9-%b5oJ1v`#TMf~Evp;FN5;u?6OBZ=TSfcRX~ zGiS8v)U^+g$IKDa@p5EezdN9S?}>Y=_CH2`fsmGU^F@=GznrhAd{U@}IGv=kVl%zn zEE?N1)*cGu-|A~I^eCW%sGz7=FBnk>Oa-9jCdZv6+#y$)@2s!g8S9d4R$j79w&9!?xXidlpW$yb6P+-^n^sGgsaS!%nER5Mgt{LRCE!zIhg zJ(fHR2x`$z1sRa08LZSWBtjG>a$%!OcmZNq)PR=u$DfUxwl3Zsy2Cs_0$AYlpiL`6 z{4Sa0J!+KeZwDYK1w&{yedhxMVz}PxRIqs<@|2bVQv_S#==PawdgZO3{2pKaKzGyH z%`lz4Ak%=~Z-((deP}?5H(sm8HAczf1$`rk37Q<&Ha>9_Ef{z#PUVORq1{WBa5MF`7c?nu36?Ey|) zI*g4=nVjT+fGMg>GI>pFDic#m!lzI>)^ljDhPJ)-J^n-G0t@;evzV>fV?9dwKpf+# zFVab;Gg$W49WY22+@Us&VMvDxe6PvlA|sk@MKt7TE&MU(4i=Mi3Z7I0Co&|R#^JKJ(?eJPUfi*iuwVD+eH&xV&qCH#+J zoVKO7`o@!3Z=Mp&#FVhemiOnbHb?OGD9zM5pHT+<8)R7Hzn~@jHyBin@z@`w-ddhrEO2c4cNr}WLIWX%tGi(XBrdF#CHMNF!CA3`g9hr^%e11HO% z*5<@{iJ=7h0Ky)J=WW<0e{8%|fnkU{@HFlsmDm7E5?G5ukR;vflm{4fU)uO3#G7sD zT#I&Ki+xblKO4z=y3sB+{=0l^W6T25VfI2QQ$Y(ebgKaI#=z{nh zpb>NWB8ZctP1$J_je0~IPQC=0fkowLEH`b?_d!^1RAM9%Due%|^O1 z63GLU+CPsCWtM-Dqm6H5-0I;Bk5P6D=i_`NDj8tg4Kr?TsMUmvP5>F+sgFR2mr$im zxS5MajMH-ShQncgi}o~v8Q$#mIOvwpaz}9yuMo2COAVboWf>b zlb&6MOeq|9ureEJQ}b>(O1|HGx?16RF_>Mw1R2Ev6Gg zx0;WCxnx$;Hq z!Bh@+g|Cj_%OFGaKXJ;JacRuf(?wXV+R+8M@4mZ#j-%sJ&TicL6^|zRB&;CUTS^u^ zpS9S+=c|Cg`A??a66eb`qn&T53-x2mHR!&8D~S@A-^~tro#(!BeWJw$Nhj`a1!>|Q z7e4gLz3=F*xt=geQ>EmRQmv~s@o{83qJ5m8@^ zt2Ie6OeGj>QN;R^0FPw2p|x4S*DUJCO}oWVsHhb~^$xM>`PVb`53$}f0+}eFS?{@n zw!i$JJ?hG#>;18r8ee!V)BI|WPn|X(e1~3nL-5LpFmmVHC1?l68T#G(Odx!QOf+4B zlNT4R&#vZvox2Ld+0BqU;6=r9~3v@R#sTx2pIe@ftDNPb0}&ib*XKI zUt;Co!Vl8Q^`_gbJcOYi_9v{dgNOy@lSAD>ngaA2a%ev&>TgaGIWEW2``WkXFP=Bc z%~9;;LNq*W17h=$5#d!$zmt{2N`}~+QF_G6g1%v@GNI_I(CEdOcg8i2a61gw3hvhM zDh33f&;L*(Up7vZ&XFGQ$if9hez$Uzq`KwU2f5UvVlZ5G9`&5nf#U@KX-EO>gJ;OXGrPhyrZ8T!uD)p-c}5 z<7|5@a;N`{$Ze^o_aKS>Q&<5+~cl?{38ug|7O#~lC6XE8(Pd_2=vOuiHDiQU_3)w%Dh}6f>5f&Z z5|{XGa16DLurRYu&0M4vg@7qWSH&i#o*r+cC4e&knAA#M*jX_G>pVnQJ* z?<%lZP6{%~CLxO|Qz2rorKZ;D4%RQIe3TMg>iNgMreXSC&EM{IxdmseGzP!mg%7}z z_?Mtga%pD)K;YyE)v3?Xb*ua6ujmJ1YL05^Ag*2kB+QkUsx-xH+H(J(E9k3!DU4*L zt83}=8|NF-b06Yn_^rc>SGuBjbi}n{s_>TWDtq1^UkNMHHChQ6c80=tT(vsx-MN=1 zdch#^q810`h`OCp)s2*7J@!DQx85$?C2mM?ycr6Z$T}8iU!<_NJ6yiy&XV>(3rB#s z#>qo$x&De@c@1V(<{iAp8i054X~!~`41&OPB2AP@x;F3g?Rs>gyi!Bn7qjPamd;tShaLg34?B?W_uO zjCK?q^h1l1C^xk)i0VJ=h3=u0D;&v2@-7#t6M~nplob*VmU)muM}tBHL7B>zHf?3| zk$nv;Xi}KA9(fvMT>?of>wD^Z!MonvEbc2M#(F_@hF8HJy&bnB7(VVIRT$~kXGXQJ zbOp_-nP>+3?oC^0Rt3><8<}bUD`n9~nha0_G(R-9P=72a9*C>lF`-YF99?ORMB1Ku z4ey=ezFk18r7Ki!(7k8Ph+%sfOY^w|$l~mZQK*m&@sXflsGH6?xi8#D=}~>ZXpU1c zF#@%U2f_~@QO|vwU)hdP(5%~f&)KUHzmpcE&<(0Gq<+S%if&BYJ;VJ$ih|59OP*+$ z9ING$KfIeGT%U)LS=H&0_wsf9GXQP5(+h>LKi34I^91pqe3LL1HFd)5x(=I+1AdDB zpo_t)&wXwzk>LxB9&>`;NVSvNP?C7@5Vfo6q{PC7p%NP=1uMhYyM~9ik!byNactri zbX-vhg-PK;$D;Kj$%TemlLc0Yy`~-ftR`rLxXSr%&A(pS6M-kD8OrJ4QS#ZzO+#k1 zZDh`Hh<0ow(uzK6mli>)5}Tvwn)HMq%205pk3hz?XPq5?0T1{*sb2)ZSEWXKF;6t} z9J+x7Z}5q-t%?#1q}#`M8g8d#C8HUPhNICG51{q4dEh2~(KQX(eje}hMbja#gR?l* zM8m`TA)k_&kGHCuzC;}>D~nmFpj=$HkCB;44~iyI*rh4xST))}iIEmTS10SeTKClq z!?soO@8aC@M9WHBB)sBR*ohv%*t7H#0$xzC*@jk}qN^%c2zdriS)CB4w1>p-qUN>M zhg~XNahzV@T{#`n5Ea^~tF`(NUJy7OzPo$7n7h{3f>Jxzm?TbA$)gxqM+0wdxR?FTS72u@_VU2kEz6{KkEwJRc72JL_PkgzGxhwv7QRTaGIN5QP zCW}M-J2}Z&-ECs!X^eR#e`VO%aV*Wj*+WE`7jDZt(WLd3My^D(fd*gugH<}Q3C@`< zhBr1Mmy4MlDJ7LPXU&CwENB*QUR6$|=nl`SeRr4TUN!(8Ar&(aF=Z&I8e427vsdFQ z)h!!#-wRf4ghrG!fl3B68rvJDKfj%dtEI7)Vr(r`A+shXoCxq`>?$~a_#$IVSmm;Wq%G$KDQwpcu% z{XH~SIMbKT6<)}j*#xCAAE4?jH$~Mn1J&9c&xxMJy{7)$(cO&hWI|N{*TSxRKtEFz zlczdyS;}<)VWFWM{H-_uJ7;4YA7fX)7}&Wrei2I&D7%YzlX471*w5vq<_kCc@0SYvy?Ht~XsOo2L-sQ3<+Q z#cCg78)~IZyzPn%)yHvWYyN%jYL^zD@`^_~48yn9Enc11cdyRZ7MHCU^wKB~80yQ) zRx>OF%ynbs=Tos$E<{?j?cnq;Usf$93cvoqOzaWeh{~exSpKvG0I2Jvnok38&PV|K z@5Fp|@y_R0Ew=XxFD8e1aj^_I(sd`hu)HR3`k$q^`oz+pg{7f9X-#AS;v0o0Q< z)&_1_jVG4rjkyiPmI0}j%R=z^F;wsi{4O9@qukO9p}l?WpZDD-tpn1)F>ad#-rQ z!78%iCn$dRqds$64R~K$vk8h1;0lLR(J7yY6tw&>06MOe@3U`;pz=@H5sGB{yyE5f zZi$`UD4k(SvY(Q7vXwN+2Or@PcY{TBn(9W*XtWhLD#0<#r4D*Lc=TvQHha z&3xg$J5_L&$~^JLk^idM>+;id5HFjN7$nl(+>dxh-07AURe$B5bE&4~dDsUjhJfdi zErf6hd%7Ha;EzU2tqlqV-7v1CLy@dC4VZE8nBGK^k=S89%)SY#L~k=7m6)xLwPhXS zASBPw?vN!aWG!*Bo@gliW!p&3Y`7YGO*0+moax+_nMZY~YHB@B4WaC8pxfmZ3#EqZ zn2efY>OI97VFlO{RkBDy7buzO#q++FM3c7_KfppIJ#OnUEO#*=UHG%lnZTHM+6|%| zoSfV{SR5uHX&IRP_W^^<#@C=WMo-KE9k=@C65?JIsVzH5|DRIgO9 z>2Q*6o0Lx0yHz9h4O7$aYSH1zf8^QkS5?+2r3_m7+uWmUdoHKOWg&0qj%{7IRU3|g zBir|)pTPzLIo?9 zBGfV4wB4KGwmSyAK7At}IPg>xV4e zD#;{ZIQ0mb7A5%-3j4-o6VZ?sv$29$#yA?rR2Om}!4g zU7y2*@$!5^p3(bVCzl2;akFOIps`}u8fF}b^cz9BJE#SuT+Ou|4RQ7`WcME!u1SzP z$l~RkvpuNOSz}S+KjitZ+!d4tY1W>HPv!E`y0(Q~JIsI?P_yf2R++IevH!xSqS2>D zD1J~Oc3GO8$7wlTr%%*P*jaK{^W`fal|{QeG7RI=WKJgG8x{1I7-R^)%~u}r*y+)T zSnp3%FNFcZCh$r!%gWV0>|RHWL43EfTWU8iy_JHuEL?2BfO0&h5TgsYrYN?^?3DUY zQ|XQm&Xz^~8W&SCgd$K0t;hsFEh6eY_=!y9(lTOmog~dC{&LjUmmah2*jP8Ft8-3|JT8QLTMGsT~JujxG<0$JJ8lR#=Cn_dkh$3rnK4m1#4%&zO1tX8GVpUX9G(c# zqUPHm3XvRNHptqPx1I8sFz8SVX4uz_cBW&O=Ugjo<^qT=b`BdGjV5!nHdHj*_+e)V zL>C7iM7>0F_0CuX41e-B^l8~_pk3sWmLt9>+cPFC9SQDv9FW$tEhp8o={p+gPL_2* zivsz)j3v)VHg?1-aA4FSkL{}(7RH2&Tu`(KeR_x~>r^qRx8VW3q}y)v0P@$U07 zNpmXC>_ya&S2l=_YWhid8kP|dCBqRjS!un|J^xUGxd+Qc911boZG|=pT-l%~4tK({ z-?m5ps4K?*P*>m?ZQ5K`RpU}HHZ{x3JQ2ZxEHNFfPIop290`8`2oFF ze+Mn2@3x^Xmb93S=>^@y;i}`twe6%_8;!I4S%sQ9DU+M;+nnt~StQZ3&wb4dDFlwQ zaBpVrvFuK|(jA_G1oM(!-0it`d?`^VfpfvC-Y4e|#@_9VPfNAq zZzwcZ{ToVLGYpXlk^Ib2S~20g$IY!K8*-6oLte2&K~AiMSp+2m0uo86DR8{ZmpBX6 z|Ei~ts%!6oh4@_BMZ3%3$`jXlC<)5w;Csxky#Ln%aB}s8y43oJf21#$c0rA0I_1D~ z2p=#LbLMGrF5{a8at_!#_*CSzzRqDVnVOpLidlcmgojj420?cz<3#DsYXxfDeq%`q zYP|M%LOy-wC$Pp%zGZ=FY8RfesjOH3zO4YAUndi?`c3uv-fAN0%W!qF>CgW5wuSDr zd5i|Es``qopNJIxATUGBBQ(w)RB0aI%EQj~1-liIPe%gzfhf)96@Hl9G+u4@0F(;q z9daWXD3igUhQfjRicFbOx79@mA>&Dlg5bY6SEtqu2RmFKsU}^!hzc-X;f{gA&cEvv z3yKu(hV49aI~jM29mvz_kugRa1O>j;a!3poOjTco7=)Gkxvy}u?JByx%0nYp@G>Ub z%Bzxu6dnx2<)M-`C{@e3QaQW|n@0xNaC<6{Ez#LGE-K{MV5<=WJc*FfCLHzsa>ER- z#Y*^S*vB5ACB^-Ig}Wpzf+M5X`8v423~Og>xgIF;D&&5+((n;~t6$sFkaB3us2ww9 zMFu5PXC#|LlJ4NN)naOcvefLc_Hsjp`yXU?Vn6Re?!6XtEgraD-5#+v(ebm9{zih1!BQw8&4jSgqBlYtLOi??O{z zBo?Y0qqeZfmcMuA)_1O*?VABd#E5lMy_`GtL+F#g#nMVQc*eS8wO`KJ%dp-TwS0PW zQObn!U3*RWA9`sG;jqFrMXs5<+fo#ZdJYsQa+yPbJ*ngi#UG?w)I6hq%A`jseTX7w zC{t%BZ`osgrDS5vzY4HOU^y2EeB(BUu9dXtz7FPyeGO>B-XMQT8G_X^uNoW9&Qs85 za)9Z8Gd&}5)$;NjN^Ub5>EiD;%v18O~d_Ni8FN?QfW z$;LzV-u+LbgjUkN6#WvCNYhBG8r_!)M0j#Vxd#xY+kq%b?2`A^sfyGIE;0H9_6Y|e zM85=?!qND3pYw5NQ_?7W>c_d5x361zyFgx!w2r9A{QVlsQIknW)BZ_Jq<@SDYVKFJ zK!VM?tr%dXuN4x1Mvo%}g>%?F0T>H_1+$yQr4Zl_JBNOdrSBJ=iWltXJ(1!1jLGA^ z4i%j3+nX*h!Y(!}@X*EEofsnIijcMETPE7TSgc7k1Iw~T zXFa?jD1huo1WE^&fMY6k;U>9V9d)$xA`DF2`NtDA;RkW#rIC;WCaoKBL}CuQ+Z9o1 zgALAS)fDvti3OhjyVYMev}zsxi(X>?#{wM{H$tC+S~a6mdj)FIx?F}I`!jp;xy+S( zLSPn-840d0sq3==AWiH%f*JfQ^gdNAsjN@GYXsKcGBL1@v zAri&$WW;Tj0bCV4h+E{9&l6ZqLTgd(I^ON&3{AToqT@N7C>X1ebjY+aKdXjY{JpP5 z;G)@UmMntrK`plXv=W6|#uSOSvni2#IWHO%HsN7+w4T`URt5!s!T^0U+L>^OR7fku z*rIpB1@2(t*OWAcXiDwoVHjInDf+ifiZnpW96tF^r9-lm@bVs>Mq0hE1pI8{_?3%C z)pMeI=ZSI!5*ypmGvTaM;6~y&bE8}sZG(@bY(t8SzpUJ#IwxX`d`EekqFFXz^{*O-k_@okrxKgo&?!0^#(b z{~%b;9?=<{JZfoTkq$#wtReWkFt3#{r!w z%|LdvV`C|04a+(U)ZCk^2f?HSZjEDcl@h8HAV|*GOmO%7|8Tx zMgiX_i&d9j9T8J*R!wuNK4p5!aViK~(u!^7ZAG|k7POR|-gP4hMs@bR)D1OxRk=v_ zk?LQDCgiyKDz5^Zr8t;c&SNQ{Vk`{F@+G`E@%}Z{Zox*#1&$97WGq~({s4$-o9`(h zsD8(K^t>W~roQeTjL{u{FWS=_k3Ps20>Q0o^j{pSnsiF z++s12Y}DCP`LfPPU0eDM(^a_;zZ5s~&%}2aTW7`<(cWISwQ{H2xE;kM7vb1EPHNer zV6}z7)$nC42A_4nn_Km&w)vjv9L|zgGPFTGvnkbs6k=oROt_r8K@*GyCHF)a74Jau)kr=K2R5IMf!yH(0})roj#bxSzd zVIqPr1!dCcK?@}jH=*CpEN=j*VmSha1SEHTzE8`?Xq&YBm^jzb-Ob*aDWdo`F@Q#A>F4Kk#3i}D6q z<-0~^D95Ow!!&eZ0YwF1*g4(f>m2IWxt||U^i84))(F|v?o2(l`N{a1NjPludl5EW zxwIyB?Kc7krM8G+P_9gq#m<;A53O6k<;X|d@Rdc#0HE$-abR@Z01S1k!Z=&f+ZhvE zH6K0O{E};<>+yKm6n!