move files to subdir, add recipe for results

This commit is contained in:
queue-miscreant 2025-07-22 02:40:52 -05:00
parent b2b2dd4e04
commit 01f7014fcf
10 changed files with 240 additions and 184 deletions

View File

@ -1,10 +0,0 @@
default: compare_complex compare_math
clean:
rm -rf compare_complex compare_math
compare_complex:
gcc main.c stereo_complex.c -lm -DUSE_COMPLEX -o compare_complex
compare_math:
gcc main.c stereo_math.c -lm -o compare_math

View File

@ -0,0 +1,14 @@
default: report
clean:
rm -rf compare_complex compare_math results_complex.txt results_math.txt
report: compare_complex compare_math
./compare_complex > results_complex.txt
./compare_math > results_math.txt
compare_complex:
gcc main.c stereo_complex.c -lm -DUSE_COMPLEX -o compare_complex
compare_math:
gcc main.c stereo_math.c -lm -o compare_math

View File

@ -0,0 +1,196 @@
#include <complex.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>
#define STR_RED "\x1b[31m"
#define STR_GREEN "\x1b[32m"
#define STR_NORM "\x1b[m"
#define SECONDS_PER_NANOSECOND 1000000000
#define NUM_STATS 100000
#define SQRT_NUM_STATS 100
#define NUM_LOOPS 10000000
struct circle {
double c;
double s;
};
#ifdef USE_COMPLEX
#define EXTRACT_COSINE(a) creal(a)
#define EXTRACT_SINE(a) cimag(a)
#define CIRCLE_TYPE double complex
#else
#define EXTRACT_COSINE(a) (a.c)
#define EXTRACT_SINE(a) (a.s)
#define CIRCLE_TYPE struct circle
#endif
void turn_update(double turn, CIRCLE_TYPE* result);
void approx_turn_update(double turn, CIRCLE_TYPE* result);
void print_errors(
const double* inputs,
const CIRCLE_TYPE* ideals,
const CIRCLE_TYPE* approxs,
int n
)
{
double c_error, s_error;
double largest_c_error = 0, largest_s_error = 0;
size_t largest_c_index, largest_s_index;
double total_c_error = 0, total_s_error = 0;
size_t i;
CIRCLE_TYPE ideal, approx;
for (i = 0; i < n; i++) {
ideal = ideals[i];
approx = approxs[i];
// squared error in c components
c_error = EXTRACT_COSINE(ideal) - EXTRACT_COSINE(approx);
c_error *= c_error;
// squared error in s components
s_error = EXTRACT_SINE(ideal) - EXTRACT_SINE(approx);
s_error *= s_error;
if (largest_c_error < c_error) {
largest_c_error = c_error;
largest_c_index = i;
}
if (largest_s_error < s_error) {
largest_s_error = s_error;
largest_s_index = i;
}
total_c_error += c_error;
total_s_error += s_error;
}
// these now contain the *average* squared error
total_c_error /= (double)n;
total_s_error /= (double)n;
printf(
"Squared error in cosines (%d runs): \n"
"\tAverage: %f (%f%% error)\n"
"\tLargest: %f (%f%% error)\n"
"\t\tInput:\t\t%f\n"
"\t\tValue:\t\t%f\n"
"\t\tApproximation:\t%f\n",
NUM_STATS, total_c_error, sqrt(total_c_error) * SQRT_NUM_STATS,
largest_c_error, sqrt(largest_c_error) * SQRT_NUM_STATS,
inputs[largest_c_index], EXTRACT_COSINE(ideals[largest_c_index]),
EXTRACT_COSINE(approxs[largest_c_index])
);
printf(
"Squared error in sines (%d runs): \n"
"\tAverage: %f (%f%% error)\n"
"\tLargest: %f (%f%% error)\n"
"\t\tInput:\t\t%f\n"
"\t\tValue:\t\t%f\n"
"\t\tApproximation:\t%f\n",
NUM_STATS, total_s_error, sqrt(total_s_error) * SQRT_NUM_STATS,
largest_s_error, sqrt(largest_s_error) * SQRT_NUM_STATS,
inputs[largest_s_index], EXTRACT_SINE(ideals[largest_s_index]),
EXTRACT_SINE(approxs[largest_s_index])
);
}
// time the length of the computation `f` in nanoseconds
// using a macro rather than a function taking a function pointer for
// more accurate time
#define TIME_COMPUTATION(f, inputs, results, n_stats, n_loop, time) \
do { \
size_t i; \
struct timespec tp1; \
struct timespec tp2; \
\
for (i = 0; i < n_stats; i++) { \
f(inputs[i], results + i); \
} \
CIRCLE_TYPE temp; \
clock_gettime(CLOCK_MONOTONIC, &tp1); \
for (i = 0; i < n_stats; i++) { \
f(rand() / (double)RAND_MAX, &temp); \
} \
clock_gettime(CLOCK_MONOTONIC, &tp2); \
\
time = SECONDS_PER_NANOSECOND * (tp2.tv_sec - tp1.tv_sec) + \
(tp2.tv_nsec - tp1.tv_nsec); \
} while (0)
int main(int argn, char** args)
{
long trig_time, rat_time;
double rands[NUM_STATS];
CIRCLE_TYPE trigs[NUM_STATS];
CIRCLE_TYPE rats[NUM_STATS];
size_t i;
for (i = 0; i < NUM_STATS; i++) {
rands[i] = rand() / (double)RAND_MAX;
}
TIME_COMPUTATION(
turn_update, rands, trigs, NUM_STATS, NUM_LOOPS, trig_time
);
printf(
#ifdef USE_COMPLEX
"Timing for %d complex.h cexp:\t%ldns\n",
#else
"Timing for %d math.h sin and cos:\t%ldns\n",
#endif
NUM_LOOPS, trig_time
);
TIME_COMPUTATION(
approx_turn_update, rands, rats, NUM_STATS, NUM_LOOPS, rat_time
);
printf("Timing for %d approximations:\t%ldns\n", NUM_LOOPS, rat_time);
// Report results
long diff = rat_time - trig_time;
double frac_speed;
if (diff > 0) {
frac_speed = rat_time / (double)trig_time;
// Disable colors for non-terminal output
if (isatty(STDOUT_FILENO)) {
printf(
STR_RED "stdlib" STR_NORM " faster, speedup: %ldns (%2.2fx)\n",
diff, frac_speed
);
} else {
printf(
"stdlib faster, speedup: %ldns (%2.2fx)\n", diff, frac_speed
);
}
} else {
frac_speed = trig_time / (double)rat_time;
// Disable colors for non-terminal output
if (isatty(STDOUT_FILENO)) {
printf(
STR_GREEN "Approximation" STR_NORM
" faster, speedup: %ldns (%2.2fx)\n",
-diff, frac_speed
);
} else {
printf(
"Approximation faster, speedup: %ldns (%2.2fx)\n", -diff,
frac_speed
);
}
print_errors(rands, trigs, rats, NUM_STATS);
}
return 0;
}

