reorder sections in chebyshev.1
This commit is contained in:
parent
14fcad9af7
commit
466a41668b
@ -511,24 +511,105 @@ If this observation is legitimate, call the new term $f_n(z)$
|
|||||||
and denote $p_n(z) = U_{n -\ 1}( z / 2 )$.
|
and denote $p_n(z) = U_{n -\ 1}( z / 2 )$.
|
||||||
|
|
||||||
|
|
||||||
### Total Degrees
|
### Factorization Attempts
|
||||||
|
|
||||||
It can be observed that the new term is symmetric ($f(z) = f(-z)$), and is therefore
|
The relationship between $p_n$ and the intermediate $f_d$, where *d* is a divisor of *n*,
|
||||||
either irreducible or the product of another polynomial and its reflection (potentially negated).
|
can be made explicit by a [Möbius inversion](https://en.wikipedia.org/wiki/M%C3%B6bius_inversion_formula).
|
||||||
For example,
|
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
p_9(z) &= f_3(z) \cdot g_9(z) \cdot -g_9(-z)
|
p_n(z) &= \prod_{d|n} f_n(z)
|
||||||
\\
|
\\
|
||||||
& \text{where } g_9(z) = z^3 -\ 3z -\ 1
|
\log( p_n(z) )
|
||||||
|
&= \log \left( \prod_{d|n} f_d(z) \right)
|
||||||
|
= \sum_{d|n} \log( f_d(z) )
|
||||||
|
\\
|
||||||
|
\log( f_n(z) ) &= \sum_{d|n} { \mu \left({n \over d} \right)}
|
||||||
|
\log( p_d(z) )
|
||||||
|
\\
|
||||||
|
f_n(z) &= \prod_{d|n} p_d(z)^{ \mu (n / d) }
|
||||||
|
\\[10pt]
|
||||||
|
f_6(z) = g_6(z)
|
||||||
|
&= p_6(z)^{\mu(1)}
|
||||||
|
p_3(z)^{\mu(2)}
|
||||||
|
p_2(z)^{\mu(3)}
|
||||||
|
\\
|
||||||
|
&= {p_6(z) \over p_3(z) p_2(z)}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
These reflections can be observed in the Chebyshev polynomials for $n = 3, 5, 7, 9$,
|
Unfortunately, it's difficult to apply this technique across our whole series.
|
||||||
strongly implying that it occurs on the odd terms.
|
Möbius inversion over series typically uses more advanced generating functions such as
|
||||||
|
[Dirichlet series](https://en.wikipedia.org/wiki/Dirichlet_series#Formal_Dirichlet_series)
|
||||||
|
or [Lambert series](https://en.wikipedia.org/wiki/Lambert_series).
|
||||||
|
However, naively reaching for these fails for two reasons:
|
||||||
|
|
||||||
In other words, if $f_n$ is the new polynomial introduced by $p_n$, then denote its conditional factorization $g_n$.
|
- We built our series of polynomials on a recurrence relation, and these series
|
||||||
|
are opaque to such manipulations.
|
||||||
|
- To do a proper Möbius inversion, we need these kinds of series over the *logarithm*
|
||||||
|
of each polynomial (*B* is a series over the polynomials themselves).
|
||||||
|
|
||||||
|
Ignoring these (and if you're in the mood for awful-looking math) you may note
|
||||||
|
the Lambert equivalence[^2]:
|
||||||
|
|
||||||
|
[^2]:
|
||||||
|
This equivalence applies to other polynomial series obeying the same factorization rule
|
||||||
|
such as the [cyclotomic polynomials](https://en.wikipedia.org/wiki/Cyclotomic_polynomial).
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
\log( p_n(z) )
|
||||||
|
&= \sum_{d|n} \log( f_d(z) )
|
||||||
|
\\
|
||||||
|
\sum_{n = 1}^\infty \log( p_n ) x^n
|
||||||
|
&= \sum_{n = 1}^\infty \sum_{d|n} \log( f_d ) x^n
|
||||||
|
\\
|
||||||
|
&= \sum_{k = 1}^\infty \sum_{m = 1}^\infty \log( f_m ) x^{m k}
|
||||||
|
\\
|
||||||
|
&= \sum_{m = 1}^\infty \log( f_m ) \sum_{k = 1}^\infty (x^m)^k
|
||||||
|
\\
|
||||||
|
&= \sum_{m = 1}^\infty \log( f_m ) {x^m \over 1 - x^m}
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Either way, the number-theoretic properties of this sequence are difficult to ascertain
|
||||||
|
without advanced techniques.
|
||||||
|
If research has been done, it is not easily available in the OEIS.
|
||||||
|
|
||||||
|
|
||||||
|
### Total Degrees
|
||||||
|
|
||||||
|
It can be also be observed that the new term is symmetric ($f(z) = f(-z)$), and is therefore
|
||||||
|
either irreducible or the product of polynomial and its reflection (potentially negated).