%(yM0{Sg_;JB18SW?`?T%18hTS&_1iY{Drm=LFE@4R^`L>3 zXtKEBbFfmn_;K1g2)TB%o(R^>!NPM~F%mOEn2Ka6I~@QF0jRiqXW)D*HRr(dZ zpKX`0SCjgi6^HPL*cB%3?=@jWgL4$fF}R&B*6O2|_24+2dpXN(=D&xyuH2wxPV*t+jr`ixtc}&!D zutv3s4iAL>=#Pwy>`WCXZ@U$C^0=V1tbOO~8N{C;r4r{NX+Gs8Yx>+K5&;=mj6UFU z1mRl1y^Gt>BkiA}vcAT*Au|-@N1Vr>q|G8XqdA9Bb1nt@&?l8vUW^9Cp z=oH&&KGz#Rms?2+xiWMvgqJ*T7ZyuOd`2meo0Y$wicH(p5?qM1>3ObAxJK-v4o!w* z+1GFto!Aogk(GF@8N{ZyE{?T`#2_mE7+G@#LI6A$4i|$)_GkE$7k-EoEZvVE30eCe z{QhlK=x@$r56r6R}L{bxik=AKF6*;nvLsFIsKZB&ktGD1Ou1*%1xaI0gS62 zlMi{2HRDuagJKiG;GNz5!$TmSVe~Yn^=9K?jQv+2l=Vf2*X_ZH>hnu((o%A>g#a z_-?|@Ji>VUEMh%!EfL(?KgxgYP=)vOk$oht(hpPwhPh2y80zav;G`mnHhym!YcBle zI|vO^Os1)V3LuYIQmpx2bNS1@bPxlb2&7X*gHEn6}zW5!i+k#p$$XpC4&RTUM% zZrVc-VA1s=YkV0z0+|nKg)2B3$xqAxRrE$`FFgb~r-!D+DsG!B|8{=`?wkb4y%F{t zIau)@Q64Dk&UPZ5Z1BuWv(t}DjN-6IkR_`xQ4P<&r4b5*V83N;<@o@1`D~k=HVzSoO^k~ z0Xfe-K<(Co6x?`BHI1WF6_n>Ks!4&I%4z>Mfr|2xqcLR@?Lqqox6t0xTYdxCALf?~ zTryhPtdnNZWYOc8S!VZt5Vi&L3;6EX*kw3337Z7k?( zeJa@y>6$f3niOEm5!U|N(MY-6($UEpe4(eBRi^yAmlLYy;Q${);4Z|EJKEYYJ6y#TXg*!&ADRkZ`Yau(?}L#f?H9I zh8g1Q-stpyFwH3PWr8&w9Ly>tWv2k_=e>6_$>8|@E1cAFJ<`Qt(UMYhQQ{=c9lL}} zY0+SH9}xF!W~?v-L?SUfSb||Di0ZU=y1K3|`^T6q*qQqQiJse5Y9u#OXfGayg5XT0<-}yX(H_eKRX%qhf>)oohC<5!R{w zhyu5#akWt{nls=m3Dsl_?}#)MFj?10Qz!msg%)nMRay6223W|HUMnN0=hTLZ=Z#;N zDU!Kpupj=){o7%N{Z3JT=T2Oea zCnki)Jv*+EzXgCdp<4kA%euvsN$wOUE1wjkqC|FcWIyul!g?L!B}}(}Npa1>5{o=e zBhh`7hnH)Pc_`W~-d}k~aU2WyT^{{clQU`q9ZaraMMB~dS_b@%I+vRdRO@K4d zl+v=&@3$`P+{7(G9fu{Rz&jkIXOoN{lW86bFCRf9u3%Ko+OC0jBOY{u-G1n?wEPag zg*rU)DN9`@*EA)wUP=2);@OEu@Go^BF~|*(tfME|x4<#mjoy zp)&uL%Y}aWIW2}EB-R2?`$HztVIEzutANT6RGUXC3yyefGntEYiI(A-EuW+= z7ZPx@zER_S8L5?+{+Dvcyy-w5J4{*zx+s_{JTkoM86mF+5yJ%}#|k(*9l`Rh9KuR|%r`L${j zbWacHh^qEIN!IL|0Q2bQdjD`C?mt|J`GSN!(%j)6Bs^q@`q^O+>_`~jit-gOc|?a5 z4xBS4jLo^Vf_hFxf?NdqX+I#Wq;!qt%t@&r@$=rozh6M|KMkyxKIK4hGJLFkud6bJ zUQ?>4_qstjiYgv;)pYn!w!}YucjiA545IbdWf^iNdSsAWRsm_|yX|@_(OQ^-O^$8$ zKY|MLdft{;m;Z&Fm_`nmx+hG`b_TV0X}ns&`#+k#G9aohTAPq=l}<&vyGuj_Bm`lo z0dypXuAw`WR*;mC?(Pm@kd}s_QwD~V9O9n$e&78+Kj!SS&)Uyk>xq7qhBu~!@c1NW zQ#R8G-<>{Yac#Ntr0bJu|L7;f5!cPAtmi@H;3F~C7+OFhS&29JO`R9heMt5r;aq~Y zjhSF_D7Lr#p&;3Ku&L|Ojv~;Z%hwRYqYDCxF`_ZIQ zCN~K?E^W^2LP=JPGwF%dD=-mjCbJcNc}jb$afuH@Pio`4#ffT!0g87#A{6cj{Ua|X z@k=jB6ULq3PAutln{=ECexf)asX8vdUP#EiVvFfrNUvDv?DwlxSHlCp;}K0mNO_|Y zw&KO)gy}a{HyZ z=dg}hq`(Wb6U1jR8RB3Kk|{fMaqQElb4hH%SNd&FPf(9lR7tftj!$ z&f*Ik4BP^iv-ba`O)XE%^QVfUC1AeUXe|^+ zh_0RpJXmfUpn8NtmsWxOuW=~r?QSMDzS1i1w&J%5QXB)bA1?vn~fKGfpe{Ab$KIU>RI748D%aEKE&j^St7 zVRHP%))w90(vFAr5}h(k$t9A^dMY>&@t4?uzR}+L`a&qx-f(Ly1bP-5+Y^UyApDoK$pK*}*_2}?2ZWmFdR?9c(2 zX*5-Twpy^P#gmd~_|R{M5;OL%zP+1RIr9J3LK{~X)DHjk zP5tZ|J}Pm(_4Um9>${3JJG&c~D>7eZTpDi0*m4Qk+?eF{iO9#_JW22w0R*iBz|@Yz z5?aJR0~u5R?B^C(B{`C8fC~8~f^OFWfNQ^IR%yz0gK!YUx^fZ!3QnCq^ z`Jk%040bJR#E`n_IVzKLJy(|HT!9qz&7t2b)e588yPaLY>*EK=?zMv&7UX>xBMSnR z^6Pq#kTcquSMl&@F_Vy~elPGU&3a4563-%r;F4&tI&*58#(p>KoM4pewT%N%siU`CCrArWnPRGkcIoqQa4VSfikV_&=Cn(jX;MVj zqJo!Rgt~|o(<$i<9Hg7(lj5cP_P(H~2HX%Zv6$G|w8UsE&+V`z?l4ZL#*HL9afePw z+gMV_;Ev?H^D@}3Dn*CUgo8LL?wdgQQpw00lGw6CsT4agvVpZU(JtlL+0y=tK_(4o z{L7g5MVu15?4S_SP{^~@>D zi5NOqB#fPo1lcDy(z>B`#P&DZt*n|x(leWUe4%H-K*It;<#>6azAW4EdxQ@WDwxBH z0{MfUep;E<#7v9mvhOIlG(6F|vDtIvROH7)P>Sj(pY+$fVttK~R-lc3X_x((Yf5Y_ zcBGGb-1hyR7)oSja>aHPE)zIj6Qh*ZGU^=`kYliz9L&LygDyD0Fc zXmpagi$+tg&BMS$t$n-!XUioFGDj93-l*G?GO+8Gd}8`WZs)r1=;^uFpF^jPxn%S# z*=-Og;B)p2q@rkdbMrsp%I4%_#-z>D?ctr-3KPm#x|ZUN>0(v_Euct)%DBu>_v@(H z#g!o%ss~S@%hbY!;4gCyk5{j6cj;#wJTilYD*UXw7rS#ax6>rO>~-pcaZtKSowe7= zEq-U;LO1xPOh!y3R)k?kt%!rp83c7=Z*R%>kKZ3EGMbEOvH(vISou6<~B(KB0SD!l_{gzsnU z@>t>*qGo39ihDLpCv(AG%VDO~ZCSpz1FL9Xt1g_a>(kbj^SjlfO7NBM{(9u7s9#fH zjlJJGU&#n?S(%^79EVu~O9wV`C7#?f1|}h2*7i+OH1voLA=A?*Q zKj8MVB9+m5QmY>W2;-}=$1ECxgQbV-e&^IFUE@;Lqn?A^6K-dx_3`*&6_i9o%c({} zyVPT8Xz^7PCH-c*JJAKV{HI2Kqya#Z$*W2+kr|~jk!exNwBofSbwvi56N2x57hTBsZHNw zrwytNdNCOS_cY91Az{ows-zN0nDvPVQEyepMY{LJg7xz74KuoiS%jzS4iQlGwnG)C zx4=}y;pvu(NfHr>#M^U2x2nQ9mA7*DW7uS=*p0`|s$q?}0?AjG+q&RRhY#MgrU-{C zM7+GQ-bhRI#aO1yXdGilN_wcz>uq<5EC6Iw)rm9D&T6G2#8UO#s*;~V@C6*!^BH$5 zXJq+fBUkrUJ!Y3O-{TpS2K2Rds)ZWcVl=Guq|!BrSZLapjGbyQ`mrZNCwgvhwwgvL zi?EJb9Q@0M$4~l?Qt=wQ>TpX1k9|DXDcvkCG3#m@HuM?2@FgJW;PasINj&vw^%5Avr;Zb1c@f3;HH$*eeh9&)5>LYPwX>1hflyBj2#i94Ia z>6P!T&Hg+E6l#rtLhWK2!f@~MSt5FLndQMi!`r5cf!PP1{8Vb`zEb0Ldk4ib-Kc0_TCsizcY#%FKo- z-5LaHbFD$-WqE1WLe}NjBWWpA8H+!luR!0kz3S)1`Lwp5#qE)PMXf#dAdv|l!)m*o zm9-Tg10ptZm@FJ3`3ld1x`=wDbEcP(Y{T5N*`jgOUIGnrrr9-lhC7(Ul-=q`EnTZ7 zFMe4}ZNyklMwjq^G;tm(t$!c)0CU}S5M$NtW}y9wv9WOE!DRqrw!?554tjFC z@vdpA(0901cNMLtpg#kB2nbw`bganILwp8K({?Qre}*Q{my(P?_lq`edo0emoMdBN zX_snkan{WUFp|)$H_pU>il&$a{r8O~iE|=yLd0=C85Z0OO;XnR4||Tw-L!;*M$xb! z$3JKr!hZUlZ}bz(kc-lpD9qD8BHF3(%wE$!!mdZQmp1JtN(+EF;u9QNyt~qlFGLMQ zJPnasR^S(=;gy{P@R!IG4VD68LvftmhR&rMKN%14tY~L*O zZw^jUs6%^Xn6J*81*(iwJv7;5z;S^~txUT3pMw&8hQ09fV*shhg+mT!CWmHp(5Y?W#x^=gz->u@ z4E8&@SL-zqX;l&iTml;*iAf`1Em%pH|6ifo7(2~)0Z=@=OT({dQ{CFVed_c>t;-|@ zmZdFMM6g@KAA*}f*2&B2v#DeBJGDgaO_DJ@8)vdooWVY_U1buxhC`ro9o(&1KpU$9 zE-pLJei!7iT={<9j-(g}`*s{0l`tF=Hecxq*<)MLFs%+lcgKd~xJ{M@JXCq4;o`49 zV8kidHU+5Pzu4MK=M*z_9XN-=W@brto@3XqQGIO!Erx4{O zHW^j_g$s^1PJj5T_1)hQ^(tH^R@&pqqm5j;K6SPNtPFayr&3-MzVF% z>Bb8^cq|>nmf@boDm%_#3}6giZ<^$Y*k}scTYIyS%0Gz`J!T=reT;d%@sFgg-gRn8 z#v>BDLV}OCF981dpjUmi%3KDzQrCd7OK$@DaVpzp8QGMR^1g?LrR_N$Zz8zdpU9?~ zyTQK{3<-LRc%z}GsjTOYeU_289XG<4yrDXEaE6rquw3!*tM!?A^`*aIczUnUJZ=DU zt>Rf;Nf1NZ5$CS*c?=l3cuoY2u*&_{%-XKqviGM#LSx6k`Pl(CdqbJtMR$i;)Qy=t z2bTr4oFY`8xelJsKR@U-f3!kxP~l^_kZIRh@P4?n>K|iUwFUi*xOG}MI&Ohi zzK`?Af|7KZ--eqD&K*Q;M;;7qlRqAEp9(qVlgSEdcN$sHTt*>x{#lO71wI_L`H>k4 zj+w}iG?Hyk_x<-t$N9dYMhY$G8JfgIkE08a4j`nE=o3w%0FAS#0stX+(zB@$45pTpK4#a)+9 zB&LboDe>;>@UhYwNSaFjOGb#()Nu{;Qfy!4UwSxP;Yl~mGujV--^pB_eVsRuu0d-a zv`-`(f(eq)kII;aPUjC-VIyuWF5iZ@}FC-(@mW0y}iKEoz)i+83H}h6* z+sLGaI^RgC)BBI(RyS&lS49|h)nie**>*)qx8RNl%t794;|1MajL0PLo~fdWrwXAv z|M(bY6#-x7bbbHxd0(t%y)G;L&4<+;|IYWH*_!MgQD33e$}oCmw*dYHQ{v;o^@aqW z3JjJ|^f9COU6Z(zI23&WP}C2spA`QL_MWdnhk7yvU)JIvd>vRGtuV43ZuPTh4n#E&l?NubQHMmqPwhvqJ7qUJw%#7M*cO5CrJjqG2n zvYYVl!XljQA6D*Q_i;SK!Ch!rM|iJf7+@&vpgnwY^B+YkfKPJgq{Ziluz6}}f4|&l z>s%08b0;eR-f1Pxz&DIhI>rjDPmJgepTWwx&lZ&cRg2T@(#2}Rs4FGFB= zuZ!T_8|-`xC(=9rX!87)gODS~igF`la66ZALginY6T~Sa#657W5`EQ5*q93)q=%tc7*e?S zi;9xKR2J7LUqx^8*z4cr?|ti$-zsf(=Z-{h#74BcxAW~98p$N-7O{Yd&~0G}D_3-PD-d=4x`UCGU&Dul88C zU#jzuC!y8UQ-AF$KcV*#uPJlZW|pxk@2hHYpgg8;B%O*RO~WyH@U7UdsTn%q-xzC$ z2f(k}5bA3<)!SvFb3t>x2OdN<&Rv}!zMFC$HKGqihA+^bXjsX6*iZXoU-+%x$I;&# zF8LkpDRKqs4935rTY0DUW0)h|YAQ0le(cY7&K+dIF9VQzOym%G-Ia7AiP3C$9-&*r z=GI{%Htv7Zy-@dfx7{_l>UM#e!bfh-jDQuu_GTq;#iP$q*XybYXwSNplq z%{0F#1SdoXq}wB=X>%&-B50Dq(!)i4J;MM zge1cN;u_!^WFj`ixPo4Kij~`9R{XR2*I4`u)9-VapCbhZ2o{>9B?c0B&ogwoy4?g< zY1Zbs;O||iP0K0b$Pm~0*_~%&qMZCpo!BiZzbc9LZiir<5YP7WWTQsscAJOw+C*QJ zd%YZ}@;&15vtxt9k=a;p9>sE;)hunW_Bya1-+T7-x;**o@R3E6qH?j#zHK8}cSY|r zRE%j?CkoD%Vu$*XLWym9?Sx9&a`#i7|aTAC0Nrz(?$d`EH}AY&ume ziqF2ijwpBJ0PU{X-TYEsPfOwW8)wrPQShHxIhMrM0VGey3$+lVdI-pI*0SgwIv;Di z{Z?~&oga%TQhKYaFHyW0E_|^tdve5ukMJ=q8V2pR^_Ke*|bD8USwfi&bLFM zWTlrBcFIAU6;yG+6~6Ytz&@j5F>u&ZWuMPLCE{OmFA3h5l)sXSvd++>j9m z)$isNUHKyb+eTdftF14g3&dZnK(k?AAW1yv#2bAiWx{?1SHNfcYvn(B7<#L{dgq9Z zbU8?DjjTx?