View File

@ -0,0 +1,15 @@
Timing for 10000000 complex.h cexp: 2864133ns
Timing for 10000000 approximations: 1321049ns
Approximation faster, speedup: 1543084ns (2.17x)
Squared error in cosines (100000 runs):
Average: 0.000051 (0.713743% error)
Largest: 0.000174 (1.320551% error)
Input: 0.729202
Value: -0.659428
Approximation: -0.672634
Squared error in sines (100000 runs):
Average: 0.000070 (0.835334% error)
Largest: 0.000288 (1.698413% error)
Input: 0.842206
Value: 0.475669
Approximation: 0.458685

View File

@ -0,0 +1,15 @@
Timing for 10000000 math.h sin and cos: 2822266ns
Timing for 10000000 approximations: 1223832ns
Approximation faster, speedup: 1598434ns (2.31x)
Squared error in cosines (100000 runs):
Average: 0.000051 (0.713743% error)
Largest: 0.000174 (1.320551% error)
Input: 0.729202
Value: -0.659428
Approximation: -0.672634
Squared error in sines (100000 runs):
Average: 0.000070 (0.835334% error)
Largest: 0.000288 (1.698413% error)
Input: 0.842206
Value: 0.475669
Approximation: 0.458685

View File

@ -1,174 +0,0 @@
#include <complex.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>
#define STR_RED "\x1b[31m"
#define STR_GREEN "\x1b[32m"
#define STR_NORM "\x1b[m"
#define SECONDS_PER_NANOSECOND 1000000000
#define NUM_STATS 100000
#define SQRT_NUM_STATS 100
#define NUM_LOOPS 10000000
struct circle {
double c;
double s;
};
#ifdef USE_COMPLEX
#define EXTRACT_COSINE(a) creal(a)
#define EXTRACT_SINE(a) cimag(a)
#define CIRCLE_TYPE double complex
#else
#define EXTRACT_COSINE(a) (a.c)
#define EXTRACT_SINE(a) (a.s)
#define CIRCLE_TYPE struct circle
#endif
void turn_update(double turn, CIRCLE_TYPE *result);
void approx_turn_update(double turn, CIRCLE_TYPE *result);
void print_errors(const double *inputs, const CIRCLE_TYPE *ideals,
const CIRCLE_TYPE *approxs, int n) {
double c_error, s_error;
double largest_c_error = 0, largest_s_error = 0;
size_t largest_c_index, largest_s_index;
double total_c_error = 0, total_s_error = 0;
size_t i;
CIRCLE_TYPE ideal, approx;
for (i = 0; i < n; i++) {
ideal = ideals[i];
approx = approxs[i];
// squared error in c components
c_error = EXTRACT_COSINE(ideal) - EXTRACT_COSINE(approx);
c_error *= c_error;
// squared error in s components
s_error = EXTRACT_SINE(ideal) - EXTRACT_SINE(approx);
s_error *= s_error;
if (largest_c_error < c_error) {
largest_c_error = c_error;
largest_c_index = i;
}
if (largest_s_error < s_error) {
largest_s_error = s_error;
largest_s_index = i;
}
total_c_error += c_error;
total_s_error += s_error;
}
// these now contain the *average* squared error
total_c_error /= (double)n;
total_s_error /= (double)n;
printf("Squared error in cosines (%d runs): \n"
"\tAverage: %f (%f%% error)\n"
"\tLargest: %f (%f%% error)\n"