|
||||||
|
For example,
|
||||||
|
|
||||||
|
$$
|
||||||
|
p_9(z) = \left\{
|
||||||
|
\begin{matrix}
|
||||||
|
(z - 1)(z + 1)
|
||||||
|
& \cdot
|
||||||
|
& (z^3 - 3z - 1)(z^3 - 3z + 1)
|
||||||
|
\\
|
||||||
|
\shortparallel && \shortparallel
|
||||||
|
\\
|
||||||
|
f_3(z)
|
||||||
|
& \cdot
|
||||||
|
& f_9(z)
|
||||||
|
\\
|
||||||
|
\shortparallel && \shortparallel
|
||||||
|
\\
|
||||||
|
g_3(z) \cdot g_3(-z)
|
||||||
|
& \cdot
|
||||||
|
& g_9(z) \cdot -g_9(-z)
|
||||||
|
\end{matrix}
|
||||||
|
\right.
|
||||||
|
$$
|
||||||
|
|
||||||
|
These factor polynomials $g_n$ are the minimal polynomials of $2\cos( \pi / n )$.
|
||||||
|
|
||||||
|
Multiplying these minimal polynomials by their reflection can be observed in the Chebyshev polynomials
|
||||||
|
for $n = 3, 5, 7, 9$, strongly implying that it occurs on the odd terms.
|
||||||
|
Assuming this is true, we have
|
||||||
|
|
||||||
$$
|
$$
|
||||||
f_n(z) = \begin{cases}
|
f_n(z) = \begin{cases}
|
||||||
@ -647,68 +728,6 @@ Markdown(tabulate(
|
|||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
### Factorization Attempts
|
|
||||||
|
|
||||||
The relationship between $p_n$ and the intermediate $f_d$, where *d* is a divisor of *n*,
|
|
||||||
can be made explicit by a [Möbius inversion](https://en.wikipedia.org/wiki/M%C3%B6bius_inversion_formula).
|
|
||||||
|
|
||||||
$$
|
|
||||||
\begin{align*}
|
|
||||||
p_n(z) &= \prod_{d|n} f_n(z)
|
|
||||||
\\
|
|
||||||
\log( p_n(z) )
|
|
||||||
&= \log \left( \prod_{d|n} f_d(z) \right)
|
|
||||||
= \sum_{d|n} \log( f_d(z) )
|
|
||||||
\\
|
|
||||||
\log( f_n(z) ) &= \sum_{d|n} { \mu \left({n \over d} \right)}
|
|
||||||
\log( p_d(z) )
|
|
||||||
\\
|
|
||||||
f_n(z) &= \prod_{d|n} p_d(z)^{ \mu (n / d) }
|
|
||||||
\\[10pt]
|
|
||||||
f_6(z) = g_6(z)
|
|
||||||
&= p_6(z)^{\mu(1)}
|
|
||||||
p_3(z)^{\mu(2)}
|
|
||||||
p_2(z)^{\mu(3)}
|
|
||||||
\\
|
|
||||||
&= {p_6(z) \over p_3(z) p_2(z)}
|
|
||||||
\end{align*}
|
|
||||||
$$
|
|
||||||
|
|
||||||
Unfortunately, it's difficult to apply this technique across our whole series.
|
|
||||||
Möbius inversion over series typically uses more advanced generating functions such as
|
|
||||||
[Dirichlet series](https://en.wikipedia.org/wiki/Dirichlet_series#Formal_Dirichlet_series)
|
|
||||||
or [Lambert series](https://en.wikipedia.org/wiki/Lambert_series).
|
|
||||||
However, naively reaching for these fails for two reasons:
|
|
||||||
|
|
||||||
- We built our series of polynomials on a recurrence relation, and these series
|
|
||||||
are opaque to such manipulations.
|
|
||||||
- To do a proper Möbius inversion, we need these kinds of series over the *logarithm*
|
|
||||||
of each polynomial (*B* is a series over the polynomials themselves).
|
|
||||||
|
|
||||||
Ignoring these (and if you're in the mood for awful-looking math) you may note
|
|
||||||
the Lambert equivalence:
|
|
||||||
|
|
||||||
$$
|
|
||||||
\begin{align*}
|
|
||||||
\log( p_n(z) )
|
|
||||||
&= \sum_{d|n} \log( f_d(z) )
|
|
||||||
\\
|
|
||||||
\sum_{n = 1}^\infty \log( p_n ) x^n
|
|
||||||
&= \sum_{n = 1}^\infty \sum_{d|n} \log( f_d ) x^n
|
|
||||||
\\
|
|
||||||
&= \sum_{k = 1}^\infty \sum_{m = 1}^\infty \log( f_m ) x^{m k}
|
|
||||||
\\
|
|
||||||
&= \sum_{m = 1}^\infty \log( f_m ) \sum_{k = 1}^\infty (x^m)^k
|
|
||||||
\\
|
|
||||||
&= \sum_{m = 1}^\infty \log( f_m ) {x^m \over 1 - x^m}
|
|
||||||
\end{align*}
|
|
||||||
$$
|
|
||||||
|
|
||||||
Either way, the number-theoretic properties of this sequence are difficult to ascertain
|
|
||||||
without advanced techniques.
|
|
||||||
If research has been done, it is not easily available in the OEIS.
|
|
||||||
|
|
||||||
|
|
||||||
Closing
|
Closing
|
||||||
-------
|
-------
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user