^V~n}xQp>$_@q!gyAfh=MStI`AQ`a#RrRBau!Ol+kG+wpXvV>YDG}9R zV{(~@_Cj+8Q-CC0pea^Nn-6bKxhJvx;%m8`lUm>N=6_?qc~v7ef7>@16fh0UYWeje z=ZEHWzS8_HEQX6RX0e0f3#u!KTS=e0NIK@xX;}SzG(8*aUqjeet7?56BlIHval*5s zgjoHc*y8V`aX=eeD+u!U75#f9PkoNdU|@ivF0o~W8sX=;{5QMxUCl*BAYErbmoI=g zp@#S_s5WWf%Vfh1S@}0^e{xf^TEra&L*U|}FWOe6q~oLh(%p8)CnC;{wHeDN%XVFT z8+tkyWtiVnb`{Q30{2K;DAQ2SjmZOt9N8MIy0j5pJk{07clIk?T~Tzkn-1vb7X9}b zt^NoUvZgPj6Iw;AV{Hsl&3bOQP$^%?VrwisQ&9! z_Sz&eSUyDxMVdIU*#ac3*3l$i!DKQ7KvbP?mrPlK2*}+xx7_Xq9%B6~qdPN|#%@sS zTzj(+X&FCuN()i+#P0t1wD=-UiEA(v<5SpX%Q9jVZ+NB@N;w>48bl-%GmEE-$Ql4` zzB047a1jj9?MixYWL))2)|Pn>>zhyqWL)7WX%m9Qf*sR-dpf*xbH1;CkzE^f8%Qy@ z3@;cP=djwM-0;o38MIPK@BBOOEU&L^~RFUokq7y3d|r*FxjRFk5J1Bf+N`rGu8~lc+-Oz+YlNBBFy?M~k>P+pgO# zjA6*iyY5_5>xyqTa1oJ}UQ_48lA^4~M>!aST1pY9pPeTpcxgP_OYee=@CG~;K9wFj z*238)^!JC3RD)9>H3-=qOy`53f2qI;%b&w?qZR3pmS;zDs^;N@u1Q z&qi%KsOK6#JM?X4Q*Ga2zpWj(#K6!|4H`gXBX^_Fr45Orl&o@aezljWUc9o)OCle& z>pzgI%=_gxV663K=!{|Q2kY)eQaT&pabIK$;eC>r=YDPaar})wMZut~qlsc?XS;=` z1J?|{66Kb&>5Llh`x5dRx02%|EUlkDMT;$8mLUSz)um#b{Mz}w>|$xD1{gugIjvSd zT?g1Z?Wv2@F<~Y0zt1Y@u|5=cT*{xk(p;}dGBX(*p4GhGLm@`%sJ>}0`UM`x$&6Ip z?PZt3Ebs;|m^s@SeDu&oDUygtDW82O8~Uu3QjaIFxs^wKE-pOfWrJR(*cNL2-zWd` zJD~==JpS`LnNwmFuXs5J&_M($$VY<>5QSV+%=;W%W3v2rv8yLlJ7c4pq7Az*B2^_1 z?J8YHs4}~ac@qhw6nIVCzm4Z(xC*70od>b!46wp*1|6Xs!|+HLgW#FTCeZmTwek1H zdb*`^t%uQ3>Z1rI!Q>wxQ%b`{{N@%`tXUrR0HrOc^s7kzJAGZBIMFE>cv&f&&F2|z zb!*Q*W0ndhLLZui2){7H)(bqLc0A+{z_0;nc)%#*5zs&%&&H5t0mMzf^_9yxKl;J% zc5~;M@Gc0|yGXEYHbqlu5_FmlPKAzg4<-`A`%&5kk$Wwb0H-76(aK#Z+<|I$<3E32 z&A}X-n5eXMuNXQ=s*2kG=aEU3i@U@|wAumvfq)@$`7-$OCAnb<9o05nl178{{az>c zlZ=lX$8;tB*4}RkUvTs);ja~|wP9=}dP0j5qpe5QrGhp?d%mYBd%M{Xm$nB7e8np6 zGe`(U{T%6|9HwyrY1tuCGsIqe{61hy6zx0oh`M5<*?pqX;aV;D(#8bgy7X>ryb+uO6<6M!Z5oZ(?1n-aW*7bxh{0R-!e18-l#ECVDa4?FyU zW^(-!$5+S}T)wpvb2uaG$19(tt@q=ads=h3tYlcCq3<>Fv6Hc+nWXP*kgIHzw)KQ~ zR4*)bSMXrMh>11iLt2xlvei3N^(ORuK1(>TMTs_$Rp0Ni;D zDl!|nxg|$J?^{3pv~zGAqf9GpJNB&$=jS{t)ZOcNWP(%B`K!jw>)r40nY87zQq!Nb z@u96mdlKMsZhfQ6#hw*xMY-9hTbCx=G*3U>P@GX5veiH_r{0njoin2@NRUD!3R%}n zyVC7_WD+Gw{VklbthW;5wr=tU?UijV%jbeai+IqyBYDN5&z2@uZFQD^dr=-w-jDf ziRduqTlMp+T#6L?@RLKLd-`Th+Py}rM1U->bSY|MWR&(Fsm{$~&MK2E?}7PejiHb? z*!Pp(ZSLV#R{;pp!S$o*NQDFHpL`=cgfMz9V$5>)N-h>iIN12B?;E>oy}mCg@e`F$ z9v;WBe?GwwSSJ1&0+=Q{XbI;t>%|Mb<<@~y?S5nNK}rNpy}kRLom$d$KQ}t9eU}7v zbb%IW2TZ269f{*MqC#-y6=|*zfo*L2sVUTh+{j%x9ltkHpQs^uV(cCr%6Xq`Azj~{(g@^X+y8lU$3NEa z#k={>KU1lP(Jmpq*@8eMM?h~V#JK8CHI4=wDYR6sBo-kBH*grsw#T#sh9E5pses0m z!d|t2339*R;TyxskT)uW-Av&4O9_#a_)kKTrOVTEWyvj`(ONUpSregph{6ZN?z_D0&KYA$4r_&CTdkCajSOCDb(rSV{N*5-*Ed6Tm} zM%+V>!tql#Cl`L1%nuh&vITd1yXI1@v&D9{Q)0ajgdhPI*6@mJSMS&V5fxZP@0&j@ zp94Uesp_9hqf;%t4Ioq((x*fH2F(Ckh?Oa``(EnT@~e`bjP6*@HE##5Zgcimjcy>M zzaJa^D|=tzkR{>N?nun5)9!f|wy&aRvO6l#^#N{1mWi)LIT*xi?rxDHw~ZVjf0^FZ zru!O4!s-l|ld|PwasWxs)>?iP6xbSn^_m1sogdb)b>txHhP=wzL#=q985LcLUqYH* zInt*F-r@!GWu;@emiv_)XVAsXQm=VU#ovBTYa}Yyyy3{djp&vXg&T&>&|I}bKlv>B z{_fMa;xhL+0zQ|nQ=V{Fh9C%M9~ib?XmbGtSpv1Fi8NO2n`3s8#fY&2|XJ3Wf_gYP|VZO@7`_; zj#B728LejdVC<7B1u>_9wNQ>Fr_si_6zY*Cegy~8BmPFuQrwd-YgA#8&sq(ESHG}saED3P+ltAG}ph5ZWpQoXGj)7>zOuI$XLnY1!9k&wXJ}#p8nA=ltX5p0# z9K(BbOa@oN^vZsvX}nEh`t(pog$k8YT?~q9UHXd)GCNDC#NOJ?2IW0`)Bme`p}0fv z5B-?Os{+3O?Bsla6c|w&_|M6ypZb2oaXi(WI9EA{c=tV!=SWkjgauDcZf!`U#2~`<}XQ&6@P4>A;=sAsW@(zt#j;7HM4MZ-%X@Wu9j`!5+730I{?e+C} zr{rAp!{I91^2TrY4UR+q{0Ma_^^jQRFirY ztEkaJUx(l=#wYv4T$kJFbVb8b=^u2Y2>tNuZvW?napEWGI#cTHl}d7?n5Urbf`;uP zHMEV1#c)}HN-gCq0Ba#POxYORwo{Wo zAX5StQnMet+d>lo-`hr)8_>g0D#%=H=Q5zmvTEedY~FvPXrQDR6#;Hpz1*-5JJspA zhq@Rujh^2wls(CWdd`hyDp62gR7#BPL>J$v^z0vYinu>HnLSH}O*$RUq2(}ZTMp8E zRm&Up>NVVN>Pk-9qZw|VKUYF$(XJkQVMGnK==STIx!CJY)_$iLfrX2`X!yu?N|`E8 z+xP{TOMJ`f55f3xM1{1qlBSg#2zx*m@AgrG%L+etN9vN5Og8mFF#71FlmJikyFWK; zFdeVVbmeKVWD$4!FLqs@_Vn2AV}(Hnbj2wePcZb96fl+>{^5v8ZR3PYGk#p-*ha;1 z%|UtPDl{T6XfG6TacHZe6`KsS#ccBoZ$$ZgVk;#8!yE5+CY8sHE>)z#ZuU?PuC56` zORn}}`3Gbb9pw9_Z5adTyk6j_aHTq0aXv+ue@y$KKCKo_2e2>%>pY*yVeeXGL)t!r z0GizU@fSq6nX!?zMjWeHKuzyo&cXZ16#BiTObl;z!+RBBl6F6EWK6SnyVYdhfve&9 zeJ0WTdgvF(fpw)D*JyWalIcuU0~F+kjQyxoISLJ@KOb%IK4av0C3{@?WTl~>a%)(k zD&3lwK{+1=u3fLdBKgoMZ2k&;wd~2f^~%N#TM4DkKb7jcK~Qwqiso2i9u6!%-neh$ z=PNtjP}PvgclL3Sc4jjp17>2yT!72MjNyEec)>DPa@O>Dz{%ft9??b25FW!OHHGaDqEw9TE?Tfw~NJ{L^}?w}qK_wf0tgyyF3Xl?QIOv?~)0 z#%BHwVHrss4t?8yk?CR(FLsFptmZ|5voWbYXwJtkvfgYh)yyX|c=?g(cxWY*W6udg zQT}YUJ*|O={%9GXfr*^$R7jwZLnf%B1*~MLPdVW1PUjKRPLG-Jv@ZL8A|m*)x62rR zPU{@Mdc)1~&iYISX@b&nIN8CtNqMxXUu6=H*ya&A%j*4XlWDc>zIwAkSY*mpB9@*~gIf#+ZD~P>|Hkm=)LMEUDRQ3@oitgUICd6VqKwJP`Uh9UiQ6sg ziDKNvx}sGk*Kf~2h}-YZl3Ej7hZ|_%sIS^nU^khn{2v!!zd1W)sZ@#qN=~oq0nX+` zLv5fOSzT?^Ujaob%>J!85PuNu7M_z{I7*FyaFU}1NV++m*~3FFhfkNVfR8<4Wrz?- zu{;WBO#m_P^7&kNo%QG*Fq=7i%#fEPjoBtts$I+(S`H|@|64PM8Hiyjv@TP!-8V%D z?@;>BCc~_kU_#d?{mmlthPAd)-IK`xx7E?J9XSo^7>^r~Dtm;rSq{h$^r{_Kr9&%zVkYt61->)8YcqiDa`tPFm{oDN8j%Jo& zzrRgHgoQI%2!89%`fC3oxEm50>m5;@O(Myj)khIF8beG&CbXWmds$`8o`pAX^@05O z(_0IBd)8;HF|meWVTvy&!2rjp;&S_9*gR_pSzc~#b$|LpR==q9^p(3iOuw>g#Eo0w z{BB#I4hD9pD{21e{2Qgfah?N%ap0#+EK8+j`Aqvk8kkZVa^g2{FuO>%&pY6q8Jr!fdQ@+QT(n6f zs_Lwq`Q=`UC0n?CZ^W6K1ZROM%B6hcm1iLKPST5Cm@XY7ATyhs&hR#e#q`pVfY)4Y z!x*%eM;l`AqX%OGH=#ogMyOT&A$}ZXG6jL$o2+IM4GM+OWA!WCACb0ST*mvv1SQ3> zn-1i#o(uzQfl(2!(cdW;3)T3nl162iM!iw9Be_B2-WV=9B2OdyEq8D}P09bbcR8J3 zM07Rdr>KSvN9x4Q{YpWHDxmAYByhrHlM*I94=R$eZP`UNw@WRg&?Tw*-j=N9kV`s# z63%HcT)O#V+D~K+L1*KeNj14R5o=$}I1de#;C9JEfr2DqG@X|%pco1igRLQG43{#U>ia#$q5 zDoa+par;E2`ks{{hX~tayJTt>RK*CTJ$FCtlox21GBB`E>~`sDyj-!K((+dL)sc?1 zdtfk>YmOM=uDzTuWXd>4dKkug3NPAVZ{;(=h7KISGEW$q#%3Ay^$zkf0i#5c4e7<- zR4vjaaF;^es-Bu!W6_Cd5#m1@TxEfOh8!qZ@=BxUYIWTEZPiYD<=3v;yneQp-MGI~ zv9@|eYBqauI3x@#1kJfoW*g6nNIa`B^}(w5iD36F6#xqA1hD^Z zw@aVSTWJINS1?M!~zPlGVlz_|vP8S-HrXa~qC41vRg-8Bt_cj-;wh-qw4E3c_Mg>v8OdDV=OENcy!e(E6wI4Rj`NIs|&#>*j z4Hn>e8;^JRqnu2syDpkr=FvBQRoR~*Bbdh%^0?;>xNv2sK$-6EAY8*Dw{H=}aP}+L z5Vv3eVV(J0NIG_Zlu z0>YiQHW~J+=KQ?G$7^7x0MFgPGi#@rZea z2eGstWWT7$e7RKFOw8ht7E&(#s{RX62+1D)9CYjrX5 z{mwt+Hf)+~EM@3_Ev^}UFA31AE}JWx6Ud%2-m*LIN|P7u5-3h7`NnZ+x0*R6bHpKe zm{~J6qgUxuj$KNN5uL{b*|b;XSy(FL>YwLTy>s$iE)v|o9;tPut$&%8{OkEz^=E?) zX&IBB1`SuvL~awHLtiSL~#WbXTUohK+)L*ba#T(i>gXwXyQBpJ)K z@ny>9F)dy{3lHFvQXQ3 zsRKe^Va=hPm1N14kiS$6?x`1avT^1&*@DiH>fsE`jVglKuhPBGAI|UJ5sI7#h+;RD zu!L<=cb!ri%DUug@)ZX(SO!}jWL3#uzlfQ>nB_lQCelD(h`p!CWA>V@Yzd^+2b+Fe z7vel+DxZ-)Yn`iUYreYLJpBRQL-JzKTpn*lvrwF_hX?tnaYk*Zt3ZMJTVj9nY zj(8t`=`@dxXNMFLm%(&(VR4|lmnE!aAXZ?>fDBx(+M8onhmC+)D>QLnl)o{zWhbJ% zS58~TjmidCvp5wC4~hua>%UueYNTLvCD1=yK4g7wPkgeVSnsGO1o!Y7DZFdlD8HBZ z`Cc0y4mL4r!~iFqG6FTuKF`h?YfCHZ&&guenq(GVTVpTp&@My z`1ihu^u7m=`K|K^O*@VA?_ze?V;uMf%VY1+$If;a&)%$8e3!X7ubRU&R0ss!S7dg{ z_?^#8!1d$nGPq!?!z1(DiUB*vbR$vz@L~pYp0%rR4b`=Yk$2r!rm(kn@0F>a03i~C z3+fB>IO&fB`BqaUvG6CJs5XD@9f%bSltQ);%7Dt}X_+q*o`&#BFrtzI#~7|BQ!Eaz zch9INAW~&toHte;4+)hvadV3R0luAqpyD>W2mZo$J;l>U*BIYn*O3Y%xgta=pprIM zB|St}G@S;``9D;?1{#AyF&Co(Cg!H$yW{1L~_NcRBxYdh2 zo%8vI6r)Jn44;EVg#*{$;=$&z22H?QUu&NCPsPJ`IpQ}%HgRKL9u0+u)da%gejbc5 z%i@QA6q4t~psgz4sZ79#QLm)Uq+JF1`bD32O2L?X6CD0JE6QUo(8LqRbT17tyd~D` z{ukxy<8>EBsE=e-_)Hi^LnXpJ`^)t(lKbD$tlXu=SuDd7!>(6l}0hhIL#P5qu%m3gNw)HwbA=XpoRe}FEz^l2D`c<_6OD`gWD zpJrnPT(UM>s*i@9h*4(JJ`DJ`Lx?S5YRxv43<{*IFH2t1Ftr~_&t|PAh`aGUtr#H% zBm(b(s0ElpJLoTa2YW3g6`CKNVI>s3E>s64&|@fK7s_Jn5lZSmijl@msGF(NThRBX zrL0D9EEVq-740_>@K3-4ZXv1E=%Z06@Hh~bSD5hA#}AhTDM;_Wibd;Pb`z?gPv+o8 zbaux0rAjzag41JUn>TLlzV{Y1asQ5%VubvX;qo!VeopbdcwpO7A=iZH8RCKoaY5R2 zYQsUl=7eaBMc1TEdZghzW`HdOB`-5NI`ebqHrUbc+7!tKH-7VBkiW6+yp&5-@GQ4o zbrJ0*aMERS1wh@@^PH!pZC80^ZAd4#hr^ee>)Z2=W-2z~)8K>ls3C^hKP{=Enj6kHsdr#{J~v3>h<1U?|FsPU^4z+@s*k3H9Zu~A7?r_WLiUhRA}uhr(m>r zQ=wV7=@kQWDurt1XfR|J_7UpiR?f#^FA1Zrz9S&OUlF{O9 zuc$}F;5+73l1o;ug5)8OI+-hu7;y)S(AFQWPaor>N*rq-P-~0gK=Q__ifjeVv?<)d zcn06MuPav+YMRzNX3WP@ZQD*yCCv443+gd2w;gWb` z79`kvVzJ6{fFZ#!9G)vafIJHIs-L>0NX?qZZ+g4*DH8`wGPuBYF*v zIxfE@v~<*E`-FEo$=tgd8 z;Ztk%fujqKdSk;9k%5vlD$)73Wpi$d2O4489*nH!_|HyXZYOQ zoZ(T5Wt|}^(M`(gLqlzD(!