"\t\tInput:\t\t%f\n"
"\t\tValue:\t\t%f\n"
"\t\tApproximation:\t%f\n",
NUM_STATS, total_c_error, sqrt(total_c_error) * SQRT_NUM_STATS,
largest_c_error, sqrt(largest_c_error) * SQRT_NUM_STATS,
inputs[largest_c_index], EXTRACT_COSINE(ideals[largest_c_index]),
EXTRACT_COSINE(approxs[largest_c_index]));
printf("Squared error in sines (%d runs): \n"
"\tAverage: %f (%f%% error)\n"
"\tLargest: %f (%f%% error)\n"
"\t\tInput:\t\t%f\n"
"\t\tValue:\t\t%f\n"
"\t\tApproximation:\t%f\n",
NUM_STATS, total_s_error, sqrt(total_s_error) * SQRT_NUM_STATS,
largest_s_error, sqrt(largest_s_error) * SQRT_NUM_STATS,
inputs[largest_s_index], EXTRACT_SINE(ideals[largest_s_index]),
EXTRACT_SINE(approxs[largest_s_index]));
}
// time the length of the computation `f` in nanoseconds
// using a macro rather than a function taking a function pointer for
// more accurate time
#define TIME_COMPUTATION(f, inputs, results, n_stats, n_loop, time) \
do { \
size_t i; \
struct timespec tp1; \
struct timespec tp2; \
\
for (i = 0; i < n_stats; i++) { \
f(inputs[i], results + i); \
} \
CIRCLE_TYPE temp; \
clock_gettime(CLOCK_MONOTONIC, &tp1); \
for (i = 0; i < n_stats; i++) { \
f(rand() / (double)RAND_MAX, &temp); \
} \
clock_gettime(CLOCK_MONOTONIC, &tp2); \
\
time = SECONDS_PER_NANOSECOND * (tp2.tv_sec - tp1.tv_sec) + \
(tp2.tv_nsec - tp1.tv_nsec); \
} while (0)
int main(int argn, char **args) {
long trig_time, rat_time;
double rands[NUM_STATS];
CIRCLE_TYPE trigs[NUM_STATS];
CIRCLE_TYPE rats[NUM_STATS];
size_t i;
for (i = 0; i < NUM_STATS; i++) {
rands[i] = rand() / (double)RAND_MAX;
}
TIME_COMPUTATION(turn_update, rands, trigs, NUM_STATS, NUM_LOOPS, trig_time);
printf(
#ifdef USE_COMPLEX
"Timing for %d complex.h cexp:\t%ldns\n",
#else
"Timing for %d math.h sin and cos:\t%ldns\n",
#endif
NUM_LOOPS, trig_time);
TIME_COMPUTATION(approx_turn_update, rands, rats, NUM_STATS, NUM_LOOPS,
rat_time);
printf("Timing for %d approximations:\t%ldns\n", NUM_LOOPS, rat_time);
// Report results
long diff = rat_time - trig_time;
double frac_speed;
if (diff > 0) {
frac_speed = rat_time / (double)trig_time;
// Disable colors for non-terminal output
if (isatty(STDOUT_FILENO)) {
printf(STR_RED "stdlib" STR_NORM " faster, speedup: %ldns (%2.2fx)\n",
diff, frac_speed);
} else {
printf("stdlib faster, speedup: %ldns (%2.2fx)\n", diff, frac_speed);
}
} else {
frac_speed = trig_time / (double)rat_time;
// Disable colors for non-terminal output
if (isatty(STDOUT_FILENO)) {
printf(STR_GREEN "Approximation" STR_NORM
" faster, speedup: %ldns (%2.2fx)\n",
-diff, frac_speed);
} else {
printf("Approximation faster, speedup: %ldns (%2.2fx)\n", -diff,
frac_speed);
}
print_errors(rands, trigs, rats, NUM_STATS);
}
return 0;
}