#SKzfvb${;CRmalUwSsTwRaC+Awt;StH93pPO^<)f-kr)!bIQ7; zh-IBggXXA5i$#V`=};Wwk6~(Z-V*qd%(DWhS432QV3LQ1Fx1J2r36mrh zkTthtgUrlC{z9l(6rI0f>O?<*M1cUDgSodk?G8{z>Rm zHc){iTNYlVE*QaQ1~vbSo=jf+^sYN^XRIaII~AN2+;O+Bdc{ELEGsQZXu_}U#ftnW z^*Bo~w`LyQtP?6!!ZgnC^>7BJ)iJvesfGRNNq)OCTqnWb*#IAlKw{s;{t50vFY6B- zIjZqL;d~~@_@{f~eD~($UrX3nSl^D1U=WjhaXR_+#CeWC72ZXm6NC3|rO|b$1Y|ic z>XbPxl7#LL%_7YMwLLcs{C8dznF57>vW(cAonBH8+gMn%Hml->rxDDp8{Rqfx&R2g z?yZS4|BwSc!lLsK>*G*^41mi@ziVDjCnjwk(hetI=0_og=z5kC-{K&1O>=!uY&f38 zxo|~l+;mY|%T`LR8J4u!I4$)JhsQqSQ?G+Q@VDZ|f9~d74sb!ulFB6gY2>stU`W_~ z&ENMmT6N8m70tFaLTa9j*~+de(YrOtLZEPS757|}AgK3me^B72yuocY278L!6BcV+ zw{_j()+ND5F^b@o(=@n#iO(4Zl$>Rs@x{_07_}yw*ZjA1(glN-)kxxd2KG0K7>b0G zUJKK{*Un;E53Ot@s&b7jVspE1P=>|1m6NAT>~U5bt@@CAS!7L`07~vKd0}*4H3X8C zsmtAq_5WH!>`gd}!lAYsK6Mt})TX?zndxH89c(tICYKzf7N* zbsCCC?UdqxgZRkOfvk!wfa+BcT?2$~Q-8{N58dF}vLUMccq2`qvZf zZtXn2U*q{#COC!ZRDncr1@G9XE(+H_6|{lOR0{a;hY)Ae;r+!f8Jl-rc^EpxtnNCr z`i({hjVfGKKw`VCjoOOao&TLj|NM_QyM_ChpiQH&P5GdNg>5r}jZ{V1wvoEi(VsIQ;YAlsL`CL@QYt8cTjj3nR zHC}XH5n5G37wt4F(u8D+gh&u1@=dy#~FZ!PPq zd}MNx7exKt0_RtXxMPy#$ZT%@|Il<63~hG7whr!A+$j~@-Juj{p}0ek65QRLB1Hlf zpg1i>gS$I~qQxb+7T4f%-|w7re?s2uy=P|4vu2!wduTVGa-Lf2jLDc_z4d2ECa`}OLP*~!hrZ?Jffy+ofNz;n z0Irq?3eXkB*i0wuE~LK64g#nZx8q?xx}dU8+ca~d43gMGsKM~^RxNLv zpP1cyPp4>D1|AyG8+|)D(S4MrNjKX&+vXpN{#b!ELyO|0bZdu8<~h6retn+>#=7+I zvBTrieWD2Aq6*V*o*aB@zr`@thP(l}AKDh0qFF96oLyQqzpl{*AEtF;G?r4|fYJ~- z&`?XO7LdW^{59Jc^#Hf5b9I@o98q_^%p)mXg>er6A+Xc-Y9%#GznXcT9&X}Aq&et8 zKD7a4S-;})V@8x+>BfJwfywlxgiZ30-+Dh7Y#k7IZ^2JbvOa#G?|Hj*GwRc>4J4P` zkNp@AR#i+n&xlJekD)Og+ML|8i=HeF*;PsH#?YG6KAZwCA}c{4Pp=H402a-{sW(*59V z0)~)KY^#;$&He@Gim*%W*{J_$1=gkwRTqe`yR=j;!)_sn?Gcm1St7q$4u7RZ5*YN9)q~&`I zdUL<5Z>+&gm56<<;JU;bjJQ1B!{tG(@U&~+qPU?&UmaZe#c8r8G;Q*sTi16e^F7b! zHgNsE#mH9k@GY`BPgV;?gNX7kvCf%0{H$f#$26})GF?0V9JFR|B-XAhX*il4*_S0@ zRXy&9GSnR>uK=4Vq}vX8TLce6g`jzSAI&8-RjA(Aum zj<)CqRQ@rZ-c07^OL26|28dLtaLh_ADs9&Q(y#}JwK4@_eTc4m)e#dkq|Hm-x#H9 zP_AzVW=NcL+{fv}DYYZZn)%~!kN<8Ys$>wvtXKoSv=DtC8@<8fgD3+2hs^7Q+3RWj zo*&oL6io5Ri`ifp3g6Ycjs50klfE#IuG7I`{9zoQeQ&U)Y%x87i(HnUlfb9SSHGS| zoal9~I+i=wzW?MzYR2$KrSX>A0p;gKpdZ2lCZX&HR5iFzk@&=}k&LmJq$$d`Nukfh z^nzNvyTUOp2yu|te}_p#EA4`gtEwI5LrZ5T1ygi2lBzVxL7S!2UlvQbg4V;iu=bj) z=8sl#dB|{C|47R|-W#th{C(SI;_LV=*z;R9@tDZ+OX=CkI_I$J>5YRI1s$e8)ur@y zN6bz3OluDPW+n^svL^6-41pIlol%oZBg$X$V#Gz6a$D}y7z0K_N*sSQJkfS+_B4&# ziVebU{y`CP)p3^0&y^zLx?fg(e0>#}r}S~%is#!C>|GVtQNM);vJ<@8?? zJPD4)u2fe(=cd1P&E!YZBrUz%?6@&i4skiWzaQk8X~f=e$H!Zqyc!)fq3Fsfa=>0u zis|2o;3ayD;fZmSrJo>#k^_&69PqfD*4?F=ll_#dWo*+5Ol|*Hs58!QQmTsp@0rJF zIb0^A*)N~9kR*+3Ed62zHU$o&eb_+Vq)iY=(oIt#pCH>{?R2+{?U~D>FVKJ zW_Ha-HMEjC%aE-V*LV7H>1KQ!-?uNqNAo@*E()j0%p1|NoLoH6u$1C(%vZ0!f>pNQ zk{$FRzbe0MSk{gpP0SPf1nxB=eMMI~8Vj-ZKZ!-Pf3=V>DP2qz$GSOG2VsqJ<)ozi z=yz^iZ6y!5^2VAeoTH^94aqz0lwzoX&+$C;-f^UiCK>W+`E0*nt!SEO`TM{}t&=h{S4=niI2{@XL0vQ%9@2C|ias!1a>#eWDD$crnL%dBKf?-9O9H=O*vFwnB?eJk-Hg=8jeNpx)+Ou*TYx zDOkcy`U|#aIuf?w-K?J~tcgcKhp~)XFE@5%Kb8c7cz!XRfo^{Vae}>5KllA3Zl2g^ z*Z0h)*mFbO^hN8Nk0_n(5BqT*M`=DepdF(8EC=Rh+Dq&-L4Rrc$JFTBAvw4)appz0Y3Ahy)suqN(pD`iIw8=H<>*Sl? z$KAOY;>ikpT1Lf&H#ST+Mr8+4$Tl)6H|*)UUE%6GN>v>HB$;H;9NZ(u5VP%g&48{jpbAb+3sRC5zkITRI+}^oz(+;@6{48&zDJSo; zAYth6ECD_G>50O}o{&(CDkhWSL%T&*aK>r+1UQr2cirXu`X!P9qhH#fU~uyM2XPtx zkeIkKkMV<(Lx-wW`MPX#xclzm;r0WZ5B>`GFS%`!=@YTPX0AJD`*$M-T39Oknn6*I zPHx$ANoj1#m>=!iU%60#RZKx6adr``R!9(2$l)fWG6Vu~<%X`q`X_LC=+OtcUyYXziYp2qr0-AgTQI#HJM0` zG**+7eY@Ddg%e#f^!=5mWV5jS%VVEq++8Y`r*GXr#^en2{$vFL@U1tLyV#S*JQ08b zlL4z=4z6j_xf9!ZDSJ7Vp{D$0weg!GtY^U}5@=V?A;Y+B%&M|6qZN3xSBw_{j*`cs zP7L{sX{UoaPc}QxpE|@}uGdD1SO?BC9bU}kvS=_S=DCRt>aOzs6je6&{M3pP+)9NH zKU*GfDJjU*9JD|^OS`c%AhXUSE^JgK$nv?gu=b*{?!6*uZ12%td40RMo5A$_853h~ zUY2#DYz}BsqQDgKcbho0Se$7{L6DDGy1~9Y_JE_%?w-oYO*NMpw|ayEdCLj6Z#r|^ z#)Ut&8_Qg!;t?XB1k_~+t|2Xfp_!|5BK8SP96Op^RH=i8f})fd6(x?8z8<>vB|&t^ z`Qbtsyl1_}TfAxGjzvBC_dD0c=V;T#Bb*z6%)6)+kXXD5u9q4d>~AXqs!8`W4_*}a z(-wZ*1HN>=7}vP*k_MO5Vyg@LwfU-6F9&Vs-6*bbFRo(~eTFSQ4ODig@vO#&#DGo<1Q7dOlaGN8k}>(uKGMC*F{B9dYQS>2|J>xNJCt*Y>Aj;!uP6N zsYFBfP6uwO{GSg}^`Z|XVE)-y9}XK9*C_oKdCx&6-R6byrn;fkC_ujbU8NMun>!;O zIO=~R4> zztKj1$AQA6-_S2h&yK5=uNsuE8fCV1HTxSE_{aBbxRVzy&zivoPqxD#jsd8fqA#d0 zt|e8e-*zgbI^cIkb|?^&c#T$lvid2^vvI1rP9q*bVQ$!4)c*s;cbV@?V{Z zLN=%&CCzK+Q@s5~J?M)=?LeWs)_Fv!0P&3DITTILG!%jvgi9ZH+sN;d?tf#|Xy|Yr z2N6JAd%zq1N#Yf+w7Q&dLeMv(8G^po-g~W!7OsTsNMtP2KI0=7UUA3ssP&gHoDWDG zZ!QN^$6HMi35)@H6;n;W#&vk&Z_80 zE_sv<(V23Le?;L?MxHf0(K{#Ncu{q*%t`NJE#nPMo_vk5xvUO)tSzXrK;btmzqHVF zeINQk{ao_oL$c+YYRaR8H?13S&Xp+=Lg<;0F#%4V-zKUi#1C(H`x#pw&sk(}WF!NB z928UMsxV-&UB1{*Z}z2FErN4XI*2W2pMQar!0T@v@3K@WosEr=odaEzqxDYq@b>yX2RhBbo?HUd2^1Otftp}YD5m;H47l}|0=HTy-IZbj zYH;@Jx?hAPIDGpFS}7<4h1P{14SRVIb;Tr5xAF20YXP3{i_n;`dI&ombl;U&P7X@I z{W6#O@ZwDxK`(ple>UG z{`;T*(hz^k61V3LWCIx4QQme|8pc+h*1Z%lK zmJxfnoT(BF(k&j@DbLx@S~UXo>pT{9Z)C`nW*&Bck)sY?;!G@}+wsbfbmA*}f$mxt z#!4<_&r4r2vjf|(PRG59?9my$8aj_-cOXp(H1+g{0>N53oPHu$Tgn?_x;hM2{#tvF zFTI;{w%%v{gF}i^vegkp&+el3*5P}%ql$6l#|wp0hE^tF(`>PC^ms3S@s|_BZ%bpC zfbEttW|6?$e%fEMOdpf02ayD_!~W+fLOy=D+@DEzHtX%z^r3Q%f6wU(ubt(^jwm_2 z=zoknwt0S}(Tk*P&K|QtLq66-&zk=q(;;;CcB}DvNH0`X;S-48T3VFnk|{B{6>Hv> z11r}EXTU39rgRrWL`l$6s-hz2x$90kN14VKFV}IzSEVl9o48G6ogAY!EftL4^|;FE ziLXF2v~}YW(bV9mTxi&dSv(KvBCHY?)w`K;$?ylrpKZ1h1~~R;ooesJJN+FaprYA< zn!xKa18TqF*^aClwGT{x|N7zZA^(y#FHEef#g}s8qgdFo5?RSTh3%mKnkHR^p+OeijAbQ5!yPX8O)y->6FKo4eS`C15ou`ip z%qCtn?g?z9-_OHyD^#tL5heb4wPx{M+GFZH3Hny9fo=+! zA34EgEDCS;{&ZRU>{6!l8w|2Xe@-&xx5*t8z z+m-Q8tFjXaQNAIwbWSVx)T^uzD*uKuZ^J0egf-ff>z?qwa|Bk+g;()vFW!69qaR~H zBrX&jat{v~W_z8_2iL%uo($Fwh&N%c8N)#6#Oso>p7dW8*-p;aI(s7vR>4H0TSIvZ z1suaY>)5?^RTx|*SvLQb1|rt^4A8%b724AO7J%c z=~zO8G49ktJOw52^c&0CEE|=gJNYh)VVBPvP-BZfucB;G$=d1}E2g!JF~CMyx3DuH zq2=Rst_pLr>VZ!P^^G+{i*Fte-JucGoHmmO{P&w)>-W10$yiApKDX~hJ6?|FPYnIF zZ-vY{mKlrP#Mt3Q^bB-MYvYg>5lQN%7rN~dr2(!YovNE5(e z^^TSH9^;DN>gA>Mkj;Ay7$Ao$L34#tLJcVL(eqw<(>tt6jEydr4g%z+Zp;Qm^6 zd{znf;J<3o8f|S5)m;%^mA)F<;?g~}O!S8lEf#6r1iHyO4rEzXZ|>&QxLk%{WS8g` zAZiUel-1crrC%9Le}Q`AW}q#774LFuh_{SJ=Ed$+g&P7rw7pC#(op2n^okCRezP}W zK97Y^J(rHy%-!S{=Na8F3wsNLRW4krnY}ne3LoG^3n+`dLODCtc5s!9bFu+r|3R}D zJEb{TWbd}6rKC)<;^jWgE8ks9IEm#F3G)xiRlg37+b{HKFUeMnPJWZC$5E9EqHdwH z=+Hx{p67O#=5zUAe?)$Wg_Q(}sM;&v#|L^O!|y*z=U_M3X9NggOuD!GGlSteiO5?= zuNJ1onVH`VI~g*%f09=l*!vEW1ZZv~fl5aS|9#&ER+zz3*ll*@g>z#o|IXcytP zy#19S^u~QF&rqK_mMwyom=Xiu0oltLC!udKO`V_l6?F4;Zbn7`#zc+gM$oz0D9UdS zYncYiKK84uq;v}Zl|c_+@$MY`Ty}DBBhOpI$xbmF^%JMj+TW}v=@WE16;n~D5T*oJ`00fHv8^ zqrkES)M)SXrU{(LWBCHt@c3!Yfc>bvak&9wQWxWD>jsf^9XGTFci&{b9B(Ml_gO~h zBOa~Ha=G-AxE#^Q4;KPW>gpz^HuSpr7K+^2-5CZ(zC{P{P@?d2xsZvL)`?jg(h2mI z@FPUJiG}Nga<~ zKiYO*|7hDU7rz%Sf)hz&JLKGwbuRhzY*Ctm8qbu0W>?{#$TW}IZybM9RdEV(X`>^; zZ4mp?4Ng)yx5iIP(6t@(t=Oe<<)VR~Nwn$GQR8pcN?($T;o4%(z0eEN9K@kVQ#9a!WiWfEY~=AzDbz0+|Uy`DGHe5=sk)(2aM zZ!4Mz0~Tv&(oO!N~XG$kC8 zyo|B-oul!_2zB$sZwg9>14Vp9niijLFk*>%Vt-=9=_C*VwQh0kOI397wXT!%2CM{y z!X?sHmBY7P?lC(vR`63pj&}BTt2Chgr4cMx-a)yv%~x}}9c887AIQ~u_lgerb9J)g z?iW2YVJ8&*AP7QQ!ezb=J@V(UE(ztFa_FYkoz;byo=N1;+Cqke7<0Y{+kihgzXh^1 z#*zzkGg>_B??4pE&S-ffiwlS2&ZtIK6mm|esRb>c(T|b1n3kDwQ{iLumB0p`2gJ$W z9c9ficb!a;Iks=5_)ic8uA-d)E%+qE$wvrOVRo`sORC=}NJ(OTmHgbjlVWnWt0~YA z@JW~<7Q)*uKE6oS5(z4eQSe*ydc*Hf4YEV|w9ykSAlm-u&q3ECv5W$^Du|)u1jcVm zXQs_cWdLmlh}Z52uUhRE=aG~n32)BVTTKIHT3^Hho>PP9Z(p)*tquA8hDqK3B&h$* zlh62SR=074PC}{LHp6)!0qVg4(T{HBub~8dF9R z(%pAQYp$s7lKzXtB8O^O-#5GyWh-VX*x=Xz;=Dm*>Lp@_-|uxqw|a+c8#oT)DaFY* z1h&y;E`&R1e#v8Nu%?$~)894NtJ+JwbxKibtLT^+w9_IN?U!!ooo-e&cch&Jka^tg zPUE-lpfk?>mWjIhYwn`L))z{z(ilfl9w2yqMv5raU`u-^%^mvVl~&5~ivy{09?OLG zPj8fg^TtE%D9mjifI)wobUS#_rk-LIs99+QiXAa#`z=+E&}h=xKhATH$E`jDGN+KD zQBQeRp|apHu;$3E98Q=kj&$(v;MWKyJFwC*i|xr))<@r!$Tn=|O~RJ@z6 zs;FSBFI~t(W|P>Z>QQc0eR$W37KB#mr+fX*ff6f;c0ynw=KY%~^^yTK3`?_>_Zo4z zOxj5HmhG^f`bNVzOxQ#3wS;<$$z;ttKMCiKEKYG0{`0WTch=h8`{xFLA24Jya~9RJ z_=)Y6$ds;8@)jUG{FkGE8`*s9Ia!L~@qe_wyu^WW@DoeT$IILagu=?7Wh@_kUrOCO zJ${l76hsoKCwkPDOW z79o7)e`)){7qECpvw7 z&C6;d6U#h!%9xfVs_n)_$)WL1hUBszFc9phbvlglLwVp5q`L`9Gp~vG`X7=HzoP2t03DhKApsMPXl0)=Vanq11x=7NM7ElMZtsEPZ@aB9KdwDauh)-Q@Z4)5 zT1xIh5EG+`1RiM*X{DXt+j?tfPXfX$8PwUtqZfq}0xC*t3u{uPcH3y1F9hHpkE62o zC$n|!0|6YxyhfLEKE)Y*(?3TjV`s^M4mV22-=q8*IO>VA@#Y83fmXbQ5P5#*GL?|+k#^NjI|VqqX5SsyN}R(bCVu8-8d zk)z_%D2MJ5zAJNt;?7mE7f~o09qQp+((vlMBp3pR)s@mne&K0^n%ni zqdsk>n&J{JT5)%043p;tVZb|6+marFm}Wn+yFWL!jp7DF$I5$iN8`a!Dshw_-7Q}@ z8XQyr`Bu+XRe&e3W6NS}IEM+;AjX?}&N_+X zb?GhUI8m`wC&f)~d9Y;_-(8vzJh;_8SG)^M_Qj$zW5~l?t%cqDVq{!Uc#>eMp0Y2ST8-CdRFDwb^oh-R+_u^?m&G$ z;Y@h7mW7B+WJFsn;zjvI__(GUi63uXuMBVp2?`kTl5y*@Tq zi<4qWbiWve{E81Hwj1^LPZDm1q!)1ZYl`9i53h+?kfIX=U<*DRsEVL7yLb*pN^0sF zonkRXs!AP~wp76-zcxvM$#}KyaS%zxNN~y1$cn$^VPFcuP~;9hk69z}_sVF$h|7~`iFPzIB>6ill`*fHnV+Jb2W$aw)*he9^nG3P-t&St1u%o)g2ZCh$!zE5@D#)R#BKnLVFwhr{gcJF3e#aXX#tYfUky36Tq* zuD8)bCUgN6QnY;3;CG5Gg>ABbysj1qT9N8k`;D-<{?>`4+*nBSZ=Jv1{S*(_{8qLk zWe&$4W6gj&Q__m*CIxkf8lL71j|Zd|Zsd063FS8mUW<$tO!Xq)n>(9W*37tGf`W4?$Y7oyx7 zD}NPkY-^IcfeeAE{d7AZhf87ubwl*+CZyj!tD)TMoPg|kxyuAwmI7^*`XZ^mpAZ)Z zy;Aq0vnK9o>t(&{uy|ljX9P&!ETKvz1LYb^rV;P&$GrrXgAbyk&O^gl&5v{gYo<(U;R*oli?G*CY?ASV*|@Y{b!9($TPGX7QMCObvaeP)dllULHO>i# zV6<<(C4OsR5mt;n{X;s@zjR0732J9!Y^c(mx}Pa}JdX2Ax~RK-pS%~eaX^}Eh3c;E zP8m_<{QX~2CMZp4hvpgI5z&Vb$HUA|2mwIC1JH`q?!V76Go^55iRBtx6VL7^=p0QD z8Wp&}1WxRKUXdHuh5d-6_7Da!_9;kJ&S~dw*9rzh{lqOU_(4zwD!)};Yv?fB5FM21 z)sjGpWsAd@Dn?JctnqV?ev!IHk1>7dqja{5B)=5>SA_znEfRHU(cta0mfm(q=xj&3 z$ExVv^{C=^txwbY;*#lhBZ4|<;JLcwtq5@2sANDQUkD&~Utc;H0un!$fL96Y)PFea zEQzXrE@vvNhQq&h#3^0e=Z7}oC2Ovv}nx5rg^*_U@rzlR5E6v6dzdFxHU z?@r(REc`NaA9ZUi1Vp4C3GFwJsedG76%?u3Tb*cq{HG_~cJK>Ve^^BxhzKLLuAY@L#0seX%-<<2h)7m98zN zXE(gUU8HA+6ufoNNyGRsH0ZB(AYt0<`z1LgBc>y8O!+0{+c4MC1}BBgLZ<{*lU%U# z6XFZ^)OK|OcM(Ss^NzhbVNYL4p{p41)NcQ!0lQ734u5VNc(5QO#QC>WppYv)E%PGW zC84`NU(OB#e^BTJGx+Li?a86i&heW7RqBXmxzxanF|3&Kt02FT zwayE_pFh~+#Jn>9yt$JlPqFE!GK3N(K{EflRvnM2t{=@%8n@F+F{onjWWH+hEwiba zw;W4{*4RkkLAQ3q<)sRyjM*!2TKN7m@!-L3i^aj*i^8+VzZu}Z?7ciMy4(UY3ZA_% zVu}Jvr&5(aTmi>!mtEdX<*zrMrrIrX9O?%t#{oukvmK~GRLTY^&7(^td3x<{(!u5D zDTXCp>l6(5emF_{XvB^Z9{=d--->3Z8AlLo5tX$=A z#LcMne#`J#V7z&){U^wM&;t^5cjd!CXEPaO!nY0LPLAG4Pq+!Rp@9kBQbqwl^lt{r z^ild`u`V|y0(}?Z%htKO=9l*|WOG`8X)Ct$=#l!r`Y?Ma(l~**4la6UZtQ?+k%Oqu zR(~ja;`Y!R2!gLX1*hq5a!BwDJiFOT;w0NLZFHB*COG&SPA6=|>FvluH-uqRzgK#- zH8AWp#{rFv{rRRk_wPrA5(2Wts78ZX6vO?7I)-g*gyYtJh_*DmW<)<_e(LXO3n#en z6;&#omH#s<3Fy@FF;;VZNLg)+>{rv>stGM-K!7IEjnrJZDA57*H6uyo z5U*cQr`F;B=vQHci%P~=$vv0_=nCgF>axA)u3EOl8C>V^i}zd_(btish+?lM64N(! z$5$)$$4!+7xwim8hN?yv^36&fC5|Rtqex%~uv#O7g>@@U<-gP`qFD|ZXdGUJ{dBn} zj@jDLg+BC(IrsQen6;dz9CG-)qg$)pN-;j8P~Ya*k6~e?Q&(HY$a!$wHVrx-$-;uq z3ns!CVEofAxZX(rk%v)*tN#&!nr&ScYH^~XqJE8z>lpk1ELPF;9Qn@QFdCI4nnGtj z>E^^{C`oN^@BVIsm${Y^X6wD`s{&LMlm%@A%R`1@0@`nfQ8U}Utz2A>;Hp>8eT`$#OS?k$$KvpnC>>DH= z+ZO(P7;JBY7o-C%7d2poxP+ARBRbseFin|b9Q8kUb-s2$gi{5OJB~1c%K^*+Utt+LP$++cf%m7WB@XtC!4?qi##++O9gN`zT z%L3!@g6n^>p=QWZNUyDx(^>=};%Jia>nz_EIz> zDgFkTm*r?*d(&LZ?ozhYlCL_aQ#t(~?Y8-k6;B5+&iie?T|aOwG?RRf2&;%#Dvh{PmSn?A)vPfiUo+s+Vw5f^hQCM)s5@49IT{^ns>r}v z{l*IPPW}8py)F{L{h@ffZg=L+)w+hj#3lpGuNh z5oKlMQ}hSkN85EryGGrmxy{+ob^$N5%`-RRQfpFJ+fw$H*ky9cI zy?zIVf%Uyy&%GH3-HU|-=xLKSjOx~x1Jl=U z^+L{}o6(mbtAU`LaFYgXJ>N(&BKe;%jH|)cN3}AUnDYyisuj-mPT$(TF2Jjy$L(ii zJIbDx<`Jp}6yuNI)pM*_#uNPUZ~aAuuGHjMmO)*Gi1NQd+8ib<*jUzX4y1 zcb6y1qna z9vSw!9J-LU;8_y&tEH<#UV(D~)CtAjvC8}1ecERMpKaErE2OboeBv~wq`V^=^|j?% z{({>#avX8%2!;VD$N!~cs){e*?r9?h(Bpu^9Q!dl6m6+`lmeVe;6M2_1*ZIGp&!R^ zXj#94zR}8En)&gckmx0MC+gZ(am0MOjT?dx?Ly%qI5ur)6w+n-ezzE`Ks1nt$(6&UWau7heHv^ zhS4FKb_Pm(;9^jyrCYf$dc8W^A6@BOwdid=*;xir-ujB--DJ#7Mkc6F;bSr5HQg8RH>eWP2Y!lFv09OQHT%d__lupKH`wPFI1(AAXjkkwnx5 zGev?C3(L@0z+*!isH!`smr^dCaWvg7+0JDC-Q7t$r|Q9)m|HhQD-pqWS1k_A`x(0| z-o~a7^*j5`*|$Sc)?){3aa(C|biitNZZ_IK)U+PhFm+0SD9%95*Q1!(^BAzYZQ4i) zXWu19wVl+~h0P1=5@BQlKYu=H@n>kDy)~{Lut7kQ-^!0|Bf0pa%t^biv-09TD4@Ji zL!aJbDS{kxQwbU*pB)fr9s%0?VlA73ho@55bfu^H@ArailTyaWW-U)_Mjd9)p?mW7 zh0yF`nR$VC4_`X^6=MhzmKq7W;K8G!Deb9pFB}Dz2uzFK{aF=7+l)X>%Bje;8gh8X zBC0Qu=v|HCGz^GX)mpCQXWPb;Hem)IYG%dC9P~=q3`1?g^orrqCv|cqT&^ij9o4E* z-qS7|aW-8iI>{P|X`qEE2_iZyE~;W--UV`<=zpO)$qG$H>>EAJA3NM>8CMR7poHj~ zjPz;Y^b#n-gr=d|HE-l7LOFX`ez>xB10==jh22k7d=R)s0?n>Ip$Ji#0NM9ve~0wl zE)rFuT!j|rl(cZT%YBo0YQasC8swdQJ=Ivt;d0HQbm#8abYo4GmhEhY_I8A)wGxx@ z>DuZ>A=qps^jc0<5qm}#vZd8V2&aBY)NQv(BOZ(C0P@ zx4KU_$qWj3c3Qqp-dA1~0lHb7Aj=f5BW$$&3?Pr@wp8W_Oe3lGMt+PM3n~hVzEnz% z1iyLVJtjb``X{p5xh(}+j|)Y65fFhw-7?t5c;UGy+05p2_ZiY+AaYSmAsM&-x@;k% zFywiCJi%;h;oAUhT{$5|JSMuQv8N`Z7JXiRA=EQjF6`8Ds)}PVQ~gA&HK7VIc9YV8 z-I8Yi4_&2)LZsy*PbTHl&GZ^lfEjzJ0}t?yxoqgj|DlL+tNqsGGgqfH=NZy})CVa1 z>Q38-4G2$dY+T|$MKhWIWMV>#1DCaTC z;W6Mi!AMR)cXI;85Pe9KsdVvoQ;>ku(q3T6V=MA@Te)SWBHTV+__{{MI5GlDQ%EmG zQFIjQOhYv=1z9Si0Xmh?nprF>^!~(zkQlAwFz?J zFAz$G;Kn#@S*j4;YvmKwJI+r`xc%!Jd`5S*4y+~2ffX^>>@U<60HOT;_Eej_?A8Ri z3U=}-8^!z1ZjrymfNjLYzdC1Zx*RNe^brGA#99GvWli3yPK55gmX&tnL%6iIV0O=m z=s-`e7*K|{Bk$ss6hY-w9UvRZg4N+PMPN~1?M~X=aMuv8Km#UiKcHiyG2{O5({T>63W?^Gjt%qD1R=b8iE5QM~UassKuB8*!SGe7L zs79Dw38AIT`Zmtf*XI%)lNn!NTR{eB^2i2fC4}_KUjS*AHTD-PulZtPPW!AX9d{sk z8Mm2onzFtL)0~qB1@aM@8leUC>hCD+j_}jIB<{@vbL^PJ4XwV4C zC34HRY((i{5TOD8_DFPJ9fwPRb!OX4Nuv$~PgOK!L+1&w& zVgK6seE=)(c6dc~O&Pv+o6sa21Q;db^$uZ_h&8R0ipKTWl(}|&j`yyMuoo+l57Hrz zlAK&zLYhz6;#2<#BoVhomqoJ{L{}4$c&$^PX$hoR+-_ z4O9djm4re(;~0noY*Wz>OrM$V={ph7vC_&qU*E6a3IClAOY!J;BjMd{)P}Wd9JCcz19Iioym0a&CSL6x;4ff>qykCN zcZ>L4RV&2KMA?~!A98lsvno38Fs$iK7vCK^yOP-Dft7P*8*It%_ALP?*4MOL-IX3N z-dXwKep>sqc^Rp{Fiqf>V4bv;aWKx#vsk?J&7l}0$^x4rs~ zApX=u69@ZGGbY^dR;Uq)`N?|20&0A4x1`5_xg##>LskG6?*7aXZGLhu+3J3({DT4D z92}fbE$PEmnVgfIiu}(|ZI%Pwv2nc{Z6Cv@cLt@KLS!7tWOSQM1KkMQuNB@0WA@7uj>W5{y$aROLQ5I)U5)?d z`@aX&sR)fSmn$%R;tT1V~JLmV|V z)wBmvBP1wk1Y7v>kSTjkB1o{keJ=uOJ`O^Adm!i(? zr}&S~D$g!!!fj2KTm68$NH(%!FR%Y6-v~)R4Y_wSp~f$MHv^*N4%7!-sGLB3774Hj z>1^w$%aCqiGkT$3`;j{yOZk`(6S}$|8@Q@$?PqCQu9JGluodCHd0psUgkj3OHBuV& z?4RwWl}hvaf0j*2B=gJ?V3e#(@hW!%(#S<2XPDDz;n$fUD$*n;;m?}z4Vk|t1*)W{K6a0m4?*}ZI%Io9Um?*nh%#L2g2M0U&1IxHmWl&)jjfv40K7|j_p{_ zQ9-9<24_DBo(7kAeFKJNKgLhKnGgDEc(dMj{5glS9xME`W#!>WtIQbPH_J?N=Q>be zsHW?A{_Fj*42?PiX@}Y%_+E%^0YRyWSGra6;Odl3y_J25$l{?&*1aMyjLg{XP)C1= z^S^ZLf^~9`7%;3aI%U9-|1GH@>?Qf9_&BH=Lo)U5ZCj@ZTK?sL=;flZ2Ti zme#K2yJjd3{hU!#{i(+s%2NKdfn4k~-H+Gxm|2i*#7`wFf^Lqc85 zc14Vti6Na3Sncgod40*1Vy|KNd#TZ&xFl*)I(VH8dl@qYZ-j@Y4X(EHtniinVAcYX zCjF;A)O+vctUZEZU=r5|2iZ$0{uGCREWWI8YtoWp{@89< zg~@eryg2b!GqR-2EDuT6pT7L0Dt`L3C^yGD9e8F7ZjNnPz7bC3GV`Mpeh>Gn>fK|X z8C%KF_j!l+Eqw~vQ8WC`w?_&S-^TL~Qq7lSIyvssqMn^@oa<5U_w|vw-d?N>9lWNx zlXi%0Jsxtnj8?Ab*yb3!YA;D-pTtP`ktm*M&{hr`DIv@;ir-~THgd@@#MI3(j4~~6 zFEngBQm*I$Dy$9Z_s{i+$YX3)vyoi8`sjz|1;O74wxmzHEP9Cii<$2Co(^1kE5- z1#{5UN4?@UgXNXdK&3~sPhhI`wiPZYP1v`ik4cPHm$we{!~ki+C-$Nsu6n=qgG3cwnl4@njv-& zn-Y5y#3odX7>$ug@}|%8zQ_BAMl5nxNdXYa(r zTQBs~$J&T#PjDJqA|!x9Yc)dTWz?Ki83qZ9?*X^Y0$H2m=sax{dU_@a1F!9U+D+~| zx`U_ZGawV#5k1l~)xNQUe0LX%hkZ@7))4a4A^yaLbQ5%SipCYoAZ!2Tb^p0J2if{0W*e})7=_7iYOI;$xzBOqLO z>c^rAvf&}O5!gLkwh&3y*VF51P7Xwr(IZt=&li>gsL-^9-8p0Gc!-Z?$MAIV>})S# zX;RHrTlyGt>5G+aomLB{*I#rY-)8vQ&iA5#v8%RM#M@XJwlx_M#zrhdc{Cfl*2Aj5 zJ=N^Li=-a~YF^fS{0mh0VP|N7{%r+Vrv|ae6xAsERHSs zXK5Atl{o4e)|u^QXwEo1EL>S1P_yN6_>K!j%``15aKu(+35irtjl;?1F18V_3-9DG z=8|15Oyq?AgMD`gz7vzbiwT)jea9uP@KD5_%1ZO-p}BdE5TIVt8ua^9>!#^)N(I@p zZHO>*a>S@q&FcEW4q5%kK$guS=Xnet&nr*CdKZlz;_#11Yo03sSWPKHHzX$j-68hy zS4Q>tqjXFCv?~jG zj9xQ}!=Fzs&7&S(ltbs8u&gN1dVVc>ks{yW;lWdQO~jR!N{{V=u@%jzQpY;Co>JAT zVI#SL*A%q%iDv!u(NFtsUId(B!&ZWM{el~5qBeKCBd+lZMu8?i0{!Ijn~PEw$ZR@o z#upnVi4k+W%)R1<37D1}ThYwIMP;=C2u~}TLmi#XbS{GIDxf0hiCe+bS)c`jgAz`~UF|+JT zik%{ms}JSCtJL|-@g@%2S9b8sek85kb?kNC%>YlC&6n=H$oP_^SitgnpIC6I&Vg+5 zax+%a=k4_y83S-Fi=WlS)UQkn52}AQXtPa^ZxDCSfMCZ8<$xnXY%ea#e5K}vhkLEF zI!elGn6-d_mwN?$zn_HsR@@N5%4ZYJ3;Fb!HLP{RtbXrkYSdAmO=#TYNVUc8O{GVw ztZ3K90%4s8bQSDEK;MIK&x>K6;b%DZf>Q)RN7H}$$#=R}OGMtOS+i(zD*=G- zntJy*8_KJ_+w=EQqJ=)2LmoY{8~j824-Jd4g{trF9XKsaJi+Sxn(Go_`=20MCg>6u zIC$EVW>x$X>-O=gQvkS9w`}y!cwBAx?BY|Yqzj&y=KlMsE;cP8u*1PEv*N&4by^iM zV{&>m#%WLGP$H`-UAibKKEd1lUymzB)R{re)Jqk1P`>5TUgIVoPPfa^ z?bY&^-2aFKx9MDH_4_NRt1q3-Z@f=Cq6Nth-$D_r?Esl_Fjb_;)8uupaxXl8<&Bq5TQV-zT1%9J`UG-KH*tEe7FQ!qn%rljNDbq2cl3Hpi)^~awmG}yGEpV*P zsQ{Hm9YI*(9!m7=*KP`)kl+qH>|R!UFtrxUcDkEdfFC2-eLt@(q|Y^Z9hhIaq{fUcz|virLv@kYLUPjp}Fk3;&$)PY(Nk3Uw>jk}GOcRwGQ!@JY6)(c{FC z+s`dQ0Q?EHtn~w=$GZnpNGGTz_M7QK?SR^>#Pd?G`!Y?F=2%t5`im&X;014_sbh)K zR8T2U?&0*rY}nGVW|UJKIP1sW(o5BMYE~cLUWz|LOJH_1{?!1V3}eT{3Yp85-~TpD zsN&PUDVJ|nZ>b7HILk8BHgcwke^|2uLl@E|44A`<3FX$B8p9=g1H`1j=zAI|riwwk zcU2%*#~&7H;i^VK%ROB3>w&8}RI?FPOMO^^Z2bH}e36&IBl~8nx0U%NhApL;ACO9# zU(oa0^$YiDe=e9J$+p+st?ZKP)oR#W72mbS@C8!&CEjFXO6YzBf8=&Wo3(ETLvt$u zg4>qM!(QqGWpiP5oJY8rTM4$MzY(`}G1G;A2?BF2p?nW}d|x}&SKAvV9I1Lxx7r#& z|5OL(@;{6h%m>faG^{u$te+#UEu9kQKZF5L+2bwDTFNGhQmMMTcyW#r;ibPFI3p$% zmdDlcFHX`}qay@oBVV(>+VH7JIZ8*LP}#{Tw&-Eo&7a$_u&Fu|1#j||&+K2irnHW5 zAR>QJE6ox%=-S?_$mCjG?a7Q>dEuh{%;2Yput1JaO$b zR>~lJ>4qA{e;B*J=9I;H?DA%9+v#g?HgSG)`RE_3EB0T>=i0EsSOHNW;f4F9364hp zS!B1={TC3%U4xh}!8cybJ4Ogt;`<8UL6v|PKd}jRj{ezm2Dc2TKRpB$hq#gf{Qg;2C?_lrpV+fS5`Xc5tkV8YF zm~Y^$@YVo>v+3q^+8d?%ARk{NcPIOzPbQWx6s5=c<|JD$TQyxa6ERm9CP8*;UfTlgKb}ncUiI0%_J-H4qKdsg zcw}oMA*qZ@@GN-WQFOZ|n*!ak^f*XsX^NG)#S zJ#o5j3xuI(Z&_RKWff0T1QE@COlFOWDRd}&`zQ<=DDwnPjJHTj8^W&5loXez4m>-OZ)CqRPRd9c9b zq+dRJz7P!xX4W=m`Gx&g1KuHF3vZ1a+!PW0mBqv#d}Ut?0z=^(4lXxs6{aue^OK6* z6xNCJAp{oyzw**%?(3piMl(e<;%_?J8r?~2+vMo#>}}Z^c8MDn^-+!WGrU$cxJ&UC z6K#U8J)vy%7X4%QI3M217`U8g5*_%NT3(dv);r?ExtV+APPWav0Gjv)Zw0FFZ})x~ z4e!9&(^@HxUunbA!}s&N2)%v-mq({^_oi~)U3i}LpSF5rws|P?Hu+!PNZqvQ>Sdf! zuj40VDOgF0aPr!Px1D8N9FD>s{4z)|gI4gxguQ)X3CVDY3+DGGVvTU}U(~yddd%Rv z_x3?*17B+O!3bvl%c&@67Fi<~R|9*JSi~kV4 zMD{(!P?O&_Yktznid-mS&!}z)+f8>a{GjvYadI@>>-0>ZMh0YEK9D(*rm7!@jR_oa z2ugQWm<|uyiE!Ga->QzGEK)yQ1=}_5d;XoQhVQU^J6y|~2%%Nk z$*#4=Ae~||!W-ubc%dOlbiK6hVw;vN(wB=j^nO#XoK)PYaTy8V;4l?05~sN}FnX-x zH8-i_Q}noPXO(e+bvtT7`M`zJe z%fd4y5}Q=0l9{4!_l-)TY=xr}1CvlmVbfs%@>_2FG&13$3`SJ_SIgv0YAWF>*S4m4 zTk}4|^^sNnQObhUi91X>!lSV;X9#%fXhvh2-V&Yq;QnvJU7wC>HLk-CE!gZu{gyKN zj)1J-F9Fwhx$131awEhIsAgMO1q?PVenm&MhYsA)SbX#o^HlL$P~BO%*Vh%WBCkVs z$n<@{k|1Z8Aj#F7`;=4XGWE1Pz3iAS3bxVMiy|S#-76$`;xR{pZ^r*P+I33Ht;mOp zO|I=eRn3Z}TF7wLRU*Y{s=@ZlkE1S3mA+UAS*$McuqkeOCkIfyTfE`_+%g<>(#-P1 zPd7II9xf}JAgrMQ2g+5x-U4deVung6tokmXtj(J6&H5?_^yiB>Qr4^Z>@^ViFx5h? zI$3{KC;<{n=f=lF6qwo3Dptx6mrYyPg@9@eG|F&HJ#8j83EP+a8~uzj{>^q!d*Sii z|4}`bUp^@kZ{Vy`pP`B#;#Bf{z~Q?2=^1BRE2o?|H#5R?)6#%=%Q2vBA#Bhj0rMdN zjT|K*Z_#}BNxIw{u%gg=U+{QhyeHbOgb!4FdspTK6iGPu+ubyQAx&R+4y9@=*UhFu zDsGL?x9keO5#_=dxBUR^{|r!cs>Q**LOeA7qRq0LRj$UKwC?%nzO<#SVDW!CH^k6c zC`m7teVg}Tw@fH`GgKm!yoV#lU%qI{;jdWw5UCdshN3s5N?P?5nO5A>+ZV%aRP4AV z@o4%*4uQDGI&-P_J3NRk*-o(k#hU(`K&slJ1IOK6VAWEtvr-+tfSi4hg947WOi!nL zRFl;-ixz6Q$=R4Z$C(pHXUG^CO;i0d<$A^dbH-qkf?mzN*AA)uphG=fJGIbzG^QO=MNeRwr9iU7iVq^G$^iQ=eiSH zRW80>ulf{3&z;~lYp8HdhDk1cgM9)cFSn1~UG4l8@P8Y`7K0Qn=Y@ePIBz($E)zo@Le}3GhS=% z&u8s_n(QFaK1-v_$cwlS-D@3aiE#n5hL00eq*NJy#QI-t@;t=)cEDE^+x=Nt%c)I* z05?ef$q(Y#_i-QiKk)nUX~DEsHI2MN>YgvS6nTGn?wBThUyKX>JH!SbXqe!2*^^Hp zMYQ7_TV=Jpg@0rP9n!SP>VD6*ooFF)q4)Add(pJptJXkcMbiuYa27Q$vFi^wqFs*k zC5v)lbE?Nh4=Bv7Qzv)l>+yJZ{`tMkp3>%J-=JoNVzQ@;#zNDg-up`~QaEq|V`46R z|A`^TX$8J&D}ehAFJO^W5!zz>1(>RP_W0+OswYGzxHXdA-*vvLz$OaL2#bUMOt0YOZJE>MM?b*k|M<#IvHu?ZR~V=-UKtcbA{(ax{le3f*3nvz+nX^ax4Y z6$D29lpk66k^i9fMC^`BL=gD#j~ zW%MaQZUjwJAnur(FCtej_$|J?{L*W?VRZ9CD`V5L!-th=UZoS4GsWFr^n+|f(9w|m zfFyQ_xOmb@{b>zMJ#3eF_dG{7oSL43B^fjo{OzOLt)y-(zUHb^78d_h4tS$k)3K;m zJBt1dI_r;lgzxI>746wrQAyr4y0pg1BE(p21HKrUMAr?xoNC`g4FokUM*ddtLXH&- z68rbVOWop6``vm$%dM3QqQ!jb-UrS?m!;d0O#JT+93WuiNyMBR$H$XK{jYV4Yws*p zL#Gws7pw87OcFe2tr;~TKMk(n(=xog@lV)BJVD_`VYY!{Mb zH*fG63$3TviBq&T5B3mTSid2U^(~2a8k_-FacAH1<2fhHO&CXQUCnKk`gpNfE_qBo zn{wiy&Rlt8Sv=h}hKS-NYO@5dVA64>#U6uC_|4ONJm>3xyR{#_e(iHf-TnC#BJBWO zl8=6;2AIw8{Cj+d1B8#3KaH+i=j|i`iyX8#)jo#SQou{j{Bw6Os|eRkZ}92vvir6~v+f<| zXHqAt#8qQE85rm%>Gvgl{8@w?W}R$S0p>qP4X$5;0#M;wZ|*iz?oGSHl))vbjkS z4>6l(AL0rsugN(ZWPg$FcvKEMi_|WSl}E2)6Y3V!WXB$n7dP*CvHiighcCE{58?b{ zfm0ynASSD+~6OI*h)39(5J zEOLzg{l`XH5_L_+EbFfmbWhetsl(Hq&eWq{mui#dw0X^SthfL?5`*z@!maQM09H*! zJDFqMt1O8;{ZtnaCc=(~#{4j<_8wf-0%H^U86IR)AQywh5MAEUq_cCFnb2f`bzsBQ_rFOA2MpHK`lyG7C*Id6`%9(RDO6ohi zmXqbx^W}pnPtJhjbD4hm(6UkO*=Ipu;sA*4)Xq9!;ivHa`Uh$f(v)c`#HA8CSISfv zTNjFA>fK09D%&*GP7)i{{5LtR8SxWwZG^5W!PiqWRW2U{wf_4da0k$=8NTk@QN4WET4%e}IGji@$BB8^LmOM+3ot0N&Ti00Gh1{&g zeQtA_BstPOic`THisVyoC7oH{8@!5>d9_YzHb{8=BpOJQ%}a?W9Df)#$YS52Tj%d( zPTP>8mJ0DysmNHn)u>|M^o9$kk+1K%#AZf8hi(rgn=KS*%%bE;q?vX!_RpY%#&Zn! zjdkyPEPqR>Xa5Pdw0~Au0ea1$>mGu z3)vpC_(qy~v0la9_{^Snp|}PE=KBX}Y>ACYz#+KHRDR+8X{7df1y)U|?Ycw;(;plc zfcJNtkU1>!EgIk1y-?ZkkbY@EXoRMH0M1)e=o9`Kl@)$rfR@lMWbe6@YN;!w`?(Qz z3o0id5E`;|)qnd~c^ORd3ryc|j+w|3Y)%O^R%T4`#PVA>l84%@+);LzXyZ#X~1El>f_V2T!c)~M& zg2DT*!jNhWGjr;uWOmsO``=B@AL;24KY!k|knxeI+^rkU|2aq+2sjeu@g5)3YdHB) zqhSOYU}YDNUSkaV<4KL0Ye7}^%Ab%tKir-Y8AUG2u@5%>ig?7pv;G0leCn5gi@d-@ zcr)=XEMM#KpM^I5H%D{Q<`YPxS_%<)9QM)vLPI?N6)DJhq{8^yE6atMLUu1x7e^TF z=Z+X&eT-e0^j=C;7JAm(@~VK;asK2qzbiXYOSuJXNpm>IGtW8MI_j?Ja35_?+cW>H z$KZX5Bz+n7agiV`WOV!B%Xjuj$Qiyc9mGK(#Cdsl#ou<{1^V^b_J05ZW(A3UiqDMk zG7=0bw4PI1l64hgRKKFcKy}GHtdiz`sN+MAKS7=}Qsc!dke(HVA3kpF{(1v)OQnK0 zfZmDHp7{Bdt|#5UY2NOw4qMGc$xNo9m~NVQR2phj8m58QL?=X2?a#k+k9O5GEpHVOmtpAXsU;-)Ui7C+VcT#y(N4GH#fr zvv=~#p;#g{8wW^DokR`GhW~YVQ+A=k82mFQ(${tf zM<-@GL+ngLo@X9qK7ER>}TeG`tr`N(*p6jmJNsL$NZSdJSm2H;- zc8BgK%TAIxT+%fhYPrA%EnI$GR5O!j$1n~tI@k?+Y_iE`szqL+^>ty z&*4wBC$=MbPD*5R&$BpVD=rqw$}vhk5?ekNYX5dh32kx$-Xj+p#2*As=}&U3Sd!FL zTDY=;_?EFy%`31Wt##-~7Mew$M6)bjF+eVQGabCkl3*3h#lVZ3Q(|>%wKLstb_xZn zx#tYpOHQj^OY40k-y-$?rdDJg=sf(RIfS9T4NYJ?^&`3MGZuL+`t_u*r?UN?H=4ag z5Zw4m0Hs_%ef2(&^9tzE7Jjx>z=r+n=1mR8Iw9uz6cHjh zPk^>DpMHlOo3}IdO1E8c(`Pp-@1s+p?q3_T!Ub3lmLJr+vE`SIV(9sNNKoQX_2_xk zF<-iUUz7sfM^DLe()6~Gql=^6tAxC;vbklG?-y3M2kxy*PdHBJeRpD^?UuMv|*dqHP*AM=07(vI{5?5q#E7d5Lc0DyhyR+h>C&!RExQhUsXBQt<3J_ z1#1%iO8Q>&**pJ)(-~et*<#Se;#P`v2t6Pz9Ty1l{+t zHh>N%dEVVfNZ+=#t}b&?XNuYGS17vY9;g_d$6DLC>66A{?LboGY#(!#+91zG6T||f zp2`%ouad@UX)0RYeek>xr=S$zA0i)21VHvv&o8WK(7Z&ZA`9 zUW8}`2ll|2u`6ctq)Wc-(teyDpY1M>ny=?YGQLDpA<*-NuUmSw*+T8*Ao!=D0Y;So zWVd|L0gDv7LEl!nh-cC!VfBgH_m4fEDpG@0=TSxcS9lOn;(pDvAs)+L)_E&uqm1|) zSvBgzn-^-nHG>d8&%{`3=7weEA_+Q>uT!QfT+D&b5n?kZqpgl$x>wxQp_SB8(jxFG5QiwC#@= z<_;NV^NelEVhp33G*#s`8MoeHBR*LQYGa^}pOM&4JoQI50o=AJQ-2+Pa|(z#?&vSwr{UcHtfiKz8aL)f>$(us+o*q>zQiBnrY8LK z&4A8-_zw&R5u1qE!MxXQ#GhW34o$Ruoal!6VxFG#ZP_P7>Q3zS2(71k1(tlI0hUt0 zDcM1fbSL=v!`@1k40zUNpo!-nIWODRUVI`>)IeW8npvQ zI7$|;wL^`8mwqF{#jNS@n=ETtV&CY2C7_@4C2>Eb0vEj*J-xpd(kcIwYLwqs8XBRg zpVnRCc9<@H#yi3HiQMszIewR?Wz^UKlU8e(=nN-jQMbc)u;oS7JT$W=%D~ntZVO>K z7^V-H1fdkmV44aA>lT6*uy?4`7T$*sh~V(sOA5-g#*!1cB7kIBp#*K`D6iz0Qb5bQ zq&WMQ+G?(l(`PpQ;X6C4(9oy!`g~;_RsIxQl;wF%g}GmP$Z9vlUC*UphszP!y@)Z} zyZ)x^39o%BQ`;j}E&YpEQc(8}BHYE;Oc`I7G)r_*&O~jW)k+smHp9a~&n(eDEL}NB z101vTo2*j}^>Z6Tqf&am{SD95s3fY1Bg)0L+U+mytNAT*Lk3o30{_0dxE={SGvTAcEB=3; z;l_K0CbP%kqeZ3Ixc@w#aOeE-G`6zHepcsLSwiP^ee{dmYsjxRN;v<3T)IseU!5Vd ze4%S0vi27BL6BVil9Xtjy6Z{e0%GZfyC=UU9V$d%_$ddYmNE+QdoeSMqa}Ir^L@&d zihO!;fiu6w6#NNHF#P%>v+x z9b$Y#9|l3m9($-lnG8wVh|4be!TO#>@o)Q1yMNuuTBVvSXKwy$=x(khSy~9PxKG&u zZDfHz6scOLq_e~{!ih^%A$8y$+9Z^E<4~8go&_0<25y`SqStA!TvurcZ@9>P%+N0c z6i{uq-L3A>R}J=KFK_F#cn<%}kRW&0>fjXCq>zboPZRd$1Q$7O%McyU`~YBh$!%Vy=si zd%Xo>#-B<$kY5L8Ql?J%71Qr-dqOOFPKCY@?Y}7=U-Q>IyFVk5SJBdt)Kn7;zjgA2 zWGx-IdBN)^Z#Dy4z2DDB>BREr^>w`=?j*Sf|FYuuW7IG66Gmg^=KGDQ{g4&)B#3t& zF}6%F7tnW?0FpExM=@?Pn&Z`GaRT)?P7epD~WE*Io?3%CW9Tj>@ za6dwq7uAJ4X?MBA)cN+cTEZo}3>=Xh%F((@gPS>g?yp4|k%31a6nw#DrRbI>m!gaI zhOI7G;j;`we5UGiUvIQH4+9QDj5XeUX7_XHm0T0Ucn!$ZJn(bs2{XC-i9K=RX77!g z#gm`kQx^yCP*O>bb#>VG`v*=5l~z`9-Cso;I33*Fp_6t~)@Zku+Z$vD2w#J-c>Jo* z>Pk!mCut*ODH`s6zu5lkkcn{`;lGk5-c-%&yi^J-p~v{sRESpmH8&$##SQQay9UFW zwl^I?eRPki!5k{i6|;n1T3`!FFZm~}b08#}FwV@Y)+!X{f9L#gM6&AD);3c?pl_pg6tZMLi3Nh|cP8tuhQ&l;_*^A^h z=0Ng6zxe^$N!+>!kPE)La`vJ9e7rL-z2@Cupb(BXXXB*?Kyj$!&t#LKw^MwH$k!gG z-uX?xdrIGLeHB~&*Z9b2eq->o%!#E={4ow)fg#?rRAPdb7`r5-HqxeiBF6?p8BcBz;1dq(r|2TWowVy>cV!>lGP8K&-&!%a?Dyaew!N7}Yq^w6N(% zXoe8HPma8^)i(bsk`ztcT5#ujCthbNBZ?DCOB1O{7n%!5*GxU2_+OE$Nk&z1p4d*W z+F=XEA4^e6g5Ki&qD(Qr6RlizO5N+d}rc{(3_ zqnYqAf5x%BhQ@jeWW<9ub&P9W+~=nNKFbYXCp3JUI?ED=%+$v0- zD2XGLqLHSbpkOOi2`jZ%vE|%mOQHKIfTw)l%&b-EK)c~@2ee%mIAF>ccR29rsWlcb zaqPpCEi39+BVtySkUqXY3pmsKZ@{6}*S_rS)Gc$soPj*!lu68LV^57@fQodgnp*NGYRF>+i=41&<){W+7`X3L!^4{7yHMYuvh@8aW%l zE`^S{Cm+WBj0UG|I0Cee-lXHq*x>x3e^T}jA7sg*%UylyUG=6(WfHuS8=D_*t8n%Xy#sUHtGKMpN0{?vIW?hpM$k=h!UP>AyaAVv0Bd;l~u>j`FXm}SS}); z#fi8X(m_lU28w{2=2gxK2{j!am0;#PuxO_)&WE)h%xz##bjvZmpPkf;Mc#ET*mOH~e`-^zbgsBH)!@R`v_b?yWe(#;+!$hazC$ zehE-eQZ|owCspCvv%pxBGFIRQDOP`BxWobYpBhxR=y9r>p$S`OmBDO5HW=MQ=Q-Yg zaFA*NmMtN@w*;3fU$=ezZawu)iO)!DXi%8%>;r^$>t7qS>(=-}`6#otvmsSW`&8*m z{=X-FJbwm|6BOWedusCY`?dGXy-1|#kZ9|ahLsCQbr<1U*RbUsssY7 zBpCfL#xwo>z9i|h!xdvRzGsTWe>%U}88Mr^I)xE{S(#3V_>PBLXK(M$>3wpwc#?H{ z{{Fd8?pE3+f_&M>X}y2u{`oZ<;aZaq_J%poOQJr+g2mXu zq`p7YW-PbNbE$L0>bJeYMh1~Z96lcknzPq6W z_gtt1U2r<;H$o+E<$XAm#mTAzs$h=hMl+?#3Kgzsjz`X20f0pDMQCK^uS8I*1cI#< zwlnT4oc-OYs{6xLcG#x*4rEq4CTdM-S7zu1rNY|H+6YsLluzXxNEiGd;@2Ko|()to}MW|VNUoP&NlYj9n{g* z-r4Qx$qfqrujWHB%T*Fmrv0USVv>5fFf^>-w*B`WBYB>rTU{mvq!QXZE8U6GH(-k+ zX9sA}3o{%qP(mH?L20SMSF>^B`3oPg8*9VYb1V!LE!oWYKkc=qof`EoPplKI*!a2HuB8dNFzyFJUadeB`@JSq62B zp4FGrq3W9cgf3t`>mX;Ll2Ku7w6%yOl7+@F%Pa*KG0kE^8Dnfkyez|vjCYcv7<$6^Dn^oR<1M}O};Kt*D0g)+- zAd$V`x`3<4Ms7ch7h%_|QV~BJo|<#H4it59l3uig$O{+Ws|5pS8}~kcn`B>y&zW;^ zqeD_A$^G0(>P%;3jLGbb->X!kbWsp@9K}V&$fi}ZjMWFShtNkKpZWAGQ9tdkk~$pE zrCy@ihdB`EmG~hhx(m$nUL&fa2>>TRi!Sh`D|0${L~*!j%6rKDz#5N3L@Xk6?S`hy)#LCtd9sF&yezG_<9R5m#t3>(n&Yd8oawYaytfl_Lrb?(WBpOR8S$Tq|n` z_=(IpGEELWF!F)Dnp@Qy?DlEa{HdcZi51474+kQ2BiA%ROy?m04%tyEAgPBM`l7BR zN|>Phq0If~%%fkiXJzqBL4r{AS0_KZbD+)qC2Mb8(JK_>!Q^1msk}LaN?A6O5NGd! zJ>F9pIQC_tK7MrW#C~j;yNmV}ZUX_3>M(_uKNO{&+Hf&P7LfO`xJq= zcEu^c-L69qGWJVHDUOT!$FrTkGc!cZ#uEqHGqRX~pVCL2i%9`z821@dvY`Srq|tQK z1dWf-&GonLF{E)*(nMH>PB@~g&a4&xxNh5xcR(6%%hJNdxu;>DP4r@{m0A?5VAxm? zpZ8I=YTAN%g+Ioo{^EEyv%BF(@iRG+VJ12C2HY`(4hkPuj8r&q05aYM>kosq0 z#%O~wnWEsBB!iX&q1BLXRcrhMNLVGxkx{I@rcif%t77t zg+EuTxtc65p64KHKcty0`d%n6OtjiDTWC990-6S*^(rL7=3oFAyolUTr7DAD%-ch( z!zr_ieiOQaAWgl1x^isFi5u%?2{cnP+^5LQY@nDWe}L7J#Gru|9=lZJSkHI2KI*g? zcr{`;ysX+u87gG2aWpb@@XKm8kkfNhJ+$mEPUt+v&B_E|GIWnVZsdh6`kk(*8(?C@ z>GkU-)r-9qr``N4IMQHH7g3Gax?kwL#F2%+&R_gsIE1k6rYLVkYL0Gf5AlWvTCt{8Ie##EcId&U5L7(rJLlC3UXbm_ zJW6|dBy?HE%DFjsKGZk4S+8~*>#-Yd(Y1vNC1;b3{C8kYoJ|~1>27vIvpi>qrvtIB zyWzHQ$iY$a$#uPaYvz4cwEXRy>BSdi5`UhDnEHO?yDVRBTTkCHH?>S1aefVvy{wX@ zE+HONuK;PBsWe{^uOPr8H`0vK01*QkEB?od0CLXcF;0ES+oplo;nkU(YR%ocl@^rN zmJ}GdmMnMqEZM9kFnF7CjNPwNR+9rKEiYQGZQGOw4WvZ!jpzTjc zL>V86Ta4Gir%0s+p`&0O466Gp%9&_nnvfow5HjuTTZYz>+LM-McS)VOT~;o@KNH6P z#xHX10*vsP8T zQFyZA?}NI`qsD7BnaQ9_MrWn2z~yq~p#V5>_GR7Vywm&l%t#&kqya$Yd|dWqR_0e3 zbiBM1GZJ(1t?OW3s(|3x0(okwecQ**a>s9iLP+go$vXQm?S4M(cIJMXiy|2`;KqoZ z1zc9Q$a5%i-F_ow>vo^X$*g;ESaXTH)t(W)<`xUGW+bE}Ol@uP!Cfws4HOqeTz(n* zSe)H8+g#)L@_Gc%VFWhOJ=mbDoGdUkrLuIy?BbG7z!H^%kgGiuPme z`*46*jj0b66F`wx5B53!zUOD4CdBi~f)`oBgE6Pnv6pmyWr?K>Xz+g4wQuRBKaKi@ z?Yi|kB;a4bTr5MPE5Fu0mPd|6POSy0o%Okcjvs^;@Xna9zkw2KQ(mjeDqdSo;PJ6q z9WR;iN}U}^>wm9Ur@Z8_C9^l<Zw(aaHBzN){`rABR{hzd?~&GK|7OQ94)fL)OV7Z0-2T`a>_5fi{E zaY&Qsu4*SH!(}gi`_!~w9QzWes;30>vtDVjP-s0FA(wfC{NnrLQ&Lmx;t}glj!3Fh zS*qgwj5ZBR>m-&@5B84$wR@U5ndN&a$3T_%VsF&O6Lptl=g_9IO0W>`$c8hJX}}9^ z;}g^iPc@6rr*deXrKpIdGxv^=+S(-Ny-~U=TaWc)Dj?IS=os>W1ce2<*KeLy|bROh>DJFl`762&@Q;Z`VfG^b4Ho)o_M6>SL7*=?! zYT3$6|3>*1VN-6tP_0~9Ai!UzQLeFgGfO{MXgxH=T3EDDmK6*f18Y4l+5N%wBU>u5`O>pz3gc#;bsNaCfKlqC=xSjNIJ>e3GX_{ z%VJD$QgC%K8*67+j=l*V69fmb>eMPE^nldMgcxIe=bK7Xc4k-$RE7L{*I!y`CD#@0?dB{>>NWvU%$S)Hl z{0jHfx9&F-g{gErS(=bwK?W(gr?r6S&afVMjkYbNC3udCa&LLrU23OI@>>YyQirlY zh1H#z8-#~`+!1-~ZV~+Z+`|qC=J9i%Nv8EL6RcHj@8|LF?d=Mp1&QATk&qj;4 z{%+-w3#E7fE4$a?x95@{#X=%H>UNqafAzZ-_=)Dt{qT0>&JqSI~5=_{QcZhMKp#{{l*Zx$401G_*d_xW2=sLRN5`wG<( z2hfX_E{{4eFq0_Lrla91u5M$MXCr%@EFIeBoSrW_^+`|>B<*_vrdBhk))*G%!uJ`d zp}nwW+9P%6&*vLn&1%^p>b9!_55h%XF_#y>FeBV^HON^%}RuSNo1&d1?q zry0Q0;V*|A(K~0*MGFt=5R*JS|eX_SAg$s1Vso82d<3WGQ9eo=KE#WEneCmKKH zvW+cc=X0*<`Fg&e-M;_9_xAMDT+X@9d7Q_3Kaa<`u4`CjcWc>E^VDvIZ`^Lh*0M$w zDI#|F&~}#DIRmSYnS!OoJF8nQ19!*55}&>u*ype7a?EaprJ}BrG~mi4@bw&ba#R7?Tu%hjuh!?PGhXi&h44P-X`@-66&+V6u#SBzk42c>(IDy z$wT8W%N3VvOk@SGyKsH0z7sgzl^L6QZSI^M53Fucx~p5s92dB<_C+jJRo%{|RLPV} z%;(n1(#igQt)xEvk_4*Wx?j9&dDx^hu4Lwz|L)*0H>J^_P;lEhxifpY_3B;kV@`_U z&n|NiFRyg8n^k$3)HPY#uib^8=6V}8F0EPo{aHHw3Bqs+cG&M>OOuAoZa^nP zNImdwiMiLFFEuOnO&2~$DtT>x-p$3gzNLCVIpKD#&Aur8@uE2S0K&M%=F?NAO)^bc z6~|ts*Qy6aQ^ku?bxr0Gx1< zNS%Xw9dJ@{p8fgrc#?Whxv`&uXkKn8rZV^CHjCH6;{-uP!Ah}QiTKs|!wFfgPHJ;< z&ZbIZJxs$(ZOY$V0+$2FQMQ`H4|@^xO7lOBgv-z~hkH!LEWCJM3m5RQbGpO2d5bN8 zw^34+|4_Ul`K`ezHD2S_rTU)qE5oy#pC0q&O-y@q2iwmjVQ<8Gq{#c1y(#AU{`Rlr zU7cy_c#yH+N>?#!a*e6<(Hgmx)vDd?3-vBXVL^=w%znVtbCaHDyJ**XFx`xdwzEgQ2$ib8;%--`(Ejwe1|8!>T?hAoq zj?B^4cb2|=Yz+)AJD#y+V?64*vChuxV=`X7XH4}tk)nL~oPfVbS!P{jir_~nA3BZQ zcFD+i_K#U7ub(rC9)!7GPGrjnD;6A^23hT{#f5WXH@Ei$`1!9?wz-l@2|CG_Em8P> zQ`6+-nJC-IJyvRtSwrQlpI`-!NGw-TkS#svl(Y@c7LQG}8KP#BrUNFEJX>EkEY&n; zRgI?-`YZ2_1i3TZRzJ0Q@UhC*H*aE%)TGM%<#NvlWs=sOi5Wx?1^1CAJf*JfXL zl`9PU?R>%PZVQhIbvUZ2Y%X^f4iZj_lBB}+`Uvlm2F>wGcxEm9H+E)2%&2v3T zD+QCdm4GzGyc1WyEAkT<$+M622?5QPJ?(`ja1>a6==YWC<3pBq9I$?26NL_i?OmQ$ zMtB!|>;&=i0}uHwZpC*9A4L^!>coCShlnQ6=+zq{W%f?`ta06m9wHaxpJKKi$y7>O zQNJQ`D^G>V1Sy5-6^7U@e6V3mU z&Zx@ZXI#*v&xODnzje_Gt<_|m4MMl-yxm&M@Yc?xY>>K~AN0N}QQ$qzSpB(J?T&|a zUQ(Q?#7r)m4Y&HbqwrRVj0$@Rhn3H%z(qY_t6+1uOsh$3mg{z!OzK{lKuzkf5^-?1 zml$LEh!8;WCzUENDl!%0>OCxnocAvGTQl!%oQY_9y0dqGtg-Y-ry0Fje5XFCBrC=^ z)A&Z1tAZ5Rdn9t31Sf)oSTF)9>xZk_+xXT<^>D53J!|K4O5FGC=fzsz#WAd&Z**pD zu&%S3YqHNAmQh_Pz?c?qZ0>8*IP9k3G5=*D$}w!=fu2eIqR@!nDb?l22!k8*YHMGg zkl1YZlI|=Q?xqk<6O6jTHg*F$!%4Z!Z7gkNzv>n?oGIqBj|1lx=}4umdCqyd{M5I$ z+P`w_olgvzXY64i%8gQo8|pj;RS6N3-AdyISdULKKSY7^o%}_er zMZ5W2P3ahm@hdaap;Y#!nXu8u>Ta&VzGG3=^iTN;OzJ$wwXITveyyFJs_|OCjZ%MP zZJ4y1UB1hcs(y%4Dp%3Dx%G^0J+qtOdk!A2cF;ZXgGF=>x>Vfa-peNm$X*> zL~fuQv(>MIum2U!bA#<}|4z*H-D=5-`@OwMrkr@^x=X|9>LlOH5tdgcyx-k2?J>qu z%7;QTOtCMRtrN{%H14(V0a!MN4@ytSy#Q^q_H4Rpq0z$;1sJ0v{sA6Y3Anz0H(JZN-lTkk4-}YGs9OV_LBgY6u4n8ca22eyjyRcqJRwkEZ}dyfz)t7D7Ql2p%Afg9T#}{B-F@c{l1K=is1!u zsT{ocnKL)uyAxy{(=#k-55Dkr+nZt9dnhBDn}=+nzHK2(k++}w0N(r~kgW#z$#4oc z9Y$u^TOfS^*{*Ll&v4uNI0f^-t2eJQ)9A5<+vJ=sZgyA_Ihk=LHQrimD|`0JPZ>uN zm8~RVp*$_6~ptGlNrHzOk>_`n`>5&g{U`a>}N&jJHe z-I>cu3L3z*`$%{xjH>e*K=KC5(i^E!3KRH2Ag`Eh}%WF&P@}GA{=EUkf3s-a1 zS5bRINMD|inoAr=8zOV0wR%N08MaS6Uxx}<&-h4Vx$%Y1)i=!r@wOrQJ|{h?4tZoI22)Y#I$dfy=h8U7;l6wbzcxK8EW4K(oqB_-?i}_;El1L&&?_^4f z)0aMwkjamUrS3=O$>Hv@G?v+UkC)c#E)_E)d}#kzr)GBf?mS`9PQt5;UAHX)los(wx{)}A2hZ%0!L zo9$#cE?>4Cd@$mGri`Deo%R?)$>)gL#xeZ}{0xG*IvXeitH%rnf3QXk$9R0xg)#a_ zVr1!+ur8MJ!=wkdb!*S}-?;hy%H4&~6HoQ}r4=+zX#QLiwVLdijbolz26?4a8~+K9 z>c5=P!$zpwp22>NiOZa^n?3n0omn#jePu(3S&80bcRb?nI}PTuB{{9{c6D@ILIrL7 z>Z^DebQIKbbW~9Z+M%_jjO-Ffo)0Q}o2={4X3Wi;SxER;D)q9sI7gUq$ZK%DFw~0u zOWPMg2Ji8=j&<^;LEa8aF~a=BGaCb`eey)7_$*?Tivn-#L+8f;oI1XRX^Vo0aP)92 zgEM$Diygyz6-Ky=$taTHwysfY$sxO|WyZBq`y7^nS$es};;+iZB~a%$@ehC4$J~}s zOv_J^H{dc{|KtK9W!t>Xke{2YEdL}~f;Z!<+u&>(dUlVsN$je}6=KH?k}p5`B^M)n z_ED`S^VkwoblQ%c0ATw$s{pT8v1$zKMmoWT+XwK9Gg)3RM)oUq;DJ*|Gsh|Y@sGy zq9tn}pf)&H0gNNyQ)hL|0(DS^-+ja?ni0-_uQqiUqt&=OJD4Rdc`zpA0;>o^j)Y== z&WDpC*F}>aSGXDR1)vQ0D&$3H2Q+1iC}H_gTvy#@%E`kkJgDSp%cK00D_4XDkMR<3 zM67b?*Md#4>sjoe5XrY>=av}Su8pZdFjht24MC2Z!7Aqai9T;tSAXjm{Ydhay8}Mi zWdjMyTbl=BOL|)Oy3LjMs1}vKvz0YS{#>kb8dnUy4WaBUF_vK#u>bsifIXhNXaR4} zjoUiZxPG(8J|O2XW58;Lj*)?za~p;nT-b=2^cC}KxdMz8 zS1NCerq)e+oE(O<(P2>Q;KJT9E&lGg)eETM>M}kS1j-0^(mFEfKwh!>-g8cZqfh(O zi?OT(H9F@9a9Mv|AXs98J%-YZD4n>*CV zthVKhH9*-U8qqVt5oTPC1g%!B+dHepw#n>`CGDlIAH+;_X1A|IIH3fQyjT_-z}bs|)zx^s2MUl7>0AqyzLiAB@_GEs1uVZR~ z?f0pIM!`;nIGa0%6>~sUr5R9F@|3QU4P2IAm6R7R+Af?^PI@-@c0_zImkVwzVYVeY z>Y|^iF#bcQ#{c`mcejj7*cZo&Me?A`_l>hWVEgg#nJWtdnU`LxU|2}u6x;v@^1Y>Q zUw)IXRg#%sDKDgW+6?8!(gxVUK%o#gcqTI4e(xpsdI<-A* z>+7-KdW+ zwyStnm4o>%;)I>k$`6|7>dfWJ_23KW{)^M|ZL4x-ieF82^U%ABR`?+2Jyv+*r6Y&o z#0fAcqtA)F=+5jX>`ei(F7Lma8DE~(?-w;`)8&@lwX0RpBG!4t8y&6??-RAMNG?!R zG@0b1_sh;A68t(7leC9c?%oW52`~cKLA{s3{+ziyGmgw4U^a9FZ5P6*5R|ZzUiT%v zDLUFJd$?~ie<^X;_NmH3G@N_F&e>H#Ds7M7^qQf}z$bXTyvvP)AxQ_&%@YolrKbMBN>@tj47 zE{byCmOZnN^GGK~f>FygRd7TfK2%55mFOqrydS^n(e>d4 z9qukyU)RkZt;i>@n)ME~cPSf}=w*7|Oq9I$_Gxl~e%bd|^&Zu)`JA<8w_6qDRo+C@ z7fo9%8;}OA)NAr^bkc_9P1uePt9=B}$&0DYox~LTIvC{NhN_Wu4tkCjJwvjs?7uz-& z6=X&aH6|(!m+*nQ)ZvqJB51o)FfH4Ms$(B_V;$b^b-ERlIrz4#tS_BBeLYp7ax#r4 z(%Ht#pmgGWq($PhD?ZoEE=pu^c1<@}vNQ@1GX|RUa|L_jqz)34GG`6!?C9Ijg1laB z4>|FxfpqezbhvtM-VKYfSFjGF@i%xIXmpY8iiWg=J+3;L`4`4TBgmC~ZGi9o`>U!!;hu8}MU3Qrn1impic7rN_ir~YxSroj zwBG2-$oZ^3xVQ0wdR(i^5#*!;>*txTe47XQa-lG~XUT_XZ(77ctaxlH0}R2Rb?^Si zn~e9$C)lqVL>(zg>6$Z{ei-&6J+`-tGCX%r^Xo{=vk?ywc?+9s6_?c%F542-;|GF2mM0Vm;*MAtW3f1btubF`+_f-gdLRnqs1BLFJ%B{pkzq4Qx74nn4!uv} zHMymhIVjZ~&l^QN82e}=%^oMmS|Ln zQH{9Nz6W^0Y~l9F{>GU-p}CqK(UcY+eOLEsA7Z%AfPY7LSJmZ`8D~zZ8Z8v%n(CE+ zw7GfXOMuWUGwh1laf+NBRan-5KE{`CveYH*YTcs3({6~R``CUdb^E`=oVudqdN$Mh zja#oGFLvLfFLP5$8Wzojuw66DYxAovKfbxy+o(|vc2uU<9v19L31uyVD$m1(=j@)gXb1pQ5p$JC;j7{@&D z&7ziI3Mdr^rpQOn`j45x&%5pzjeD_NO}_Ih^kXR>Qe%0cxqb*6i5XrOwhHow%lH;p zqIMSac_Q4aCps2Li7Cn3L533R*DBssb(61mnxVKKJP~(2KWg{4BfNWP+FS>G1D(&X zN*Enl`v5(Z+0%jUuJ_<{c$WCcVyDT6ftmbT-%pLhin_GWt|hFxWe1N@+h6CI(ka6~ zvNEbfQi`7tE(-u@zLmIFGrn^kA1Vbs)5@D03<-k1<7USN?b^9C?P9=^)C4Q>`aF1* zJN-$(oo`CSMvlb{L2z*R(+T-XYEFgT`a@U6gHc)ZOVy6ms^5ck;HFm9e0cl67cBuSOh36(w|Kh2 zTm}k|h`#IRhkf4N;_ES2QQ(cr5}vQt1MY8=Qs*HVirq)-SlY9u8tuALD$QHb-$Tcc z1BWpmLn4LR?G(Juq13ld_GkfJ?qYR0a!lwpYKLH0t*RQEtRB>QACVH|0GIKfp7ti!CG%Zhkw4et7|cs{w9sVx(HNzYb94ceU-p zey8dEM&rm8GQobnzaGur5SR?Zd=U}0+NoUx7=1_Z8fut2y*Rp@u7wJYBc3`}Bjy6+ zWRBw$D;RmKP>ILm>!vz0JmxZi^=2?+K+3{vVfQXp)weOz>vYkU977~obiNB?wJ%X| z$frNMF|j&H=(+=TnKj-~aok_R%CmdBe1;F4B-KKqDWOV_^~1@J_J-X+0H6021`5Y7g)`_yEp+N`7HK8u3>vc%g*M1?q!cm2acCF2 z_GQ-4N7K_+S#_o|vc4oR$Oq@y)~lW)=sw#uy)L7(gifl-KDe56(dQ`oCA76F@xCAP z7oRq$Su|V{2h=~0LQ5Xci1_6F@%2j7Y5vLW>hWiUh)AJe3Du=vayRyV9^pw|zTUWN z75K%E^j1cSa17f!5Z_G(C;E7-16+OoqUsh80ep=d1djMHukJ!&BDfRFOo4^}V+ z^X?VZVVJ26(zO;I(yl1)dgPuMNsbiqKlR;jlI$7hS+|^m4K5vfG3kJl;CtZc`LWmPZlzz71sybG!X-p_0NxX6C?S0X}#8j1fYRaJs#rHlIXiK z<$XFY+80zIsfK}DI7wdH11YOpo}03#DTOgv#Ez3WzkG^ylfp?qeobl8b7=#GXNSRV zGiN_?li-i>vOE0{@&d>6=0Fwoasb$U%J*o2Vq8w|&$Fp<_F12tLkHvNaM5rORJ6@X zEZ$)%ue!xS>r{pfvNmPXW1f(5Ro`1rPZhYPzIbx$Nqq9RXHQ*wTpcY1U>-u&o51k( z>FNCv2kOCb3l8`9XMqhP-oaf?9oJz<>?UuloB2(6=%Vo!t4Zswz=t4PZ4DAB_nj3% zT$Dys+${p=E9m^=69@56GF{F?uvQDcSKw(H&b66@61o0NAZ^Z;GpG?rr>N+7$(kk7 z#xVmHxO~M{Hv8r$O?C%>7YAVT`2swKt)%0{;oXPpLLF!F(i~4WkC!*E( zdFD3vocI(J(W?$XxEbKOwkm3$K7c#!Uq3ttQ!|UVD<0RWAOBSEp>BS8-a?=-s%pgH z+JpnwiBF$Ltf?hZ02fd-L8dbDlJcN7$+xCK&l&hWSr#C!NkSj_)#JJW_Bsz|WX_?F zZ-TQ=E`ciH+o72cMP>rQuN?OiPA2#O&^7|9KsQ6QFQSH1^S@mN47+IZlK+`!*w(?> zu~<=lF#?Sr(z6VLFs3#@>j)bD`)Lyo0z2mVslE|Lwt*@7}{LHeNubTRnC$ep1=`3}1ouz8F z`T{t3;_SJumQ^=ItQ7?FLRE9tCCcPIOy%aub{IrT-%D_q&V9F!$gNrC6Yj^bf@L9c zXlz|C9eeyx`w;#iGHI3geqoR3gCi`6=TCoQFSm@lm`cl#B2GXFC_p_3-4dG*Ud^WJ zGfs3wlAFXQWf~14TWvpk*Nu0R1ol3X0BpzPfo(xx`qFk_9^&ZibBt=8X2&ra0o7}#>V<8ZQ%D`b%TRl1?pj&ufp(W87dw#rj zUZ6D1RhJyHGvq0lm#^F(=_xQC(7f;*`r^7rwdP) z;y^YRr^y9kG@!m5)F!MyxIinLf}9bR2u>W)k~k2L&!ABXhoD8gya4tA&L|%1+Ie-} zLfoLk*?@K#1r^Bc-G+88>%u&EMfYq7TO&{yob6^2qE$^XY<`DA5#YjCB=+A0BpY)% zfz(^3amJb82SuhKAX8A2tOj%oJsQdsyhYUVr50-W&R8a@tW&U&3+ru>n2$`tsw-FE zhN}DPW^8!sN`jr0qcBNs4tmf$jY9Nm5wRm*$|>V}tY=yfBwsa+0Gc(>vu<@6hA+79 zy21%TuJGL@TLtVwK#gKp7J;3Vy7dGRysW6TR?B>*bfpKe6gSotk4chnP=N+L4psT& zJT+0nQCXKE+UyLOhSysW;L{ceN{vRCY4xeF)SambeC3R_@K!BHQji8m*ZPCy4E4BS z@S@G3re}}{F_O@}^94)Y;ti`fT}WI3(hE;C`~nkxO?6HQtiMQQ=?5>*&1%e)A)&4| z`9Sv=(T>xI_Y6%w#C#w63V8~oEIn?kYnmuz$U&_6r6;_#Bonz%ufbo34b)MN{f7}| z+`oZ?f_)g-&88UAF&xAGwVV-FQq5L8f>Naz##4z56WZ<=$9uC7=Y4hHLhI+@?t%93 zkokFUh6DHtzy1W8PC)>~AoXOOM|qqSO)|BNONp*(3uw5h&7nGtt;p>Qlchlq;9 zYrbpSBOyol1=N!64?o>5liBoirB43H&R#B@d6p_KeA8M4T7WR*@`KKie1o(^Af2nF zXFVNG-YO&RZly-XralYuI#^dW8L?oxqYL1;M-*o2ZB~Ypso(HIL_ncR^bPE0LX}(d zPN2trd`t-S3d(aLocY~*J&3D$7l6%K7@DGN+S-O`;(7_24;Wb-dY`4(D-lT^+1*A^ z%AF65E;Va45;WZcl2MDVX6FEmH-DTPr1lJav5mgT2D%ab@-Fah-nH-hulzF@`ekA5 zea`vhdE+qhkNJ#(R7brIb0>AriR+WM=fKJUUl_-BJV8dz-O&(IIS8@Nx$j=|(WSP? zZ%zoWf19m}zusmV>_aG+qs3|H48#aO0>4?-4}lY~e-*)yqp@w&wt16eTYGS9Mz27_ z^!lqc5$8B(N7|UNY#<@2qngtSK7!;3g)fj$F{({V^0`O21%C6FqAk(Xdt#)u+Kd_s z%_~>4fHSKK*9IVmvV8y%+evJ0`kxwv){cT4(&!u3V~}VbggPQKfV)7od@-SM!R{z% z)i&dzX*w53ir@`FtJ`%p8Yy`v!HFdM53Dr3d<^*Y8ALAVfgOk_MBj6;LpW){1Q{;+ z+}}Bi*-VxUu^CZ*L!Y1C(58&B0g2>~`Rm{Z9JuJ*e~)R5BY5F%e;SjaKJ%L{W0LRV z`rJ;46j^RCm*mk`0^s5~9t29ml|zkni(cvs{xsr_9t24c)bRwsRvZiDHK&nmM9$}H z>NM-cMKE1H2P1Ta=z9f3qZN3SCYmgu)M9)i8o!?=Q9rIpT6-B`>0OZwv-Qnc=h`t_0?Fnh7|a-lu}hPq?fGoxwbNCHa|rLhp?Fu}uz zn>2>lI==Ry$w`|jcxO@zwY!Db*%>j+nwSih2ImLaNMa$UTsNH31&cfg zc;V3^l>?F>bh!QSt(g#kI+c+_b=k5le?}S52x3SMF{Pg<5(3!x%SQ z5TppIl(M(pG{y+yI0BJj8arfKke^fs&}DbWjkLxbA{!PHq8i3iy|DIlI?;`lRG7Mt zB;~H8E~2s`!k?krkB3A~r8%zrT)?W$Q}rL7K>sV2Kv*hOlOhmqRV!;&xY6gSA@3i7A7|te%_f%WhVis zRg|{gQo5vKJxNlc`qv+(Br}r(n+FRtY`^XV22m&Ptmhhr%Q+S-7lEPxpu9GPZMO4h zN*Gx!)g{3YlF_CZ=EtYV0&Uy4?XnN)iyYTARAktQA%E>Er+b3ZPm>tka-+KY(MCzeY-+)AMMh49FXO4Y4k^*jf@OI$QL6 z=4F^YIW=9mOSUxA^a4)pXT;gNP-nY(nEgI* za|E*uly(Kn(g)yMgVyu_fa}VKj(~9Er288eA+Dr>8m^AqK|Y%Au;k_)g#4Y9Azk-x z&r$%k9O^WFK4oh71x?x{cWHz+=_Hu6H4@E08<|M650{T%Z$Q0Q-)VXC6{eEwMjUh} z9nK#-=lqrSE0Zm19Eu=aj<0uU-p2q$kmRK-T2$3Of~e5!RWJbrJi552g?7VD5Dz-} zu~js4zY5Bb!@mH5_JzMa?W_?RH7s2H{%&62vAhkhi?neh-Zfl2JR`qeE-YN zg+>lz1UPE(zghSbAkVC&#sCcE!;3TxNN{ckE5FM*XmyMVM`)<5NzHq@Df%hFh^BIw^RPsSjKK49=WJ=W zLS4ZR%qT1oVo%^Gr_Smh4NkB`8fI`RJR9;y1Gt0MF#1IM&pYnHw3x4hGO^=*b($9a zo&jwKgCGQ!76WiBX%C@kX@UShP*;F#4T2y7-pQS<`Bw{4c0W!SGE2kj1wTdq9*VX= zc5}NS5b1=LX4^qF>i=%Jc-}4@$%oS{@n(E(@%&+YweB^JAV*%2E1JYn!)Mu zPlF896vq$&P~3Ri z{}NQC|Bso^^8lO%TB>@|EBSBn()eu5=~S*6k5Mgp@v`QR{-tPZsK2_nSLz@A555Bs z#P>lVIu)|8f0lrJ%20rDIrHy-h1OnYdH~tplVq5(!9P8rA7v0!yMu9&{cVK-T>pY1ms|7X(Yz!9mAcl3gC+`ktJK^xe=SpvUkgGQxn9i;m|Y9SiH znZ!T;@q`CtVl%$o-GB|G4&#iu|W*e;VX}7W#)9`_Fm&;Vb@gxqrl^|D4Bv&VvSo{zD#r*v0=} c@!Hm|%we2cO!dQYI`DVloWa@LGj@0WA4-6c{Qv*} literal 0 HcmV?d00001